Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat (Triticum aestivum L.)
<p>Phylogenetic analysis of TaPERK proteins with Arabidopsis (15), rice (8), and soybean (16). The phylogenetic analysis was executed using the ClustalW program as well as MEGAX software by the neighbor-joining method and bootstrap values of 1000 replicates. The numbers on the nodes indicate the bootstrap values. Distinct groups are represented by the different colors.</p> "> Figure 2
<p>Genomic distribution of identified PERK genes on the 21 chromosomes of wheat and within the three sub-genomes. (<b>A</b>) Schematic representations of the chromosomal distribution of PERK genes on the 21 chromosomes of wheat and the name of the gene on the right. The colored circles on the chromosomes indicate the position of the PERK genes. The chromosome numbers of the three sub-genomes are indicated at the top of each bar. (<b>B</b>) Distribution of PERK genes in the three sub-genomes. (<b>C</b>) Distribution of PERK genes across 21 chromosomes, Un: unaligned contig.</p> "> Figure 2 Cont.
<p>Genomic distribution of identified PERK genes on the 21 chromosomes of wheat and within the three sub-genomes. (<b>A</b>) Schematic representations of the chromosomal distribution of PERK genes on the 21 chromosomes of wheat and the name of the gene on the right. The colored circles on the chromosomes indicate the position of the PERK genes. The chromosome numbers of the three sub-genomes are indicated at the top of each bar. (<b>B</b>) Distribution of PERK genes in the three sub-genomes. (<b>C</b>) Distribution of PERK genes across 21 chromosomes, Un: unaligned contig.</p> "> Figure 3
<p>Syntenic relationships of TaPERK genes between <span class="html-italic">Aegilops tauschii</span>, <span class="html-italic">Brachypodium distachyon</span>, and <span class="html-italic">Oryza sativa</span>. The gray lines in the background represent the collinear blocks within <span class="html-italic">Triticum aestivum</span> and other plant genomes, while the red lines highlight the syntenic PERK gene pairs.</p> "> Figure 4
<p>Diagrammatic representation of the exon–intron organization of the TaPERK genes. Yellow boxes represent exons, untranslated regions (UTRs) are indicated by blue boxes, and black lines represent introns. The lengths of the boxes and lines are scaled based on gene length. The exon and intron sizes can be estimated using the scale at the bottom.</p> "> Figure 5
<p>Conserved motifs of TaPERK genes elucidated by MEME. Up to 10 motifs were shown in different colors. (<b>A</b>) Colored boxes representing different conserved motifs with different sequences and sizes. (<b>B</b>) Sequence logo conserved motif of the wheat PERK proteins. The overall height of each stack represents the degree of conservation at this position, while the height of individual letters within each stack indicates the relative frequency of the corresponding amino acids. The sequence of each motif, combined <span class="html-italic">p</span>-value, and length are shown on the left side of the figure. MEME Parameters: number of repetitions, any; maximum number of motifs, 10; optimum motif width, between 6 and 50.</p> "> Figure 5 Cont.
<p>Conserved motifs of TaPERK genes elucidated by MEME. Up to 10 motifs were shown in different colors. (<b>A</b>) Colored boxes representing different conserved motifs with different sequences and sizes. (<b>B</b>) Sequence logo conserved motif of the wheat PERK proteins. The overall height of each stack represents the degree of conservation at this position, while the height of individual letters within each stack indicates the relative frequency of the corresponding amino acids. The sequence of each motif, combined <span class="html-italic">p</span>-value, and length are shown on the left side of the figure. MEME Parameters: number of repetitions, any; maximum number of motifs, 10; optimum motif width, between 6 and 50.</p> "> Figure 6
<p>Multiple sequence alignment of the TaPERK protein sequences. The conserved protein tyrosine kinase domain is boxed in red. Colored and shaded amino acids are chemically similar residues. Dashes indicate gaps introduced to maximize the alignment of the homologous region. * indicates positions which have a single, fully conserved residue.</p> "> Figure 6 Cont.
<p>Multiple sequence alignment of the TaPERK protein sequences. The conserved protein tyrosine kinase domain is boxed in red. Colored and shaded amino acids are chemically similar residues. Dashes indicate gaps introduced to maximize the alignment of the homologous region. * indicates positions which have a single, fully conserved residue.</p> "> Figure 7
<p>Cis-acting regulatory elements (CAREs) in the promoter region of the TaPERK genes family. The CAREs analysis was performed with a 2kb upstream region using PlantCARE online server. The different numbers of <span class="html-italic">cis</span>-regulatory elements represent different colors. (<b>A</b>) Hormone-responsive elements, stress-responsive elements, growth and development-related elements, light-responsive elements, and other elements with unknown functions are differentiated by color. (<b>B</b>) Most commonly occurring CAREs in TaPERKs.</p> "> Figure 8
<p>Heatmap representing expression profile of the TaPERK genes at various developmental stages. Columns represent genes, and rows represent different developmental stages. TPM values were used directly to create the heatmaps. The “z” nomenclature refers to Zadok’s growth stage.</p> "> Figure 9
<p>Quantitative real-time PCR analysis of selected TaPERK genes in response to drought stress (DS), heat stress (HS), and cold stress to verify RNA seq data. The wheat actin gene was used as the internal control to standardize the RNA samples for each reaction. Asterisks indicate significant differences compared with control. Bars represent results of Tukey’s HSD test at the <0.05 and <0.001 level (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> lies in between the values of 0.05 and 0.001, and *** <span class="html-italic">p</span> < 0.001). Error bars show standard deviation. Data are mean ± SD (<span class="html-italic">n</span> = 3).</p> "> Figure 10
<p>Protein–protein interaction analysis of TaPERKs proteins. Protein–protein interaction network produced by STRINGV9.1, each node represents a protein, and each edge represents an interaction, colored by evidence type. The figure highlights the connections between differentially represented proteins.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of TaPERK in Wheat
2.2. Chromosomal Distribution, Gene Duplication, and Synteny Analysis
2.3. Exon/Intron Structure and Motif analysis of TaPERK Genes
2.4. Cis-Acting Regulatory Elements (CAREs) Analysis of TaPERK Genes
2.5. Gene Ontology (GO) Enrichment of TaPERK Genes
2.6. Expression Profiling of TaPERK Genes in Various Developmental Stages and under Diverse Stress Conditions
2.7. Protein–Protein Network Analysis of the TaPERK Family Genes
3. Discussion
4. Materials and Methods
4.1. Identification of PERK Genes in Wheat
4.2. Genomic Localization, Gene Duplication, and Synteny Analysis
4.3. Biophysical Characteristics, Subcellular Localization, and 3D Structure
4.4. Exon/intron Structure, Protein Motif, and Gene Ontology Analysis
4.5. Promoter Cis-Acting Regulatory Elements (CAREs) and Protein Interaction Network Analysis
4.6. Expression Analysis of TaPERK Genes
4.7. Plant Growth Conditions, Stress Treatment, and RT-qPCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Day, E.K.; Sosale, N.G.; Lazzara, M.J. Cell signaling regulation by protein phosphorylation: A multivariate, heterogeneous, and context-dependent process. Curr. Opin. Biotechnol. 2016, 40, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohmann, U.; Lau, K.; Hothorn, M. The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 2017, 68, 109–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, J.-S.; Kesawat, M.S.; Kumar, M.; Kim, S.-Y.; Mani, V.; Subramanian, P.; Park, S.; Lee, C.-M.; Kim, S.-R.; Hahn, B.-S. Lack of the α1, 3-fucosyltransferase gene (OsFucT) affects anther development and pollen viability in rice. Int. J. Mol. Sci. 2018, 19, 1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanks, S.K.; Quinn, A.M.; Hunter, T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 1988, 241, 42–52. [Google Scholar] [CrossRef]
- DeFalco, T.A.; Anne, P.; James, S.R.; Willoughby, A.; Johanndrees, O.; Genolet, Y.; Pullen, A.-M.; Zipfel, C.; Hardtke, C.S.; Nimchuk, Z.L. A conserved regulatory module regulates receptor kinase signaling in immunity and development. bioRxiv 2021. [Google Scholar] [CrossRef]
- Nakhamchik, A.; Zhao, Z.; Provart, N.J.; Shiu, S.-H.; Keatley, S.K.; Cameron, R.K.; Goring, D.R. A comprehensive expression analysis of the Arabidopsis proline-rich extensin-like receptor kinase gene family using bioinformatic and experimental approaches. Plant Cell Physiol. 2004, 45, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Qanmber, G.; Liu, J.; Yu, D.; Liu, Z.; Lu, L.; Mo, H.; Ma, S.; Wang, Z.; Yang, Z. Genome-wide identification and characterization of the PERK gene family in Gossypium hirsutum reveals gene duplication and functional divergence. Int. J. Mol. Sci. 2019, 20, 1750. [Google Scholar] [CrossRef] [Green Version]
- Diévart, A.; Clark, S.E. LRR-containing receptors regulating plant development and defense. Development 2004, 131, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Shiu, S.-H.; Bleecker, A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 2001, 98, 10763–10768. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.R.; Walker, J.C. Receptor-like protein kinases: The keys to response. Curr. Opin. Plant Biol. 2003, 6, 339–342. [Google Scholar] [CrossRef]
- Shiu, S.-H.; Karlowski, W.M.; Pan, R.; Tzeng, Y.-H.; Mayer, K.F.; Li, W.-H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004, 16, 1220–1234. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.F.; Goring, D.R. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol. Biol. 2002, 50, 667–685. [Google Scholar] [CrossRef]
- Haffani, Y.Z.; Silva, N.F.; Goring, D.R. Receptor kinase signalling in plants. Can. J. Bot. 2004, 82, 1–15. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, G.; Zhou, Y.; Zhang, Z.; Wang, W.; Du, Y.; Wu, Z.; Song, C.P. Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca2+ signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J. 2009, 60, 314–327. [Google Scholar] [CrossRef]
- Chen, G.; Wang, J.; Wang, H.; Wang, C.; Tang, X.; Li, J.; Zhang, L.; Song, J.; Hou, J.; Yuan, L. Genome-wide analysis of proline-rich extension-like receptor protein kinase (PERK) in Brassica rapa and its association with the pollen development. BMC Genom. 2020, 21, 401. [Google Scholar] [CrossRef]
- Borassi, C.; Sede, A.; Mecchia, M.A.; Mangano, S.; Marzol, E.; Denita-Juarez, S.P.; Salter, J.D.S.; Velasquez, S.M.; Muschietti, J.P.; Estevez, J. Proline-rich Extensin-like Receptor Kinases PERK5 and PERK12 are involved in Pollen Tube Growth. bioRxiv 2021. [Google Scholar] [CrossRef]
- Shiu, S.-H.; Bleecker, A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003, 132, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 1997, 90, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wen, J.; Lease, K.A.; Doke, J.T.; Tax, F.E.; Walker, J.C. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 2002, 110, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.H.; Li, J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 2002, 110, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Haffani, Y.; Silva-Gagliardi, N.; Sewter, S.; Aldea, M.G.; Zhao, Z.; Nakhamchik, A.; Cameron, R.; Goring, D. Altered expression of PERK receptor kinases in Arabidopsis leads to changes in growth and floral organ formation. Plant Signal. Behav. 2006, 1, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Won, S.-K.; Lee, Y.-J.; Lee, H.-Y.; Heo, Y.-K.; Cho, M.; Cho, H.-T. Cis-element-and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiol. 2009, 150, 1459–1473. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, T.V.; Haasen, K.E.; Aldea-Brydges, M.G.; Sun, H.; Zayed, Y.; Indriolo, E.; Goring, D.R. PERK–KIPK–KCBP signalling negatively regulates root growth in Arabidopsis thaliana. J. Exp. Bot. 2015, 66, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.; Kim, S.Y.; Kim, C.S.; Park, Y.; Tripathi, G.R.; Kim, S.-K.; Cheong, H. Over-expression of the IGI1 leading to altered shoot-branching development related to MAX pathway in Arabidopsis. Plant Mol. Biol. 2010, 73, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Borassi, C.; Sede, A.R.; Mecchia, M.A.; Salgado Salter, J.D.; Marzol, E.; Muschietti, J.P.; Estevez, J.M. An update on cell surface proteins containing extensin-motifs. J. Exp. Bot. 2016, 67, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, T.; Hetherington, A.; Atkinson, C. Some current aspects of stomatal physiology. Annu. Rev. Plant Biol. 1990, 41, 55–75. [Google Scholar] [CrossRef]
- Webb, A.A.; McAinsh, M.R.; Taylor, J.E.; Hetherington, A.M. Calcium ions as intracellular second messengers in higher plants. Adv. Bot. Res. 1996, 22, 45–96. [Google Scholar] [CrossRef]
- Gong, M.; Chen, S.-N.; Song, Y.-Q.; Li, Z.-G. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Funct. Plant Biol. 1997, 24, 371–379. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, H.; Lee, Y.S.; Cho, H.T. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth. J. Exp. Bot. 2016, 67, 2007–2022. [Google Scholar] [CrossRef] [Green Version]
- Samuel, M.A.; Ellis, B.E. Double jeopardy: Both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 2002, 14, 2059–2069. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Cao, Q.Q.; Zhang, Q.; Qin, L.; Jia, W.S.; Zhang, J.H. MKK5 Regulates High Light-Induced Gene Expression of Cu/Zn Superoxide Dismutase 1 and 2 in Arabidopsis. Plant Cell Physiol. 2013, 54, 1217–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florentino, L.H.; Santos, A.A.; Fontenelle, M.R.; Pinheiro, G.L.; Zerbini, F.M.; Baracat-Pereira, M.C.; Fontes, E.P. A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J. Virol. 2006, 80, 6648–6656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.M.; Kumar, D.B.; Kumar, D.S. Manorama. Assessment of genetic diversity among Indian Sesame (Sesamum indicum L.) accessions using RAPD, ISSR and SSR markers. Res. J. Biotechnol. 2015, 10, 35–47. [Google Scholar]
- Kumar, M.; Kesawat, M.S.; Ali, A.; Lee, S.-C.; Gill, S.S.; Kim, H.U. Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants 2019, 8, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesawat, M.S.; Shivaraj, S.; Kim, D.K.; Kumar, M.; Hahn, B.S.; Deshmukh, R. Metalloids and Their Role in the Biological System. Met. Plants Adv. Future Prospect. 2020, 1–17. [Google Scholar] [CrossRef]
- The International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014, 345, 1251788. [Google Scholar] [CrossRef]
- Gill, B.S.; Appels, R.; Botha-Oberholster, A.-M.; Buell, C.R.; Bennetzen, J.L.; Chalhoub, B.; Chumley, F.; Dvorák, J.; Iwanaga, M.; Keller, B. A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 2004, 168, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
- Afzal, F.; Chaudhari, S.K.; Gul, A.; Farooq, A.; Ali, H.; Nisar, S.; Sarfraz, B.; Shehzadi, K.J.; Mujeeb-Kazi, A. Bread wheat (Triticum aestivum L.) under biotic and abiotic stresses: An overview. Crop Prod. Glob. Environ. Issues 2015, 293–317. [Google Scholar] [CrossRef]
- Kumar, P.; Yadava, R.; Gollen, B.; Kumar, S.; Verma, R.K.; Yadav, S. Nutritional contents and medicinal properties of wheat: A review. Life Sci. Med. Res. 2011, 22, 1–10. [Google Scholar]
- Kumar, M.; Kherawat, B.S.; Dey, P.; Saha, D.; Singh, A.; Bhatia, S.K.; Ghodake, G.S.; Kadam, A.A.; Kim, H.-U.; Chung, S.-M. Genome-Wide Identification and Characterization of PIN-FORMED (PIN) Gene Family Reveals Role in Developmental and Various Stress Conditions in Triticum aestivum L. Int. J. Mol. Sci. 2021, 22, 7396. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Das, B.K.; Bhaganagare, G.R. Genome-wide identification, evolutionary and expression analyses of putative Fe–S biogenesis genes in rice (Oryza sativa). Genome 2012, 55, 571–583. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Kherawat, B.S.; Singh, A.; Dey, P.; Kabi, M.; Debnath, D.; Saha, D.; Khandual, A.; Rout, S.; Ali, A. Genome-wide identification and characterization of the brassinazole-resistant (BZR) gene family and its expression in the various developmental stage and stress conditions in wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2021, 22, 8743. [Google Scholar] [CrossRef]
- Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; Poland, J. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361. [Google Scholar] [CrossRef] [Green Version]
- Lawton-Rauh, A. Evolutionary dynamics of duplicated genes in plants. Mol. Phylogenet. Evol. 2003, 29, 396–409. [Google Scholar] [CrossRef]
- Hou, Y.; Gupta, N.; Schoenlein, P.; Wong, E.; Martindale, R.; Ganapathy, V.; Browning, D. An anti-tumor role for cGMP-dependent protein kinase. Cancer Lett. 2006, 240, 60–68. [Google Scholar] [CrossRef]
- Gross, I.; Durner, J. In search of enzymes with a role in 3′, 5′-cyclic guanosine monophosphate metabolism in plants. Front. Plant Sci. 2016, 7, 576. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Zhan, X.; Yang, P.; Li, J.; Chen, J.; Tang, B.; Wang, X.; Hong, Y. Dual activities of plant cGMP-dependent protein kinase and its roles in gibberellin signaling and salt stress. Plant Cell 2019, 31, 3073–3091. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, J.I.; Wong, A.; Marondedze, C.; Groen, A.J.; Kwezi, L.; Freihat, L.; Vyas, J.; Raji, M.A.; Irving, H.R.; Gehring, C. The brassinosteroid receptor BRI 1 can generate cGMP enabling cGMP-dependent downstream signaling. Plant J. 2017, 91, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Isner, J.-C.; Maathuis, F.J. cGMP signalling in plants: From enigma to main stream. Funct. Plant Biol. 2016, 45, 93–101. [Google Scholar] [CrossRef]
- Lespinet, O.; Wolf, Y.I.; Koonin, E.V.; Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 2002, 12, 1048–1059. [Google Scholar] [CrossRef] [Green Version]
- Jordan, I.K.; Makarova, K.S.; Spouge, J.L.; Wolf, Y.I.; Koonin, E.V. Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res. 2001, 11, 555–565. [Google Scholar] [CrossRef]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.C.; Purugganan, M.D. The early stages of duplicate gene evolution. Proc. Natl. Acad. Sci. USA 2003, 100, 15682–15687. [Google Scholar] [CrossRef] [Green Version]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Baumberger, N.; Doesseger, B.; Guyot, R.; Diet, A.; Parsons, R.L.; Clark, M.A.; Simmons, M.; Bedinger, P.; Goff, S.A.; Ringli, C. Whole-genome comparison of leucine-rich repeat extensins in Arabidopsis and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade. Plant Physiol. 2003, 131, 1313–1326. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Guo, Y.; Wu, C.; Yang, G.; Li, Y.; Zheng, C. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom. 2008, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Gong, Q.; Qin, W.; Yang, Z.; Cheng, Y.; Lu, L.; Ge, X.; Zhang, C.; Wu, Z.; Li, F. Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses. BMC Plant Biol. 2017, 17, 113. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, Q.; Wang, L.; Jin, Y.; Xi, J.; Li, Z.; Qin, W.; Yang, Z.; Lu, L.; Chen, Q. Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Front. Genet. 2018, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Liu, J.; Yang, Z.E.; Chen, E.Y.; Zhang, C.J.; Zhang, X.Y.; Li, F.G. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L. BMC Genom. 2018, 19, 348. [Google Scholar] [CrossRef]
- Yin, G.; Xu, H.; Xiao, S.; Qin, Y.; Li, Y.; Yan, Y.; Hu, Y. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC Plant Biol. 2013, 13, 148. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Yu, D.; Yang, Z.; Li, C.; Qanmber, G.; Li, Y.; Li, J.; Liu, Z.; Lu, L.; Wang, L. Genome-wide identification of the MIKC-type MADS-box gene family in Gossypium hirsutum L. unravels their roles in flowering. Front. Plant Sci. 2017, 8, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dossa, K.; Diouf, D.; Cissé, N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front. Plant Sci. 2016, 7, 1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.W.; Gilbert, W. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nat. Rev. Genet. 2006, 7, 211–221. [Google Scholar] [PubMed]
- Roy, S.W.; Penny, D. Patterns of intron loss and gain in plants: Intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol. Biol. Evol. 2007, 24, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.; Parra, S.; Alcaraz, L.D.; Guzmán, P. The ATL gene family from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. J. Mol. Evol. 2006, 62, 434–445. [Google Scholar] [CrossRef]
- Dan, Y.; Niu, Y.; Wang, C.; Yan, M.; Liao, W. Genome-wide identification and expression analysis of the trehalose-6-phosphate synthase (TPS) gene family in cucumber (Cucumis sativus L.). PeerJ 2021, 9, e11398. [Google Scholar] [CrossRef]
- Lecharny, A.; Boudet, N.; Gy, I.; Aubourg, S.; Kreis, M. Introns in, introns out in plant gene families: A genomic approach of the dynamics of gene structure. J. Struct. Funct. Genom. 2003, 3, 111–116. [Google Scholar] [CrossRef]
- Hernandez-Garcia, C.M.; Finer, J.J. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014, 217, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.L.; Sen, R.; Roeder, R.G. Enhancer–promoter communication and transcriptional regulation of Igh. Trends Immunol. 2011, 32, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.L.; Singer, D.S. Core promoters in transcription: Old problem, new insights. Trends Biochem. Sci. 2015, 40, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wong, C.-H.; Birnbaum, R.Y.; Li, G.; Favaro, R.; Ngan, C.Y.; Lim, J.; Tai, E.; Poh, H.M.; Wong, E. Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations. Nature 2013, 504, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Tang, Q.; Li, Y.; Zhang, Y.; Zhao, C.; Yan, J.; You, H. Folding/unfolding kinetics of G-quadruplexes upstream of the P1 promoter of the human BCL-2 oncogene. J. Biol. Chem. 2019, 294, 5890–5895. [Google Scholar] [CrossRef]
- Fankhauser, C.; Chory, J. Light control of plant development. Annu. Rev. Cell Dev. Biol. 1997, 13, 203–229. [Google Scholar] [CrossRef] [Green Version]
- Dievart, A.; Gottin, C.; Périn, C.; Ranwez, V.; Chantret, N. Origin and diversity of plant receptor-like kinases. Annu. Rev. Plant Biol. 2020, 71, 131–156. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liu, Z.; Chen, G.; Qanmber, G.; Lu, L.; Zhang, J.; Ma, S.; Yang, Z.; Li, F. Identification and analysis of GhEXO gene family indicated that GhEXO7_At promotes plant growth and development through brassinosteroid signaling in cotton (Gossypium hirsutum L.). Front. Plant Sci. 2021, 12, 719889. [Google Scholar] [CrossRef]
- Šimura, J.; Antoniadi, I.; Široká, J.; Tarkowská, D.e.; Strnad, M.; Ljung, K.; Novák, O. Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018, 177, 476–489. [Google Scholar] [CrossRef] [Green Version]
- Clouse, S.D. Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 2011, 23, 1219–1230. [Google Scholar] [CrossRef] [Green Version]
- Clouse, S.D.; Langford, M.; McMorris, T.C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 1996, 111, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.-J.; Russinova, E. Brassinosteroid signalling. Curr. Biol. 2020, 30, R294–R298. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-h.; Jin, H.; Marler, B.; Guo, H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlowski, L.P. IPC–isoelectric point calculator. Biol. Direct 2016, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.S.; Chen, Y.C.; Lu, C.H.; Hwang, J.K. Prediction of protein subcellular localization. Proteins Struct. Funct. Bioinform. 2006, 64, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2. 0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Grigorova, B.; Vaseva, I.; Demirevska, K.; Feller, U. Combined Drought and Heat Stress in Wheat: Changes in Some Heat Shock Proteins. Biol. Plant. 2011, 55, 105–111. [Google Scholar] [CrossRef]
- Kim, D.K.; Kesawat, M.S.; Hong, C.B. One gene member of the ADP-ribosylation factor family is heat-inducible and enhances seed germination in Nicotiana tabacum. Genes Genom. 2017, 39, 1353–1365. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Kim, D.K.; Zeba, N.; Suh, M.C.; Xia, X.; Hong, C.B. Ectopic RING zinc finger gene from hot pepper induces totally different genes in lettuce and tobacco. Mol. Breed. 2018, 38, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Narancio, R.; John, U.; Mason, J.; Spangenberg, G. Selection of optimal reference genes for quantitative RT-PCR transcript abundance analysis in white clover (Trifolium repens L.). Funct. Plant Biol. 2018, 45, 737–744. [Google Scholar] [CrossRef]
Proposed Gene Name | Gene ID | Genomic Location | Orientation | CDS Length (bp) | Intron Number | Protein Length (aa) | Molecular Weight (KDa) | Isoelectric Point (pI) | GRAVY | Predicted Subcellular Localization |
---|---|---|---|---|---|---|---|---|---|---|
TaPERK1 | TraesCS1A02G127900 | 1A:155693812–155696618 | Forward | 1977 | 7 | 658 | 69.44 | 7.53 | −0.531 | Nucleus |
TaPERK2 | TraesCS1B02G1470000 | 1B:209130189–209130266 | Reverse | 1431 | 8 | 476 | 52.14 | 6.17 | −0.5 | Nucleus |
TaPERK3 | TraesCS1D02G00430 | 1D:2110107–2112027 | Forward | 1971 | 7 | 656 | 68.93 | 9.04 | −0.393 | Chloroplast outer membrane |
TaPERK4 | TraesCS1D02G126300 | 1D:137437684–137440387 | Reverse | 1962 | 7 | 653 | 69.07 | 7.21 | −0.52 | Nucleus |
TaPERK5 | TraesCS2A02G418200 | 2A:674030843–674031911 | Forward | 3048 | 23 | 1015 | 110.33 | 6.33 | −0.193 | Plasma membrane |
TaPERK6 | TraesCS2A02G418300 | 2A:674050369–674051442 | Forward | 3042 | 23 | 1013 | 110.39 | 7.06 | −0.135 | Plasma membrane |
TaPERK7 | TraesCS2A02G418400 | 2A:674061248–674062244 | Forward | 3159 | 23 | 1052 | 113.73 | 5.96 | −0.127 | Plasma membrane |
TaPERK8 | TraesCS2B02G437200 | 2B:629023953–629025021 | Forward | 3045 | 23 | 1014 | 110.38 | 6.3 | −0.178 | Plasma membrane |
TaPERK9 | TraesCS2B02G437300 | 2B:629106216–629107285 | Forward | 3048 | 23 | 1015 | 110.62 | 6.61 | −0.147 | Plasma membrane |
TaPERK10 | TraesCS2D02G415600 | 2D:529537635–529538701 | Forward | 3048 | 22 | 1015 | 110.34 | 6.6 | −0.167 | Plasma membrane |
TaPERK11 | TraesCS2D02G415700 | 2D:529548057–529548998 | Forward | 2775 | 23 | 924 | 101.07 | 7.29 | −0.182 | Plasma membrane |
TaPERK12 | TraesCS2D02G415800 | 2D:529558487–529559547 | Forward | 3156 | 23 | 1051 | 113.45 | 6.11 | −0.102 | Plasma membrane |
TaPERK13 | TraesCS3A02G003900 | 3A:1925607–1927275 | Reverse | 2064 | 7 | 687 | 72.42 | 5.96 | −0.429 | Plasma membrane |
TaPERK14 | TraesCS3A02G152200 | 3A:142891955–142894634 | Forward | 1893 | 7 | 630 | 67.43 | 6.28 | −0.569 | Endomembrane system |
TaPERK15 | TraesCS3A02G229800 | 3A:429615911–429617422 | Reverse | 2163 | 6 | 720 | 74.97 | 7.93 | −0.401 | Chloroplast thylakoid lumen |
TaPERK16 | TraesCS3A02G278100 | 3A:507637093–507638935 | Reverse | 2028 | 7 | 675 | 72.42 | 7.31 | −0.481 | Plasma membrane |
TaPERK17 | TraesCS3A02G290300 | 3A:519244808–519246110 | Reverse | 2184 | 7 | 727 | 75.8 | 6.11 | −0.535 | Endomembrane system |
TaPERK18 | TraesCS3B02G008600 | 3B:4324660–4326408 | Forward | 2061 | 7 | 686 | 71.88 | 5.97 | −0.437 | Plasma membrane |
TaPERK19 | TraesCS3B02G179300 | 3B:187347873–187350697 | Forward | 1896 | 7 | 631 | 67.46 | 6.35 | −0.569 | Endomembrane system |
TaPERK20 | TraesCS3B02G259100 | 3B:416806224–416809608 | Reverse | 2097 | 6 | 698 | 72.98 | 7.63 | −0.448 | Plasma membrane |
TaPERK21 | TraesCS3B02G312300 | 3B:501498044–501499926 | Reverse | 2034 | 7 | 677 | 72.6 | 7.31 | −0.493 | Endomembrane system |
TaPERK22 | TraesCS3B02G325100 | 3B:525990462–525991846 | Reverse | 2436 | 7 | 811 | 84.77 | 6.09 | −0.51 | Plasma membrane |
TaPERK23 | TraesCS3D02G005400 | 3D:2141185–2143272 | Forward | 1206 | 6 | 401 | 44.37 | 5.55 | −0.403 | Nucleus |
TaPERK24 | TraesCS3D02G160000 | 3D:130928685–130931461 | Forward | 1899 | 7 | 632 | 67.49 | 6.36 | −0.555 | Endomembrane system |
TaPERK25 | TraesCS3D02G278400 | 3D:385473929–385474240 | Reverse | 2031 | 8 | 676 | 72.56 | 7.1 | −0.471 | Endomembrane system |
TaPERK26 | TraesCS3D02G290100 | 3D:400311470–400312883 | Reverse | 1317 | 6 | 438 | 47.14 | 5.97 | −0.447 | Nucleus |
TaPERK27 | TraesCS4A02G077500 | 4A:76627667–76628358 | Forward | 1866 | 5 | 621 | 64.49 | 5.58 | −0.457 | Endomembrane system |
TaPERK28 | TraesCS4A02G449700 | 4A:715718345–715719349 | Forward | 2604 | 19 | 867 | 94.75 | 7.03 | −0.145 | Plasma membrane |
TaPERK29 | TraesCS4B02G233600 | 4B:486206279–486206961 | Reverse | 1857 | 5 | 618 | 64.45 | 5.63 | −0.487 | Plasma membrane |
TaPERK30 | TraesCS5A02G411300 | 5A:599978835–599979642 | Reverse | 1722 | 4 | 573 | 60.33 | 7.96 | −0.387 | Chloroplast outer membrane |
TaPERK31 | TraesCS5B02G415000 | 5B:589228532–589228944 | Reverse | 1842 | 3 | 613 | 64.68 | 7.86 | −0.368 | Chloroplast outer membrane |
TaPERK32 | TraesCS7A02G038600 | 7A:17358644–17359648 | Reverse | 3030 | 23 | 1009 | 109.7 | 6.22 | −0.108 | Plasma membrane |
TaPERK33 | TraesCS7A02G231900 | 7A:202852283–202853761 | Reverse | 2187 | 6 | 728 | 76.24 | 5.32 | −0.484 | Nucleus |
TaPERK34 | TraesCS7B02G130400 | 7B:156752944–156754400 | Reverse | 2208 | 6 | 735 | 76.89 | 5.22 | −0.49 | Nucleus |
TaPERK35 | TraesCS7D02G034800 | 7D:17864178–17865182 | Reverse | 3021 | 23 | 1006 | 109.26 | 6.1 | −0.09 | Plasma membrane |
TaPERK36 | TraesCS7D02G232700 | 7D:194224547–194225929 | Forward | 2256 | 6 | 751 | 78.2 | 6.16 | −0.645 | Endomembrane system |
TaPERK37 | TraesCSU02G104700 | Un:92294980–92296477 | Reverse | 2205 | 6 | 734 | 76.55 | 5.32 | −0.483 | Nucleus |
Plant Species | Genome Size (Approx.) | Coding Genes | PERK Genes |
---|---|---|---|
Triticum aestivum (6n) | 17 Gb | 107,891 | 37 |
Arabidopsis thaliana (2n) | 135 Mb | 27,655 | 15 |
Oryza sativa | 500 Mb | 37,960 | 8 |
Zea mays (2n) | 2.4 Gb | 39,591 | 23 |
Glycine max (2n) | 1.15 Gb | 55,897 | 16 |
Sorghum bicolor (2n) | 730 Mb | 28,120 | 15 |
Gossypium arboretum (2n) | 1746 Mb | 41,330 | 15 |
Gossypium raimondii (2n) | 885 Mb | 40,976 | 16 |
Gossypium hirsutum (4n) | 2.43 Gb | 75,376 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kesawat, M.S.; Kherawat, B.S.; Singh, A.; Dey, P.; Routray, S.; Mohapatra, C.; Saha, D.; Ram, C.; Siddique, K.H.M.; Kumar, A.; et al. Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat (Triticum aestivum L.). Plants 2022, 11, 496. https://doi.org/10.3390/plants11040496
Kesawat MS, Kherawat BS, Singh A, Dey P, Routray S, Mohapatra C, Saha D, Ram C, Siddique KHM, Kumar A, et al. Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat (Triticum aestivum L.). Plants. 2022; 11(4):496. https://doi.org/10.3390/plants11040496
Chicago/Turabian StyleKesawat, Mahipal Singh, Bhagwat Singh Kherawat, Anupama Singh, Prajjal Dey, Snehasish Routray, Chinmayee Mohapatra, Debanjana Saha, Chet Ram, Kadambot H. M. Siddique, Ajay Kumar, and et al. 2022. "Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat (Triticum aestivum L.)" Plants 11, no. 4: 496. https://doi.org/10.3390/plants11040496
APA StyleKesawat, M. S., Kherawat, B. S., Singh, A., Dey, P., Routray, S., Mohapatra, C., Saha, D., Ram, C., Siddique, K. H. M., Kumar, A., Gupta, R., Chung, S.-M., & Kumar, M. (2022). Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat (Triticum aestivum L.). Plants, 11(4), 496. https://doi.org/10.3390/plants11040496