Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens
Abstract
:1. Introduction
2. Fungal Endophytes and Their Effects on Fungal Pathogens
3. Fungal Endophytes and Their Activities against Bacterial Pathogens
4. Fungal Endophytes and Their Effects against Plant-Parasitic Nematodes
5. The Effect of Fungal Endophytes against Plant Viral Diseases
6. The Role of Fungal Endophytes against Mites
7. Environmental Factors Affecting Endophytic Fungi and Plants
8. Host Plant Feedback on Endophytes
9. Endophyte Transmission
10. Final Thoughts
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mousa, W.K.; Raizada, M.N. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective. Front. Microbiol. 2013, 4, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, S.L.; Huang, C.L.; Misra, S.K. Consumers’ Perceptions of Risks from Pesticide Residues and Demand for Certification of Residue-Free Produce. In Economics of Food Safety; Caswell, J.A., Ed.; Springer: Dordrecht, The Netherlands, 1991; pp. 175–188. ISBN 9789401170765. [Google Scholar]
- Magnusson, E.; Cranfield, J.A.L. Consumer demand for pesticide free food products in Canada: A probit analysis. Can. J. Agric. Econ. Rev. Can. D’Agroecon. 2005, 53, 67–81. [Google Scholar] [CrossRef]
- Bailey, K.L. Canadian innovations in microbial biopesticides. Can. J. Plant Pathol. 2010, 32, 113–121. [Google Scholar] [CrossRef]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Köhl, J.; Marrone, P.; Morin, L.; Stewart, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef]
- Vega, F.E. Insect pathology and fungal endophytes. J. Invertebr. Pathol. 2008, 98, 277–279. [Google Scholar] [CrossRef]
- Eljounaidi, K.; Lee, S.K.; Bae, H. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases—Review and future prospects. Biol. Control 2016, 103, 62–68. [Google Scholar] [CrossRef]
- Rybakova, D.; Cernava, T.; Köberl, M.; Liebminger, S.; Etemadi, M.; Berg, G. Endophytes-assisted biocontrol: Novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 2016, 405, 125–140. [Google Scholar] [CrossRef]
- De Silva, N.I.; Brooks, S.; Lumyong, S.; Hyde, K.D. Use of endophytes as biocontrol agents. Fungal Biol. Rev. 2019, 33, 133–148. [Google Scholar] [CrossRef]
- Le Cocq, K.; Gurr, S.J.; Hirsch, P.R.; Mauchline, T.H. Exploitation of endophytes for sustainable agricultural intensification. Mol. Plant Pathol. 2017, 18, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [Green Version]
- Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Ver Loren van Themaat, E.; Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing structure and assembly cues for arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Del Rio, T.G.; et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodenhausen, N.; Horton, M.W.; Bergelson, J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 2013, 8, e56329. [Google Scholar] [CrossRef] [PubMed]
- Schlaeppi, K.; Dombrowski, N.; Oter, R.G.; Ver Loren van Themaat, E.; Schulze-Lefert, P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl. Acad. Sci. USA 2014, 111, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef] [Green Version]
- Busby, P.E.; Peay, K.G.; Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 2016, 209, 1681–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busby, P.E.; Ridout, M.; Newcombe, G. Fungal endophytes: Modifiers of plant disease. Plant Mol. Biol. 2016, 90, 645–655. [Google Scholar] [CrossRef]
- Coleman-Derr, D.; Desgarennes, D.; Fonseca-Garcia, C.; Gross, S.; Clingenpeel, S.; Woyke, T.; North, G.; Visel, A.; Partida-Martinez, L.P.; Tringe, S.G. Plant compartment and biogeography affect microbiome composition in cultivated and native agave species. New Phytol. 2016, 209, 798–811. [Google Scholar] [CrossRef] [Green Version]
- Sapp, M.; Ploch, S.; Fiore-Donno, A.M.; Bonkowski, M.; Rose, L.E. Protists are an integral part of the Arabidopsis thaliana microbiome. Environ. Microbiol. 2018, 20, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Ploch, S.; Rose, L.E.; Bass, D.; Bonkowski, M. High diversity revealed in leaf-associated protists (Rhizaria: Cercozoa) of Brassicaceae. J. Eukaryot. Microbiol. 2016, 63, 635–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U’Ren, J.M.; Arnold, A.E. Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America. PeerJ 2016, 4, e2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fesel, P.H.; Zuccaro, A. Dissecting endophytic lifestyle along the parasitism/mutualism continuum in arabidopsis. Curr. Opin. Microbiol. 2016, 32, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Kottb, M.; Gigolashvili, T.; Großkinsky, D.K.; Piechulla, B. Trichoderma volatiles effecting arabidopsis: From inhibition to protection against phytopathogenic fungi. Front. Microbiol. 2015, 6, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Estrella, F.; Arcos-Nievas, M.A.; López, M.J.; Vargas-García, M.C.; Moreno, J. Biological control of plant pathogens by microorganisms isolated from agro-industrial composts. Biol. Control 2013, 67, 509–515. [Google Scholar] [CrossRef]
- Stein, E.; Molitor, A.; Kogel, K.-H.; Waller, F. Systemic resistance in arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 2008, 49, 1747–1751. [Google Scholar] [CrossRef]
- Mousa, W.K.; Shearer, C.; Limay-Rios, V.; Ettinger, C.L.; Eisen, J.A.; Raizada, M.N. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat. Microbiol. 2016, 1, 16167. [Google Scholar] [CrossRef] [Green Version]
- Alabouvette, C.; Olivain, C.; Migheli, Q.; Steinberg, C. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol. 2009, 184, 529–544. [Google Scholar] [CrossRef]
- Oliva, J.; Ridley, M.; Redondo, M.A.; Caballol, M. Competitive exclusion amongst endophytes determines shoot blight severity on pine. Funct. Ecol. 2021, 35, 239–254. [Google Scholar] [CrossRef]
- Arnold, A.E.; Mejía, L.C.; Kyllo, D.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, M.; Arshad, M.; Hussain, S.; Bhatti, A.S. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 2007, 34, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014, 32, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Barnawal, D.; Bharti, N.; Maji, D.; Chanotiya, C.S.; Kalra, A. ACC deaminase-containing arthrobacter Protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J. Plant Physiol. 2014, 171, 884–894. [Google Scholar] [CrossRef]
- Joseph, B.; Priya, R. Bioactive compounds from endophytes and their potential in pharmaceutical effect: A review. Am. J. Biochem. Mol. Biol. 2011, 1, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathi, S.; Sathya, S.; Bupesh, G.; Samy, R.D.; Mohan, M.R.; Kumar, G.S.; Manikandan, M.; Kim, C.-J.; Balakrishnan, K. Isolation and characterization of antimicrobial compound from marine Streptomyces ygroscopicus BDUS 49. World J. Fish Mar. Sci. 2012, 4, 268–277. [Google Scholar] [CrossRef]
- Sarsaiya, S.; Shi, J.; Chen, J. A Comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: Current research, challenges, and future possibilities. Bioengineered 2019, 10, 316–334. [Google Scholar] [CrossRef] [Green Version]
- Govinda, R.M.B.; Suryanarayanan, T.S.; Tangjang, S. Endophytic fungi of orchids of Arunachal Pradeah, North Eastern India. Curr. Res. Environ. Appl. Mycol. 2016, 6, 293–299. [Google Scholar] [CrossRef]
- Wu, L.; Han, T.; Li, W.; Jia, M.; Xue, L.; Rahman, K.; Qin, L. Geographic and tissue influences on endophytic fungal communities of taxus chinensis Var. Mairei in China. Curr. Microbiol. 2013, 66, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Gazis, R.; Chaverri, P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea Brasiliensis) in Peru. Fungal Ecol. 2010, 3, 240–254. [Google Scholar] [CrossRef]
- Chutulo, E.C.; Chalannavar, R.K. Endophytic mycoflora and their bioactive compounds from Azadirachta Indica: A comprehensive review. J. Fungi 2018, 4, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, S.; de Cates, C.; Hodgson, J.; Morley, N.J.; Sutton, B.C.; Gange, A.C. Vertical transmission of fungal endophytes is widespread in forbs. Ecol. Evol. 2014, 4, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.E.; Maynard, Z.; Gilbert, G.S.; Coley, P.D.; Kursar, T.A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 2000, 3, 267–274. [Google Scholar] [CrossRef]
- Fouda, A.H.; Hassan, S.E.-D.; Eid, A.M.; Ewais, E.E.-D. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias Sinaica (Bioss.). Ann. Agric. Sci. 2015, 60, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Kogel, K.-H.; Franken, P.; Hückelhoven, R. Endophyte or parasite—What decides? Curr. Opin. Plant Biol. 2006, 9, 358–363. [Google Scholar] [CrossRef]
- Clay, K.; Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science 1999, 285, 1742–1744. [Google Scholar] [CrossRef]
- Su, Z.; Zeng, Y.; Li, X.; Perumal, A.B.; Zhu, J.; Lu, X.; Dai, M.; Liu, X.; Lin, F. The endophytic fungus Piriformospora indica-assisted alleviation of cadmium in tobacco. J. Fungi 2021, 7, 675. [Google Scholar] [CrossRef]
- Sudha, V.; Govindaraj, R.; Baskar, K.; Al-Dhabi, N.A.; Duraipandiyan, V.; Sudha, V.; Govindaraj, R.; Baskar, K.; Al-Dhabi, N.A.; Duraipandiyan, V. Biological properties of endophytic fungi. Braz. Arch. Biol. Tech. 2016, 59. [Google Scholar] [CrossRef] [Green Version]
- Gamboa Gaitán, M.A.; Wen, S.; Fetcher, N.; Bayman, P. Effects of fungicides on endophytic fungi and photosynthesis in seedlings of a tropical tree, Guarea guidonia (Meliaceae). Acta Biol. Colomb. 2005, 10, 41–48. [Google Scholar]
- Mancini, V.; Romanazzi, G. Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 2014, 70, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Druille, M.; Omacini, M.; Golluscio, R.A.; Cabello, M.N. Arbuscular mycorrhizal fungi are directly and indirectly affected by glyphosate application. Appl. Soil Ecol. 2013, 72, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Wilkes, T.I.; Warner, D.J.; Davies, K.G.; Edmonds-Brown, V. Tillage, glyphosate and beneficial arbuscular mycorrhizal fungi: Optimising crop management for plant–fungal symbiosis. Agriculture 2020, 10, 520. [Google Scholar] [CrossRef]
- Vázquez, M.B.; Moreno, M.V.; Amodeo, M.R.; Bianchinotti, M.V. Effects of glyphosate on soil fungal communities: A field study. Rev. Argent. Microbiol. 2021, 53, 349–358. [Google Scholar] [CrossRef]
- Reiff, J.M.; Ehringer, M.; Hoffmann, C.; Entling, M.H. Fungicide reduction favors the control of phytophagous mites under both organic and conventional viticulture. Agric. Ecosyst. Environ. 2021, 305, 107172. [Google Scholar] [CrossRef]
- Kiss, L.; Russell, J.C.; Szentiványi, O.; Xu, X.; Jeffries, P. Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci. Technol. 2004, 14, 635–651. [Google Scholar] [CrossRef]
- Becker, K.; Stadler, M. Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J. Antibiot. 2021, 74, 1–23. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Agrawal, S.; Prakash, V.; Gupta, M.K.; Reddy, M.S. Anti-infectives from mangrove endophytic fungi. S. Afr. J. Bot. 2020, 134, 237–263. [Google Scholar] [CrossRef]
- Zanudin, N.A.B.M.; Hasan, N.; Mansor, P.B. Antagonistic activity of fungal endophytes isolated from Garcinia atroviridis against Colletotrichum gloeosporioides. HAYATI J. Biosci. 2020, 27, 209. [Google Scholar] [CrossRef]
- Azuddin, N.F.; Mohd, M.H.; Rosely, N.F.N.; Mansor, A.; Zakaria, L. Molecular phylogeny of endophytic fungi from rattan (Calamus Castaneus Griff.) spines and their antagonistic activities against plant pathogenic fungi. J. Fungi 2021, 7, 301. [Google Scholar] [CrossRef] [PubMed]
- Abaya, A.; Xue, A.; Hsiang, T. Selection and screening of fungal endophytes against wheat pathogens. Biol. Control 2021, 154, 104511. [Google Scholar] [CrossRef]
- Anwaar, H.A.; Perveen, R.; Mansha, M.Z.; Aatif, H.M.; Sarwar, Z.M.; ud din Umar, U.; Hanif, C.M.S.; Sajid, M.; Rehman, A.; Alam, M.M.; et al. Potential of Fungal Endophytes to Antagonise Puccinia striiformis Causing Wheat Yellow Rust. J. Anim. Plant Sci. 2021, 31, 894–899. [Google Scholar] [CrossRef]
- Miles, L.A.; Lopera, C.A.; González, S.; de García, M.C.C.; Franco, A.E.; Restrepo, S. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl 2012, 57, 697–710. [Google Scholar] [CrossRef]
- McMullin, D.R.; Tanney, J.B.; McDonald, K.P.; Miller, J.D. Phthalides produced by Coccomyces strobi (Rhytismataceae, Rhytismatales) isolated from needles of Pinus strobus. Phytochem. Lett. 2019, 29, 17–24. [Google Scholar] [CrossRef]
- Tanney, J.B.; McMullin, D.R.; Green, B.D.; Miller, J.D.; Seifert, K.A. Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol. 2016, 120, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, R.; Tayung, K. Endophytic fungal assemblages of Zanthoxylum oxyphyllum Edgew. and their antimicrobial potential. Plant Sci. Today 2021, 8, 132–139. [Google Scholar] [CrossRef]
- Peters, L.P.; Prado, L.S.; Silva, F.I.N.; Souza, F.S.C.; Carvalho, C.M. Selection of endophytes as antagonists of Colletotrichum gloeosporioides in Açaí Palm. Biol. Control 2020, 150, 104350. [Google Scholar] [CrossRef]
- Qin, X.; Zhao, X.; Huang, S.; Deng, J.; Li, X.; Luo, Z.; Zhang, Y. Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana. Pest Manag. Sci. 2021, 77, 2007–2018. [Google Scholar] [CrossRef]
- González-Coloma, A.; Cosoveanu, A.; Cabrera, R.; Giménez, C.; Kaushik, N. Endophytic fungi and their bioprospection. In Fungi: Applications and Management Strategies; CRC Press: Boca Raton, FL, USA, 2016; pp. 14–31. ISBN 9781498724913. [Google Scholar]
- Hartley, S.E.; Eschen, R.; Horwood, J.M.; Gange, A.C.; Hill, E.M. Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense. New Phytol. 2015, 205, 816–827. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Xie, J.; Fu, Y.; Cheng, J.; Li, B.; Chen, T.; Zhao, Y.; Gao, Z.; Yang, P.; Barbetti, M.J.; et al. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. ISME J. 2020, 14, 3120–3135. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Busatto, N.; Hussain, K.; Kamble, A. Piriformosporaindica-primed transcriptional reprogramming induces defense response against early blight in tomato. Sci. Hortic. 2019, 255, 209–219. [Google Scholar] [CrossRef]
- Martínez-Arias, C.; Sobrino-Plata, J.; Gil, L.; Rodríguez-Calcerrada, J.; Martín, J.A. Priming of plant defenses against Ophiostoma novo-ulmi by Elm (Ulmus minor Mill.) fungal endophytes. J. Fungi 2021, 7, 687. [Google Scholar] [CrossRef] [PubMed]
- Morán-Diez, M.E.; Martínez de Alba, Á.E.; Rubio, M.B.; Hermosa, R.; Monte, E. Trichoderma and the plant heritable priming responses. J. Fungi 2021, 7, 318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-M.; He, W.; Wu, C.-Y.; Sun, K.; Zhang, W.; Dai, C.-C. Phomopsis liquidambaris inoculation induces resistance in peanut to leaf spot and root rot. BioControl 2020, 65, 475–488. [Google Scholar] [CrossRef]
- Suebrasri, T.; Somteds, A.; Harada, H.; Kanokmedhakul, S.; Jogloy, S.; Ekprasert, J.; Lumyong, S.; Boonlue, S. Novel endophytic fungi with fungicidal metabolites suppress sclerotium disease. Rhizosphere 2020, 16, 100250. [Google Scholar] [CrossRef]
- Khruengsai, S.; Pripdeevech, P.; Tanapichatsakul, C.; Srisuwannapa, C.; D’Souza, P.E.; Panuwet, P. Antifungal properties of volatile organic compounds produced by Daldinia eschscholtzii MFLUCC 19-0493 isolated from Barleria prionitis leaves against Colletotrichum acutatum and its post-harvest infections on strawberry fruits. PeerJ 2021, 9, e11242. [Google Scholar] [CrossRef]
- Liarzi, O.; Bar, E.; Lewinsohn, E.; Ezra, D. Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS ONE 2016, 11, e0168242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pažoutová, S.; Follert, S.; Bitzer, J.; Keck, M.; Surup, F.; Šrůtka, P.; Holuša, J.; Stadler, M. A new endophytic insect-associated Daldinia species, recognised from a comparison of secondary metabolite profiles and molecular phylogeny. Fungal Divers. 2013, 60, 107–123. [Google Scholar] [CrossRef]
- Toghueo, R.M.K. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 2020, 11, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Kumar, J.; Sharma, V.K.; Singh, D.K.; Kumari, P.; Nishad, J.H.; Gautam, V.S.; Kharwar, R.N. Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. S. Afr. J. Bot. 2021, 140, 87–94. [Google Scholar] [CrossRef]
- Mathivanan, N.; Kabilan, V.; Murugesan, K. Purification, characterization, and antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasiteto groundnut rust, Puccinia arachidis. Can. J. Microbiol. 1998, 44, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Sallam, N.; Ali, E.F.; Seleim, M.A.A.; Khalil Bagy, H.M.M. Endophytic fungi associated with soybean plants and their antagonistic activity against Rhizoctonia Solani. Egypt. J. Biol. Pest Control 2021, 31, 54. [Google Scholar] [CrossRef]
- Abdou, R.; Alqahtani, A.M.; Attia, G.H. Bioactive metabolites of Aspergillus neoniger, an endophyte of the medicinal plant Ficus carica. Indian J. Pharm. Sci. 2021, 83, 101–109. [Google Scholar] [CrossRef]
- Morales-Sánchez, V.; Díaz, C.E.; Trujillo, E.; Olmeda, S.A.; Valcarcel, F.; Muñoz, R.; Andrés, M.F.; González-Coloma, A. Bioactive metabolites from the endophytic fungus Aspergillus sp. SPH2. J. Fungi 2021, 7, 109. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Quyen, D.T.; Nguyen, S.L.T.; Vu, V.H. An extracellular antifungal chitinase from Lecanicillium lecanii: Purification, properties, and application in biocontrol against plant pathogenic fungi. Turk. J. Biol. 2015, 39, 6–14. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, M.; Kilavan Packiam, K.; Kumar, P.S.; Saravanakumar, T. Endophytic fungus Diaporthe caatingaensis MT192326 from Buchanania axillaris: An indicator to produce biocontrol agents in plant protection. Environ. Res. 2021, 197, 111147. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, X.-S.; Zhang, Z.-K.; Ye, H.-C.; Liu, Y.-Q.; Yang, G.-Z.; Chen, C.; Chen, M.; Yan, C.; Wang, L.-Y.; et al. Fungicidal activities of camptothecin semisynthetic derivatives against Colletotrichum gloeosporioides in vitro and in mango fruit. Postharvest Biol. Technol. 2019, 147, 139–147. [Google Scholar] [CrossRef]
- González, V.; Armijos, E.; Garcés-Claver, A. Fungal endophytes as biocontrol agents against the main soil-borne diseases of melon and watermelon in Spain. Agronomy 2020, 10, 820. [Google Scholar] [CrossRef]
- Mahendran, T.R.; Thottathil, G.P.; Surendran, A.; Nagao, H.; Sudesh, K. Biocontrol potential of Aspergillus terreus, endophytic fungus against Rigidoporus microporus and Corynespora cassiicola, pathogens of rubber tree. Arch. Phytopathol. Plant Prot. 2021, 54, 1014–1032. [Google Scholar] [CrossRef]
- Wu, S.-H.; Chen, Y.-W.; Shao, S.-C.; Wang, L.-D.; Li, Z.-Y.; Yang, L.-Y.; Li, S.-L.; Huang, R. Ten-membered lactones from phomopsis Sp., an endophytic fungus of Azadirachta indica. J. Nat. Prod. 2008, 71, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Yan, X.; Lin, X.; Huang, Y.; Zheng, Z.; Song, S.; Lu, C.; Shen, Y. Chemical constituents of the endophytic fungal strain Phomopsis sp. NXZ-05 of Camptotheca acuminata. Helv. Chim. Acta 2007, 90, 1811–1817. [Google Scholar] [CrossRef]
- Rashid, T.S. Bioactive metabolites from tomato endophytic fungi with antibacterial activity against tomato bacterial spot disease. Rhizosphere 2021, 17, 100292. [Google Scholar] [CrossRef]
- Walker, T.S.; Bais, H.P.; Déziel, E.; Schweizer, H.P.; Rahme, L.G.; Fall, R.; Vivanco, J.M. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 2004, 134, 320–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Wang, Y.; Wang, C.W.; Lu, B.H. First report of bacterial root rot of ginseng caused by Pseudomonas aeruginosa in China. Plant Dis. 2014, 98, 1577. [Google Scholar] [CrossRef]
- Kaur, N.; Arora, D.S. Prospecting the antimicrobial and antibiofilm potential of Chaetomium globosum an endophytic fungus from Moringa oleifera. AMB Express 2020, 10, 206. [Google Scholar] [CrossRef]
- Wu, H.; Yan, Z.; Deng, Y.; Wu, Z.; Xu, X.; Li, X.; Zhou, X.; Luo, H. Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana and their antimicrobial activity. Acta Ecol. Sin. 2020, 40, 383–387. [Google Scholar] [CrossRef]
- Abdulhadi, S.Y.; Hasan, G.Q.; Gergees, R.N. Molecular detection and antimicrobial activity of endophytic fungi isolated from a medical plant Rosmarinus officinalis. Ann. Trop. Med. Public Health 2020, 23, 231–384. [Google Scholar] [CrossRef]
- Soltani, J.; Moghaddam, M.S.H. Diverse and bioactive endophytic Aspergilli Inhabit Cupressaceae plant family. Arch. Microbiol. 2014, 196, 635–644. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M.; Askary, T.H. Impact of phytonematodes on agriculture economy. In Biocontrol Agents of Phytonematodes; Askery, T.H., Martinelli, R.P.P., Eds.; CABI: Wallingford, UK, 2015; pp. 3–49. ISBN 9781780643755. [Google Scholar]
- Shurtleff, M.C.; Averre, C.W.I. Diagnosing Plant Diseases Caused by Nematodes; APS Press: St. Paul, MN, USA, 2002. [Google Scholar]
- Caboni, P.; Aissani, N.; Demurtas, M.; Ntalli, N.; Onnis, V. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita and structure—Activity considerations. Pest Manag. Sci. 2016, 72, 125–130. [Google Scholar] [CrossRef]
- Kumar, K.K.; Sridhar, J.; Murali-Baskaran, R.K.; Senthil-Nathan, S.; Kaushal, P.; Dara, S.K.; Arthurs, S. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.K.; Dara, S.K. Fungal and bacterial endophytes as microbial control agents for plant-parasitic nematodes. Int. J. Environ. Res. Public Health 2021, 18, 4269. [Google Scholar] [CrossRef] [PubMed]
- Philbrick, A.N.; Adhikari, T.B.; Louws, F.J.; Gorny, A.M. Meloidogyne enterolobii, a major threat to tomato production: Current status and future prospects for its management. Front. Plant Sci. 2020, 11, 606395. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wheeler, T.A.; Starr, J.L.; Valencia, C.U.; Sword, G.A. A fungal endophyte defensive symbiosis affects plant-nematode interactions in cotton. Plant Soil 2018, 422, 251–266. [Google Scholar] [CrossRef]
- Varkey, S.; Anith, K.N.; Narayana, R.; Aswini, S. A Consortium of rhizobacteria and fungal endophyte suppress the root-knot nematode parasite in tomato. Rhizosphere 2018, 5, 38–42. [Google Scholar] [CrossRef]
- Haque, Z.; Khan, M.R.; Ahamad, F. Relative antagonistic potential of some rhizosphere biocontrol agents for the management of rice root-knot nematode, Meloidogyne graminicola. Biol. Control 2018, 126, 109–116. [Google Scholar] [CrossRef]
- Strom, N.; Hu, W.; Haarith, D.; Chen, S.; Bushley, K. Corn and soybean host root endophytic fungi with toxicity toward the soybean cyst nematode. Phytopathology 2020, 110, 603–614. [Google Scholar] [CrossRef]
- Yan, X.; Sikora, R.A.; Zheng, J. Potential use of cucumber (Cucumis Sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J. Zhejiang Univ. Sci. B 2011, 12, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Starr, J.L.; Krumm, J.L.; Sword, G.A. The fungal endophyte Chaetomium globosum negatively affects both above- and belowground herbivores in cotton. FEMS Microbiol. Ecol. 2016, 92, fiw158. [Google Scholar] [CrossRef] [Green Version]
- Bogner, C.W.; Kariuki, G.M.; Elashry, A.; Sichtermann, G.; Buch, A.-K.; Mishra, B.; Thines, M.; Grundler, F.M.W.; Schouten, A. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Prog. 2016, 15, 30. [Google Scholar] [CrossRef]
- Yao, Y.-R.; Tian, X.-L.; Shen, B.-M.; Mao, Z.-C.; Chen, G.; Xie, B.-Y. Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against meloidogyne incognita. World J. Microbiol. Biotechnol. 2015, 31, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Waweru, B.; Turoop, L.; Kahangi, E.; Coyne, D.; Dubois, T. Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biol. Control 2014, 74, 82–88. [Google Scholar] [CrossRef]
- Nitao, J.K.; Meyer, S.L.F.; Oliver, J.E.; Schmidt, W.F.; Chitwood, D.J. Isolation of flavipin, a fungus compound antagonistic to plant-parasitic nematodes. Nematology 2002, 4, 55–63. [Google Scholar] [CrossRef]
- Ye, Y.; Xiao, Y.; Ma, L.; Li, H.; Xie, Z.; Wang, M.; Ma, H.; Tang, H.; Liu, J. Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity. Appl. Microbiol. Biotechnol. 2013, 97, 7131–7139. [Google Scholar] [CrossRef]
- Le, H.T.T.; Padgham, J.L.; Sikora, R.A. Biological control of the rice root-knot nematode Meloidogyne graminicola on rice, using endophytic and rhizosphere fungi. Int. J. Pest Manag. 2009, 55, 31–36. [Google Scholar] [CrossRef]
- Dababat, A.E.-F.A.; Sikora, R.A. Induced resistance by the mutualistic endophyte, Fusarium oxysporum strain 162, toward meloidogyne incognita on tomato. Biocontrol Sci. Technol. 2007, 17, 969–975. [Google Scholar] [CrossRef]
- Schwarz, M.; Köpcke, B.; Weber, R.W.S.; Sterner, O.; Anke, H. 3-hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 2004, 65, 2239–2245. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Shaukat, S.S. Factors influencing the effectiveness of non-pathogenic Fusarium solani strain Fs5 in the Suppression of root-knot nematode in tomato. Phytopathol. Mediterr. 2003, 42, 17–26. [Google Scholar]
- Márquez-Dávila, K.; Arévalo-López, L.; Gonzáles, R.; Vega, L.; Meza, M. Trichoderma and Clonostachys as biocontrol agents against Meloidogyne incognita in sacha inchi. Pesqui. Agropecu. Trop. 2020, 50. [Google Scholar] [CrossRef]
- Zhou, W.; Verma, V.C.; Wheeler, T.A.; Woodward, J.E.; Starr, J.L.; Sword, G.A. Tapping into the cotton fungal phytobiome for novel nematode biological control tools. Phytobiomes J. 2020, 4, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Ghahremani, Z.; Escudero, N.; Saus, E.; Gabaldón, T.; Sorribas, F.J. Pochonia Chlamydosporia induces plant-dependent systemic resistance to Meloidogyneincognita. Front. Plant Sci. 2019, 10, 945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ait Hamza, M.; Lakhtar, H.; Tazi, H.; Moukhli, A.; Fossati-Gaschignard, O.; Miche, L.; Roussos, S.; Ferji, Z.; El Mousadik, A.; Mateille, T.; et al. Diversity of nematophagous fungi in Moroccan olive nurseries: Highlighting prey-predator interactions and efficient strains against root-knot nematodes. Biol. Control 2017, 114, 14–23. [Google Scholar] [CrossRef]
- Bogner, C.W.; Kamdem, R.S.T.; Sichtermann, G.; Matthäus, C.; Hölscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.W.; Schouten, A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol. 2017, 10, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Maciá-Vicente, J.G.; Rosso, L.C.; Ciancio, A.; Jansson, H.-B.; Lopez-Llorca, L.V. Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. Ann. Appl. Biol. 2009, 155, 391–401. [Google Scholar] [CrossRef]
- Meyer, S.L.F.; Patchett, B.J.; Gillanders, T.J.; Kantor, M.R.; Timper, P.; MacDonald, M.H. Festulolium and fungal endophyte associations: Host status for meloidogyne incognita and nematotoxic plant extracts. J. Nematol. 2020, 52, e2020-76. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.; Hauschild, R.; Sikora, R.A. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 2006, 8, 847–852. [Google Scholar] [CrossRef]
- Hallmann, J.; Sikora, R.A. Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. Eur. J. Plant Pathol. 1996, 102, 155–162. [Google Scholar] [CrossRef]
- Kimpinski, J.; Sturz, A.V. Managing crop root zone ecosystems for prevention of harmful and encouragement of beneficial nematodes. Soil Tillage Res. 2003, 72, 213–221. [Google Scholar] [CrossRef]
- Schardl, C.L.; Leuchtmann, A.; Spiering, M.J. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 2004, 55, 315–340. [Google Scholar] [CrossRef]
- Kunkel, B.A.; Grewal, P.S.; Quigley, M.F. A mechanism of acquired resistance against an entomopathogenic nematode by Agrotis ipsilon feeding on perennial ryegrass harboring a fungal endophyte. Biol. Control 2004, 29, 100–108. [Google Scholar] [CrossRef]
- Panaccione, D.; Kotcon, J.; Schardl, C.; Johnson, R.; Morton, J. Ergot alkaloids are not essential for endophytic fungus-associated population suppression of the lesion nematode, Pratylenchus scribneri, on perennial ryegrass. Nematology 2006, 8, 583–590. [Google Scholar] [CrossRef]
- Hallmann, J.; Gutberlet, V.; Jakobs-Schönwandt, D.; Vorlop, K.D.; Müller, J.; Patel, A.V. Effect of additives on the efficacy of microencapsulated Hirsutella rhossiliensis controlling Heterodera schachtii on sugar beets. Biol. Control 2019, 128, 40–47. [Google Scholar] [CrossRef]
- Li, G.-H.; Yu, Z.-F.; Li, X.; Wang, X.-B.; Zheng, L.-J.; Zhang, K.-Q. Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem. Biodivers. 2007, 4, 1520–1524. [Google Scholar] [CrossRef]
- Soliman, M.S.; El-Deriny, M.M.; Ibrahim, D.S.S.; Zakaria, H.; Ahmed, Y. Suppression of root-knot nematode Meloidogyne incognita on tomato plants using the nematode trapping fungus Arthrobotrys oligospora Fresenius. J. Appl. Microbiol. 2021, 131, 2402–2415. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Diez de Ulzurrun, G.; Hsueh, Y.-P. Predator-prey interactions of nematode-trapping fungi and nematodes: Both sides of the coin. Appl. Microbiol. Biotechnol. 2018, 102, 3939–3949. [Google Scholar] [CrossRef]
- Ward, E.; Kerry, B.R.; Manzanilla-López, R.H.; Mutua, G.; Devonshire, J.; Kimenju, J.; Hirsch, P.R. The Pochonia chlamydosporia serine protease gene Vcp1 is subject to regulation by carbon, nitrogen and PH: Implications for nematode biocontrol. PLoS ONE 2012, 7, e35657. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-H.; Yin, C.; Tao, R.; Gao, J.; Sun, Y.-L.; Cho, J.-H.; Wang, Z.; Wang, Y.-B.; Wang, C.-Y.; Sung, C.-K. Migration of pinewood nematode promotes the colonization of Esteya vermicola in pine tree. For. Pathol. 2021, 51, e12668. [Google Scholar] [CrossRef]
- Wang, C.Y.; Fang, Z.M.; Wang, Z.; Zhang, D.L.; Gu, L.J.; Lee, M.R.; Liu, L.; Sung, C.K. Biological control of the pinewood nematode Bursaphelenchus xylophilus by application of the endoparasitic fungus Esteya vermicola. BioControl 2011, 56, 91–100. [Google Scholar] [CrossRef]
- Wang, C.Y.; Yin, C.; Fang, Z.M.; Wang, Z.; Wang, Y.B.; Xue, J.J.; Gu, L.J.; Sung, C.K. Using the nematophagous fungus Esteya vermicola to control the disastrous pine wilt disease. Biocontrol Sci. Technol. 2018, 28, 268–277. [Google Scholar] [CrossRef]
- Filip, P.; Weber, R.W.S.; Sterner, O.; Anke, T. Hormonemate, a new cytotoxic and apoptosis-inducing compound from the Endophytic fungus Hormonema dematioides. I. Identification of the producing strain, and isolation and biological properties of hormonemate. Z. Naturforschung C 2003, 58, 547–552. [Google Scholar] [CrossRef]
- Wiyakrutta, S.; Sriubolmas, N.; Panphut, W.; Thongon, N.; Danwisetkanjana, K.; Ruangrungsi, N.; Meevootisom, V. Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J. Microbiol. Biotechnol. 2004, 20, 265–272. [Google Scholar] [CrossRef]
- Liang, H.Q.; Wen, X.; Zhang, D.; Wang, C.L.; Guo, S.-X. HIV-1 integrase inhibitory activity of endophytic fungi from Aquilaria sinensis (Lour.) Gilg. J. Chin. Pharm. Sci. 2013, 48, 1352–1358. [Google Scholar] [CrossRef]
- El-Gendy, M.; El-Bondkly, A.M.; Yahya, S. Production and evaluation of antimycotic and antihepatitis C virus potential of fusant MERV6270 derived from mangrove endophytic fungi using novel substrates of agroindustrial wastes. Appl. Biochem. Biotechnol. 2014, 174, 2674–2701. [Google Scholar] [CrossRef] [PubMed]
- Jaber, L.R.; Salem, N.M. Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing zucchini yellow mosaic virus in cucurbits. Biocontrol Sci. Technol. 2014, 24, 1096–1109. [Google Scholar] [CrossRef]
- Lehtonen, P.T.; Helander, M.; Siddiqui, S.A.; Lehto, K.; Saikkonen, K. Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium Pratense). Biol. Lett. 2006, 2, 620–623. [Google Scholar] [CrossRef] [Green Version]
- Kiarie, S.; Nyasani, J.O.; Gohole, L.S.; Maniania, N.K.; Subramanian, S. Impact of fungal endophyte colonization of maize (Zea Mays L.) on induced resistance to thrips- and aphid-transmitted viruses. Plants 2020, 9, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakhro, A.; Andrade-Linares, D.R.; von Bargen, S.; Bandte, M.; Büttner, C.; Grosch, R.; Schwarz, D.; Franken, P. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 2010, 20, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Muvea, A.M.; Subramanian, S.; Maniania, N.K.; Poehling, H.-M.; Ekesi, S.; Meyhöfer, R. Endophytic colonization of onions induces resistance against viruliferous thrips and virus replication. Front. Plant Sci. 2018, 9, 1785. [Google Scholar] [CrossRef]
- Migeon, A.; Nouguier, E.; Dorkeld, F. Spider mites web: A comprehensive database for the Tetranychidae. In Trends in Acarology; Sabelis, M.W., Bruin, J., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 557–560. [Google Scholar]
- Knapp, M.; Palevsky, E.; Rapisarda, C. Insect and mite pests. In Integrated Pest and Disease Management in Greenhouse Crops; Plant Pathology in the 21st Century; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; ISBN 9783030223038. [Google Scholar]
- Van Leeuwen, T.; Tirry, L.; Yamamoto, A.; Nauen, R.; Dermauw, W. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic. Biochem. Physiol. 2015, 121, 12–21. [Google Scholar] [CrossRef]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Papapostolou, K.M.; Riga, M.; Charamis, J.; Skoufa, E.; Souchlas, V.; Ilias, A.; Dermauw, W.; Ioannidis, P.; Van Leeuwen, T.; Vontas, J. Identification and characterization of striking multiple-insecticide resistance in a Tetranychus urticae field population from Greece. Pest Manag. Sci. 2021, 77, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Trumble, J.T.; Morse, J.P. Economics of integrating the predaceous mite Phytoseiulus persimilis (Acari: Phytoseiidae) with pesticides in strawberries. J. Econ. Entomol. 1993, 86, 879–885. [Google Scholar] [CrossRef]
- De Sousa Neto, E.P.; Mendes de A., J.; Filgueiras, R.M.C.; Lima, D.B.; Guedes, R.N.C.; Melo, J.W.S. Effects of acaricides on the functional and numerical responses of the phytoseid predator Neoseiulus idaeus (Acari: Phytoseiidae) to spider mite eggs. J. Econ. Entomol. 2020, 113, 1804–1809. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.B.; Melo, J.W.S.; Gondim, M.G.C.; Guedes, R.N.C.; Oliveira, J.E.M.; Pallini, A. Acaricide-impaired functional predation response of the phytoseiid mite Neoseiulus baraki to the coconut mite Aceria guerreronis. Ecotoxicology 2015, 24, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- McCoy, C.W.; Couch, T.L. Microbial control of the citrus rust mite with the mycoacaricide, Mycar. Fla. Entomol. 1982, 65, 116–126. [Google Scholar] [CrossRef]
- Sanjaya, Y.; Ocampo, V.R. Selection of entomopathogenic fungi against the red SPIDER Mite Tetranychus kanzawai (Kishida) (Tetranychidae: Acarina). Arthropods 2013, 2, 208. [Google Scholar]
- Qasim, M.; Ronliang, J.; Islam, W.; Ali, H.; Khan, K.A.; Dash, C.K.; Jamal, Z.A.; Wang, L. Comparative pathogenicity of four entomopathogenic fungal species against nymphs and adults of citrus red mite on the citrus plantation. Int. J. Trop. Insect Sci. 2021, 41, 737–749. [Google Scholar] [CrossRef]
- De Faria, M.R.; Wraight, S.P. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Pedrini, N. Molecular interactions between entomopathogenic fungi (hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol. 2018, 122, 538–545. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Eliopoulos, P.A. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Appl. Sci. 2020, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D.; Davidson, G.; Pell, J.K.; Ball, B.V.; Shaw, K.; Sunderland, K.D. Fungal biocontrol of acari. Biocontrol Sci. Technol. 2000, 10, 357–384. [Google Scholar] [CrossRef]
- Maniania, N.K.; Bugeme, D.M.; Wekesa, V.W.; Delalibera, I.; Knapp, M. Role of entomopathogenic fungi in the control of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae), pests of horticultural crops. In Diseases of Mites and Ticks; Bruin, J., van der Geest, L.P.S., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 259–274. ISBN 9781402096952. [Google Scholar]
- Brunner-Mendoza, C.; del Rocio Reyes-Montes, M.; Moonjely, S.; Bidochka, M.J.; Toriello, C. A Review on the genus metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocontrol Sci. Technol. 2019, 29, 83–102. [Google Scholar] [CrossRef]
- Chandler, D.; Davidson, G.; Jacobson, R.J. Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychusurticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocontrol Sci. Technol. 2005, 15, 37–54. [Google Scholar] [CrossRef]
- Vega, F.E. The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia 2018, 110, 4–30. [Google Scholar] [CrossRef]
- McKinnon, A.C.; Saari, S.; Moran-Diez, M.E.; Meyling, N.V.; Raad, M.; Glare, T.R. Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. BioControl 2017, 62, 1–17. [Google Scholar] [CrossRef]
- St. Leger, R.J.; Wang, J.B. Metarhizium: Jack of all trades, master of many. Open Biol. 2020, 10, 200307. [Google Scholar] [CrossRef]
- Koricheva, J.; Currie, A.F.; Jaber, L.R.; Vidal, S. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Phytol. 2019, 223, 2002–2010. [Google Scholar] [CrossRef] [Green Version]
- Canassa, F.; Esteca, F.C.N.; Moral, R.A.; Meyling, N.V.; Klingen, I.; Delalibera, I. Root inoculation of strawberry with the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana reduces incidence of the twospotted spider mite and selected insect pests and plant diseases in the field. J. Pest Sci. 2019, 93, 261–274. [Google Scholar] [CrossRef]
- Castillo Lopez, D.; Zhu-Salzman, K.; Ek-Ramos, M.J.; Sword, G.A. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 2014, 9, e103891. [Google Scholar] [CrossRef] [Green Version]
- Ntsobi, N.; Fanadzo, M.; Le Roes-Hill, M.; Nchu, F. Effects of Clonostachys rosea f. Catenula inoculum on the composting of cabbage wastes and the endophytic activities of the composted material on tomatoes and red spider mite infestation. Microorganisms 2021, 9, 1184. [Google Scholar] [CrossRef]
- Bhagyasree, S.; Suroshe, S.; Kalia, V. Effect of endophytic colonisation of entomopathogenic Beauveria bassiana (Balsamo) on two spotted spider mite Tetranychus urticae (Koch) in tomato. Indian J. Entomol. 2020, 82, 716–719. [Google Scholar] [CrossRef]
- Pappas, M.L.; Samaras, K.; Koufakis, I.; Broufas, G.D. Beneficial soil microbes negatively affect spider mites and aphids in pepper. Agronomy 2021, 11, 1831. [Google Scholar] [CrossRef]
- Pappas, M.L.; Liapoura, M.; Papantoniou, D.; Avramidou, M.; Kavroulakis, N.; Weinhold, A.; Broufas, G.D.; Papadopoulou, K.K. The beneficial endophytic fungus Fusariumsolani strain K alters tomato responses against spider mites to the benefit of the plant. Front. Plant Sci. 2018, 9, 1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz, Z.; Burdman, S.; Gerson, U.; Sztejnberg, A. Antagonistic effects of the endophytic fungus Meira geulakonigii on the citrus rust mite Phyllocoptruta oleivora. J. Appl. Microbiol. 2007, 103, 2570–2579. [Google Scholar] [CrossRef] [PubMed]
- Boekhout, T.; Theelen, B.; Houbraken, J.; Robert, V.; Scorzetti, G.; Gafni, A.; Gerson, U.; Sztejnberg, A. Novel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 1655–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz, Z.; Gerson, U.; Sztejnberg, A. Assaying three new fungi against citrus mites in the laboratory, and a field trial. BioControl 2007, 52, 855–862. [Google Scholar] [CrossRef]
- Sztejnberg, A.; Paz, Z.; Boekhout, T.; Gafni, A.; Gerson, U. A new fungus with dual biocontrol capabilities: Reducing the numbers of phytophagous mites and powdery mildew disease damage. Crop Prot. 2004, 23, 1125–1129. [Google Scholar] [CrossRef]
- Paz, Z.; Bilkis, I.; Gerson, U.; Kerem, Z.; Sztejnberg, A. Argovin, a novel natural product secreted by the fungus Meira argovae, is antagonistic to mites. Entomol. Exp. Appl. 2011, 140, 247–253. [Google Scholar] [CrossRef]
- Tanaka, E.; Shimizu, K.; Imanishi, Y.; Yasuda, F.; Tanaka, C. Isolation of basidiomycetous anamorphic yeast-like fungus Meira argovae found on Japanese bamboo. Mycoscience 2008, 49, 329–333. [Google Scholar] [CrossRef]
- Yasuda, F.; Izawa, H.; Yamagishi, D.; Akamatsu, H.; Kodama, M.; Otani, H. Meira nashicola sp. nov., a novel basidiomycetous, anamorphic yeastlike fungus isolated from Japanese pear fruit with reddish stain. Mycoscience 2006, 47, 36–40. [Google Scholar] [CrossRef]
- YiChen, C.; PuDong, L.; JiaMin, Z.; HongKai, W.; Jeewon, R.; Bhoyroo, V.; Aruna, B.; FuCheng, L.; QiMing, W. Morph-molecular characterization of Meira nicotianae sp. nov., a novel basidiomycetous, anamorphic yeast-like fungus associated with growth improvement in tobacco plant. Phytotaxa 2018, 365, 169–181. [Google Scholar]
- Rush, T.A.; Aime, M.C. The genus Meira: Phylogenetic placement and description of a new species. Antonie Van Leeuwenhoek 2013, 103, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Limtong, S.; Polburee, P.; Chamnanpa, T.; Khunnamwong, P.; Limtong, P. Meira siamensis sp. nov., a novel anamorphic ustilaginomycetous yeast species isolated from the vetiver grass phylloplane. Int. J. Syst. Evol. Microbiol. 2017, 67, 2418–2422. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.-L.; Rao, L.-B.; Chen, Y.-C.; Zhang, C.-L.; Wu, Y.-G. From pattern to process: Species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol. 2011, 115, 197–213. [Google Scholar] [CrossRef]
- Omukoko, C.A.; Maniania, N.K.; Wekesa, V.W.; Turoop, L. Effects and persistence of endophytic Beauveria bassiana in tomato varieties on mite density Tetranychus evansi in the screenhouse. In Sustainable Management of Invasive Pests in Africa; Niassy, S., Ekesi, S., Migiro, L., Otieno, W., Eds.; Sustainability in Plant and Crop Protection; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 283–291. ISBN 9783030410827. [Google Scholar]
- Al Khoury, C. Can colonization by an endophytic fungus transform a plant into a challenging host for insect herbivores? Fungal Biol. 2021, 125, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Jaber, L.R.; Ownley, B.H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control 2018, 116, 36–45. [Google Scholar] [CrossRef]
- De Freitas, G.S.; de Araujo Lira, V.; Jumbo, L.O.V.; dos Santos, F.J.; Rêgo, A.S.; Teodoro, A.V. The potential of Beauveria bassiana to control Raoiella indica (Acari: Tenuipalpidae) and its compatibility with predatory mites. Crop Prot. 2021, 149, 105776. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Reitz, S.R.; Gao, Y. Simultaneous application of entomopathogenic Beauveria bassiana granules and predatory mites Stratiolaelaps scimitus for control of western flower thrips, Frankliniella occidentalis. J. Pest Sci. 2021, 94, 119–127. [Google Scholar] [CrossRef]
- Maniania, N.K.; Ekesi, S.; Kungu, M.M.; Salifu, D.; Srinivasan, R. The effect of combined application of the entomopathogenic fungus Metarhizium anisopliae and the release of predatory mite Phytoseiulus longipes for the control of the spider mite Tetranychus evansi on tomato. Crop Prot. 2016, 90, 49–53. [Google Scholar] [CrossRef]
- Wu, S.; Gao, Y.; Zhang, Y.; Wang, E.; Xu, X.; Lei, Z. An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: Evidence from laboratory bioassay and scanning electron microscopic observation. PLoS ONE 2014, 9, e84732. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Xu, X.; Lei, Z. Insight into the feeding behavior of predatory mites on Beauveria bassiana, an arthropod pathogen. Sci. Rep. 2016, 6, 24062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Xie, H.; Li, M.; Xu, X.; Lei, Z. Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species. Exp. Appl. Acarol. 2016, 70, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Tavoosi Ajvad, F.; Madadi, H.; Michaud, J.P.; Zafari, D.; Khanjani, M. Combined applications of an entomopathogenic fungus and a predatory mite to control fungus gnats (Diptera: Sciaridae) in mushroom production. Biol. Control 2020, 141, 104141. [Google Scholar] [CrossRef]
- Dogan, Y.O.; Hazir, S.; Yildiz, A.; Butt, T.M.; Cakmak, I. Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biol. Control 2017, 111, 6–12. [Google Scholar] [CrossRef]
- Saito, T.; Brownbridge, M. Compatibility of foliage-dwelling predatory mites and mycoinsecticides, and their combined efficacy against western flower thrips Frankliniella occidentalis. J. Pest Sci. 2018, 91, 1291–1300. [Google Scholar] [CrossRef]
- Seiedy, M.; Saboori, A.; Allahyari, H. Interactions of two natural enemies of Tetranychus urticae, the Fungal Entomopathogen Beauveria bassiana and the Predatory Mite, Phytoseiulus persimilis. Biocontrol Sci. Technol. 2012, 22, 873–882. [Google Scholar] [CrossRef]
- de Azevedo, A.G.C.; Eilenberg, J.; Steinwender, B.M.; Sigsgaard, L. Non-target effects of Metarhizium brunneum (BIPESCO 5/F 52) in soil show that this fungus varies between being compatible with, or moderately harmful to, four predatory arthropods. Biol. Control 2019, 131, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Gao, Y.; Xu, X.; Wang, D.; Li, J.; Wang, H.; Wang, E.; Lei, Z. Feeding on Beauveria bassiana-treated Frankliniella occidentalis causes negative effects on the predatory mite Neoseiulus barkeri. Sci. Rep. 2015, 5, 12033. [Google Scholar] [CrossRef] [Green Version]
- Seiedy, M.; Tork, M.; Deyhim, F. Effect of the entomopathogenic fungus Beauveria bassiana on the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) as a non-target organism. Syst. Appl. Acarol. 2015, 20, 241–250. [Google Scholar] [CrossRef]
- Seyed-Talebi, F.-S.; Kheradmand, K.; Talaei-Hassanloui, R.; Talebi-Jahromi, K. Synergistic effect of Beauveria bassiana and spirodiclofen on the two-spotted spider mite (Tetranychus urticae). Phytoparasitica 2014, 3, 405–412. [Google Scholar] [CrossRef]
- Elamo, P.; Helander, M.L.; Saloniemi, I.; Neuvonen, S. Birch family and environmental conditions affect endophytic fungi in leaves. Oecologia 1999, 118, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Helander, M.; Ahlholm, J.; Sieber, T.N.; Hinneri, S.; Saikkonen, K. Fragmented environment affects birch leaf endophytes. New Phytol. 2007, 175, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.I.F.; Merckx, V.S.F.T.; Hynson, N.A. Biological invasions increase the richness of arbuscular mycorrhizal fungi from a Hawaiian subtropical ecosystem. Biol. Invasions 2018, 20, 2421–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collado, J.; Platas, G.; González, I.; Peláez, F. Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol. 1999, 144, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K. Aspect and prospect of endophytic fungi. In Microbes: Diversity and Biotechnology; Daya Publishing House: New Delhi, India, 2012; pp. 43–62. ISBN 9788170357940. [Google Scholar]
- Arnold, A.E.; Herre, E.A. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 2003, 95, 388–398. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Saikkonen, K.; Faeth, S.H.; Helander, M.; Sullivan, T.J. Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 1998, 29, 319–343. [Google Scholar] [CrossRef]
- Stone, J.K.; Coop, L.B.; Manter, D.K. Predicting effects of climate change on Swiss needle cast disease severity in Pacific Northwest forests. Can. J. Plant Pathol. 2008, 30, 169–176. [Google Scholar] [CrossRef]
- Terhonen, E.; Babalola, J.; Kasanen, R.; Jalkanen, R.; Blumenstein, K. Sphaeropsis sapinea found as symptomless endophyte in Finland. Silva Fenn. 2021, 55, 10420. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Plants and endophytes: Equal partners in secondary metabolite production? Biotechnol. Lett. 2015, 37, 1325–1334. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.; Lewis, G.C. Fungal endophytes and nematodes of agricultural and amenity grasses. In Biotic Interactions in Plant-Pathogen Associations; Cab International: Wallingford, UK, 2001. [Google Scholar]
- Tanney, J.B.; McMullin, D.R.; Miller, J.D. Toxigenic foliar endophytes from the Acadian forest. In Endophytes of Forest Trees: Biology and Applications; Pirttilä, A.M., Frank, A.C., Eds.; Forestry Sciences; Springer International Publishing: Cham, Switzerland, 2018; pp. 343–381. ISBN 9783319898339. [Google Scholar]
- Quesada-Moraga, E.; López-Díaz, C.; Landa, B.B. The hidden habit of the entomopathogenic fungus Beauveria bassiana: First demonstration of vertical plant transmission. PLoS ONE 2014, 9, e89278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, B.R.; Doohan, F.M.; Hodkinson, T.R. From concept to commerce: Developing a successful fungal endophyte inoculant for agricultural crops. J. Fungi 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkes, C.V.; Kjøller, R.; Raaijmakers, J.M.; Riber, L.; Christensen, S.; Rasmussen, S.; Christensen, J.H.; Dahl, A.B.; Westergaard, J.C.; Nielsen, M.; et al. Extension of plant phenotypes by the foliar microbiome. Annu. Rev. Plant Biol. 2021, 72, 823–846. [Google Scholar] [CrossRef]
- Zahn, G.; Amend, A.S. Foliar microbiome transplants confer disease resistance in a critically-endangered plant. PeerJ 2017, 5, e4020. [Google Scholar] [CrossRef] [Green Version]
- Arif, I.; Batool, M.; Schenk, P.M. Plant microbiome engineering: Expected benefits for improved crop growth and resilience. Trends Biotechnol. 2020, 38, 1385–1396. [Google Scholar] [CrossRef]
- Henry, A.W. The natural microflora of the soil in relation to the foot-rot problem of wheat. Can. J. Res. 1931, 4, 69–77. [Google Scholar] [CrossRef]
- Spadaro, D.; Samir, D. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonist. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol. Technol. 2016, 122, 22–29. [Google Scholar] [CrossRef]
- Shanmugam, V.; Pothiraj, G.; Dauda, W.P. Endophytes for postharvest disease management in vegetables and fruits. In Postharvest Handling and Diseases of Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781003045502. [Google Scholar]
- Mari, M.; Francesco, A.D.; Bertolini, P. Control of fruit postharvest diseases: Old issues and innovative approaches. Stewart Postharvest Rev. 2014, 10, 1–4. [Google Scholar]
- Zhang, H.; Serwah Boateng, N.A.; Ngolong Ngea, G.L.; Shi, Y.; Lin, H.; Yang, Q.; Wang, K.; Zhang, X.; Zhao, L.; Droby, S. Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4906–4930. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Shrestha, R.; Maharjan, S.; Selosse, M.-A.; Pant, B. Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.M.; Dong, H.L.; Hu, K.X.; Sun, Z.R.; Chen, J.; Guo, S.X. Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobiumloddigesii rolfe. J. Plant Growth Regul. 2010, 29, 328–337. [Google Scholar] [CrossRef]
- Srivastava, S.; Kadooka, C.; Uchida, J.Y. Fusarium species as pathogen on orchids. Microbiol. Res. 2018, 207, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Clay, K.; Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 2002, 160 (Suppl. S4), S99–S127. [Google Scholar] [CrossRef]
- Bansal, R.; Mukherjee, P.K. Identification of novel gene clusters for secondary metabolism in Trichoderma genomes. Microbiology 2016, 85, 185–190. [Google Scholar] [CrossRef]
- Zeilinger, S.; Gruber, S.; Bansal, R.; Mukherjee, P.K. Secondary metabolism in Trichoderma—Chemistry meets genomics. Fungal Biol. Rev. 2016, 30, 74–90. [Google Scholar] [CrossRef]
- Atanasova, L.; Crom, S.L.; Gruber, S.; Coulpier, F.; Seidl-Seiboth, V.; Kubicek, C.P.; Druzhinina, I.S. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 2013, 14, 121. [Google Scholar] [CrossRef] [Green Version]
- Kubicek, C.P.; Herrera-Estrella, A.; Seidl-Seiboth, V.; Martinez, D.A.; Druzhinina, I.S.; Thon, M.; Zeilinger, S.; Casas-Flores, S.; Horwitz, B.A.; Mukherjee, P.K.; et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011, 12, R40. [Google Scholar] [CrossRef] [Green Version]
- Bungtongdee, N.; Sopalun, K.; Laosripaiboon, W.; Iamtham, S. The chemical composition, antifungal, antioxidant and antimutagenicity properties of bioactive compounds from fungal endophytes associated with Thai orchids. J. Phytopathol. 2019, 167, 56–64. [Google Scholar] [CrossRef]
- Salazar-Cerezo, S.; Martinez-Montiel, N.; del Carmen Cruz-Lopez, M.; Martinez-Contreras, R.D. Fungal diversity and community composition of culturable fungi in Stanhopea trigrina cast gibberellin producers. Front. Microbiol. 2018, 9, 612. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-H.; Kwon, W.-J.; Kim, J.-Y.; Park, J.-S.; Eom, A.-H. Differences among endophytic fungal communities isolated from the roots of Cephalanthera longibracteata collected from different sites in Korea. Mycobiology 2017, 45, 312–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wang, H.; Guo, S.-X. Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 2012, 22, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Novotná, A.; Benítez, Á.; Herrera, P.; Cruz, D.; Filipczyková, E.; Suárez, J.P. High diversity of root-associated fungi isolated from three epiphytic orchids in southern ecuador. Mycoscience 2018, 59, 24–32. [Google Scholar] [CrossRef]
- Sahoo, H.R.; Gupta, N. Diversity of endophytic phosphate solubilising fungi associated with Pomatocalpa decipiens (Lindl.) J.J. Smith—An endangered orchid in Barbara forest of Odisha, India. Stud. Fungi 2018, 3, 84–99. [Google Scholar] [CrossRef]
- Martos, F.; Dulormne, M.; Pailler, T.; Bonfante, P.; Faccio, A.; Fournel, J.; Dubois, M.-P.; Selosse, M.-A. Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol. 2009, 184, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Eom, A.-H. Effects of mycorrhizal and endophytic fungi on plant community: A microcosm study. Mycobiology 2007, 35, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Kang, J.; Cao, J.; Mo, L.; Hyde, K.D. Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai J. Sci. 2014, 41, 1–13. [Google Scholar]
- Malinowski, D.P.; Zuo, H.; Belesky, D.P.; Alloush, G.A. Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 2004, 267, 1–12. [Google Scholar] [CrossRef]
- Stark, C.; Babik, W.; Durka, W. Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol. Res. 2009, 113, 952–959. [Google Scholar] [CrossRef] [PubMed]
- De los Angeles Beltrán-Nambo, M.; Martínez-Trujillo, M.; Montero-Castro, J.C.; Salgado-Garciglia, R.; Otero-Ospina, J.T.; Carreón-Abud, Y. Fungal diversity in the roots of four epiphytic orchids endemic to Southwest Mexico is related to the breadth of plant distribution. Rhizosphere 2018, 7, 49–56. [Google Scholar] [CrossRef]
- Nontachaiyapoom, S.; Sasirat, S.; Manoch, L. Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium, and Cymbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand. Mycorrhiza 2010, 20, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Song, X.; Meng, Q.; Zhu, J.; Zhao, Y.; Yu, W. Influence of host tree species on isolation and communities of mycorrhizal and endophytic fungi from roots of a tropical epiphytic orchid, Dendrobium sinense (Orchidaceae). Mycorrhiza 2017, 27, 709–718. [Google Scholar] [CrossRef]
- Kumaran, R.S.; Kim, H.J.; Hur, B.-K. Taxol-producing fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J. Biosci. Bioeng. 2010, 110, 541–546. [Google Scholar] [CrossRef]
Endophyte | Host Plant | Infection Location | Research Topic | Notable Findings | Reference |
---|---|---|---|---|---|
Numerous ** | Azadirachta indica | Numerous ** | Discusses the antimicrobial, antioxidant and pathogenicity target compounds produced by the endophytic fungi. | N/A | [44] |
Numerous ** | Dendrobium moniliforme | Roots | Identifying the endophytic fungi and their role in plant growth and development. | Nine fungi isolated; unidentified Fusarium sp. was dominant. The presence of phenolic compounds suggests their contribution to antimicrobial and antioxidant properties for their host plant. Colletotrichum alatae showed highest concentration of IAA and as a fungal elicitor it resulted in the highest total chlorophyll content. | [234] |
Numerous * | Dendrobium loddigesii | Roots and seeds | The diversity of endophytic fungi was explored and cultures were tested for antimicrobial activity. | Forty-eight isolates identified to 18 genera including Fusarium and Acremonium. Antimicrobial activity was tested on 17 isolates belonging to 9 genera and again Fusarium was dominant. | [235] |
Many Fusarium spp. ** | Orchid spp. ** | Fusarium-orchid interactions and the challenges when dealing with the pathogen. | There is evidence that Fusarium can induce host resistance against many pathogens in crops such as banana, tomato, as well as orchid. | [236] | |
Trichoderma spp. | Numerous ** | Overview of Trichoderma spp. as symbionts. | Many Trichoderma spp., including T. virens, T. atroviride and T. harzianum can induce localized and systemic host plant resistance to a variety of plant pathogens. Induced resistance increases the expression of defence-related genes in the plant, similar to systematic acquired resistance. Generally, this is short term, except for in one case (T. asperellum and cucumber) where a longer response was shown, and elements were similar to rhizobacteria-induced systemic resistance. | [237] | |
Clavicipitaceae and others ** | Grasses ** | Overview of endophytic fungi in grasses. | Protection against plant pathogens is a possible benefit as seen in endophyte infected tall fescue being resistant to seedling blight (a disease caused by Rhizoctonia). Infected plants are also more resistant to oat crown rust (Puccinia coronata) compared to uninfected plants. Tall fescue was more resistant to barley yellow dwarf virus, with uninfected plants showing twice the frequency of disease. This shows deterrence of aphid vectors of the virus. Panicum agrostoides (a wetland grass) had less leaf blight (Alternaria triticina) infection when infected with Balansia henningsiana. Epichlöe- infected timothy grass was resistant to purple eyespot disease (Cladosporium phlei) | [238] | |
Trichoderma reesei, T. atroviride and T. virens. | N/A | N/A | Identifying gene clusters associated with secondary metabolism in Trichoderma spp. | One new NRPS and six new PKS clusters were found in the Trichoderma reesei genome. T. atroviride had four NRPS and eight PKS clusters while T. virens had four NRPS and 8 PKS clusters. | [239] |
Trichoderma spp. * | N/A | N/A | Discussing the bioactivity, regulation and biological roles of secondary metabolites produced by Trichoderma spp. | [240] | |
Trichoderma atroviride, T. reesei and T. virens | N/A | N/A | Looking at the mechanisms of mycoparasitism by comparing the transcriptional responses of Trichoderma spp. with different lifestyles against Rhizoctonia solani. | Trichoderma atroviride and T. virens expressed different genes for antagonism when confronted with R. solani. T. virens up-regulated genes for gliotoxin biosynthesis, poisoning R. solani, while T. atroviride followed a strategy involving antibiosis and hydrolytic enzymes. T. reesei appeared to mainly express genes for nutrient acquisition suggesting an attempt at competition instead of mycoparasitism. | [241] |
Trichoderma atroviride, T. reesei and T. virens | N/A | N/A | Comparing genomes of different Trichoderma spp. | Genome analysis and comparison of Trichoderma atroviride, T. virens and T. reesei. Phylogenetic analysis showed that T. reesei and T. virens derived from T. atroviride, suggesting mycoparasitism-specific genes arose in a common Trichoderma ancestor but were lost in T. reesei. | [242] |
Fusarium equiseti, Pochonia chlamydosporia | Barley | Roots | Evaluating the root population dynamics of fungi under non-axenic conditions. Fungi were examined for their presence, effect on plant growth and response to Gaeumannomyces graminis var. tritici (causal agent of take-all disease). | Both fungi can protect host plants from G. graminis var. tritici in laboratory conditions. Clear suppressive effect on the pathogen could not be detected but F. equiseti isolates reduced the mean root lesion length. Root colonization by P. chlamydosporia promoted plant growth. | [128] |
Many including Cryptosporiopsis cf. quercina, Colletotrichum spp. | N/A | N/A | Brief review of biological activities and applications of endophytes. | Suggest that the nutritional status and fitness of the host plant (which are enhanced by the endophytes) as well as their ability to tolerate abiotic stress are key factors in the plants ability to resist disease. Cryptosporiopsis cf. quercina and Colletotrichum spp. have been shown to be effective against plant pathogens including Rhizoctonia cerealis, Phytophthora capsici, Pyricularia oryzae and Gaeumannomyces graminis. Endophytes demonstrate potential for phytoremediation. | [51] |
97 isolates ** | 12 genera of orchids | Leaves, stems, flowers | Analysing the antifungal, antioxidant, chemical composition and antimutagenicity properties of compounds produced by fungal endophytes. | Thirteen endophyte isolates showed antifungal activity against Fusarium sp., Colletotrichum sp. and Curvularia sp. Fusarium oxysporum strain showed the highest antifungal activity and was selected for further study including characterizing secondary metabolites. | [243] |
Numerous ** | Stanhopea tigrine | Leaf, pseudobulb, root and flower | Examining the microbiome of Stanhopea tigrine. | Used morphological and molecular characteristics for identification and found 63 genera, with Trichoderma, Penicillium, Fusarium and Aspergillus as the dominant genera. 21 fungal isolates produced gibberellins. | [244] |
Numerous ** | Cephalanthera longibracteata | Roots | The goal was to determine if the fungal communities were preferentially correlated with the sites. | Thirty species of fungi were identified, endophytic community composition was affected by site. | [245] |
Numerous ** | Dendrobium nobile, Dendrobium chrysanthum | Mature roots and protocorms | Analyzing diversity of fungal symbionts of threatened plant species to improve conservation and commercial production. | A total of 127 fungi were isolated: Xylaria, Fusarium, Trichoderma, Colletotrichum, Pestalotiopsis, and Diaporthe were dominant. | [246] |
Numerous ** | Cyrtochilum myanthum, Scaphyglottis punctulata, Stelis superbiens | Roots | Analyzing the diversity of fungal root associates for conservation purposes. | A total of 115 fungal isolates were identified corresponding to 49 OTUs. Ascomycetes were dominant, with Trichoderma sp. as the most frequent taxon. | [247] |
Numerous ** | Pomatocalpa decipiens | Leaf segments and root | Obtaining potential phosphate solubilising strains from endophytic mycoflora. | A total of 928 endophytic phosphate solubilising fungal isolates were obtained from the leaf segments. Twenty endophytic phosphate solubilising fungi were isolated from the root samples. | [248] |
Numerous including saprotrophic basidiomycetes * | Mycoheterotrophy orchids | Investigating how Mycoheterotrophic orchids receive their carbon in regions where ectomycorrhizal fungi, are not present. | Different fungi were found and identified. Research suggests that temperature and moisture in rainforests may favour sufficient saprotrophic activity to support development of mycoheterotrophy. | [249] | |
Numerous | N/A | N/A | What makes a fungus parasitic or endophytic and how plants avoid exploitation by parasites but benefit from mutualistic endophytes. | If the symbiosis is not equal, disease symptoms appear on the host plant and/or the fungus is expelled by host defence reactions and no longer receives benefits. | [48] |
Numerous * | Heisteria concinna, Ouratea lucens | Leaves | Endophyte colonization patterns, richness, host preference and spatial variation were examined. | A total of 347 taxa were collected. Host preference and spatial heterogeneity were suggested by the data. | [46] |
Numerous * | Sasa borealis, Potentilla fragarioides, Viola mandshurica | Leaves | Looking at the effects of foliar endophytic fungi and AMF on community structure in experimental microcosms. | Endophytic fungi were isolated and identified to species level. Results of this study show that AMF affect plant productivity and plant community structure. | [250] |
Numerous * | Camptotheca cuminata, Gastrodia elata, Pinellia ternate | Leaves, twigs, root tissues, flower tissues | Looking at potential sources for biomedical compounds. | A total of 193 endophytes were isolated and 42 taxa were identified and tested for different bioactive compounds. Analagous bioactive compounds were produced in host endophyte cultures: three taxa isolated from C. cuminata produced high yields of camptothecin, Colletotrichum gloeosporioides from C. cuminata produced 10-hydroxycamptothecin, three taxa isolated from G. elata produced gastrodin, three taxa from P. ternata produced low amounts of ephedrine hydrochloride. | [251] |
Neotyphodium coenophialum | Festuca arundinacea | Root | Greenhouse experiment conducted to identify effects of endophyte strains on copper acquisition by tall fescue varieties. | Extracellular root exudates of infected plants had a higher copper binding activity. | [252] |
Numerous * | Gymnadenia conopsea | Root | Looking at the different factors that determine the spatial structure and presence of fungi associated with orchid roots. | The investigation revealed a large diversity and taxonomical range of fungi. This diversity is likely responsible for the orchids ability to live in such diverse habitats. | [253] |
Numerous * | Laelia autumnalis, L. speciosa, Euchile citrina, P. squalida | Root | Looking at the community composition and diversity of fungi associated with orchids. | A total of 71 isolates were obtained, representing 20 genera. Euchile citrina showed the lowest endophytic diversity implying that the plant is specific when choosing endophytes. L. speciosa and P. squalida were generalists. | [254] |
Numerous including Epulorhiza spp. and Tulasnella spp. * | Paphiopedilum, Cymbidium, Dendrobium. | Root | Looking at the diversity of fungi in orchids in understudied sites. | Twenty-seven fungal isolates were identified including Epulorhiza repens (the most common fungi found in roots from all three genera) and Epulorhiza calendulina (only found in Paphiopedilum species). Four new Tulasnella spp. were isolated and described. | [255] |
Numerous * | Dendrobium sinense | Roots | Analyzing whether the endophytes were preferentially correlated with the host tree species. | A total of 56 fungal species were identified and results show that species richness and diversity were influenced by host tree species. D. sinense roots had the highest diversity. | [256] |
Numerous ** | Aerides odorata, Arundina graminifolia, Cymbidium aloifolium, Cymbidium munronianum, Dendrobium fimbriatum, Dendrobium moschatum, Eria flava, Paphiopedilum fairrieanum, Pholidota imbricata, Rhynchostylis retusa, Vanilla planifolia | Leaf and root tissues | Analyzing endophyte assemblages. | Xylaria spp. were found in both the leaves and the roots. The diversity of endophytes was higher in the leaves and tissue specificity was shown. | [41] |
Pestalotiopsis versicolor and P. neglecta | Taxus cuspidata | Healthy leaves and bark | Investigating alternative sources of taxol. | The fungi screened produced taxol and showed a strong cytotoxic activity in the in vitro culture of tested human cancer cells. | [257] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabka, R.; d’Entremont, T.W.; Adams, S.J.; Walker, A.K.; Tanney, J.B.; Abbasi, P.A.; Ali, S. Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants 2022, 11, 384. https://doi.org/10.3390/plants11030384
Grabka R, d’Entremont TW, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S. Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants. 2022; 11(3):384. https://doi.org/10.3390/plants11030384
Chicago/Turabian StyleGrabka, Rachel, Tyler W. d’Entremont, Sarah J. Adams, Allison K. Walker, Joey B. Tanney, Pervaiz A. Abbasi, and Shawkat Ali. 2022. "Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens" Plants 11, no. 3: 384. https://doi.org/10.3390/plants11030384
APA StyleGrabka, R., d’Entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2022). Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants, 11(3), 384. https://doi.org/10.3390/plants11030384