Multi-Spectral Quantum Cascade Lasers on Silicon With Integrated Multiplexers
"> Figure 1
<p>(<b>a</b>) Top-view schematic of the QCL array and arrayed waveguide grating (AWG). Mirrors are defined under the red III-V QCL ridges for both the distributed feedback (DFB) and distributed Bragg-reflection (DBR) type lasers. (<b>b</b>) Micrograph of a multi-spectral DFB laser, showing the individual lasers on the left and the AWG combiner on the right.</p> "> Figure 2
<p>Processing steps: (<b>a</b>) gratings and Si waveguides are defined; (<b>b</b>) the QCL chip is bonded to the Si wafer; (<b>c</b>) the InP substrate is removed; (<b>d</b>) top contact and cladding layers are dry etched; (<b>e</b>) the active region is wet etched; (<b>f</b>) the bottom contact region is defined and gold is deposited; (<b>g</b>) Si<math display="inline"><semantics> <msub> <mrow/> <mn>3</mn> </msub> </semantics></math>N<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> is deposited and the bottom contact layer is etched; (<b>h</b>) vias are etched and the top contact metal is deposited; (<b>i</b>) probe metal is deposited.</p> "> Figure 3
<p>SEMs of the (<b>a</b>) star coupler of an AWG, (<b>b</b>) transition between the free-propagation region of the star coupler to the arrayed waveguides of an AWG, (<b>c</b>) slanted view of a QCL taper tip before etching the <span class="html-italic">n</span>-QC structure, where the top layer is the SiO<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math> hardmask, and (<b>d</b>) a grating etched in the top of a Si waveguide before bonding the QCL.</p> "> Figure 4
<p>Experimental setups for (<b>a</b>) the AWG passive transmission, (<b>b</b>) the QCL LIV characteristics, and (<b>c</b>) the QCL spectral measurements. CS represents a current source and PC represents a polarization controller. (<b>d</b>) A photograph of the QCL array coupled to an AWG with the output collected by DET-A, corresponding to the schematic in (<b>b</b>).</p> "> Figure 5
<p>Light-current-voltage (LIV) dependence on temperature for (<b>a</b>) DFB and (<b>b</b>) DBR devices.</p> "> Figure 6
<p>Current density at threshold (in orange) and slope efficiency (in blue) extracted as a function of temperature for (<b>a</b>) DFB and (<b>b</b>) DBR lasers.</p> "> Figure 7
<p>Normalized spectral dependence on the temperature for (<b>a</b>) a DFB laser from channel 2 with a 200 ns drive pulse width and (<b>b</b>) a DBR laser from channel 5 with a 100 ns drive pulse width. Heating during the pulse limits the linewidth of each mode.</p> "> Figure 8
<p>(<b>a</b>) LIV and (<b>b</b>) spectral characteristics of two DFB lasers, corresponding to emission from the hybrid III-V/Si facet after one taper was polished off.</p> "> Figure 9
<p>Transmission spectra for a similar AWG, fabricated separately from the QCL array. The solid curves are simulated and the points are measured data.</p> "> Figure 10
<p>(<b>a</b>) LIV plots of a multi-spectral three-channel DFB while driving laser channels 3, 5, and 6. (<b>b</b>) Spectra of the three-channel DFB laser (Laser #1) and another two-channel DFB laser (Laser #2).</p> "> Figure 11
<p>(<b>a</b>) LIV plots of a multi-spectral two-channel DBR while driving laser channels 1 and 7. (<b>b</b>) Spectra of the two-channel DBR laser (Laser #3) and another two-channel DFB laser (Laser #4).</p> "> Figure 12
<p>Power degradation dependence on proximity for multiple pairs of lasers.</p> ">
Abstract
:1. Introduction
2. Design
3. Methods
3.1. Fabrication
3.2. Experimental Setups
4. Individual Laser Characteristics
4.1. Temperature and Pulse Width Dependence
4.2. Effect of Removing One III-V/Si Taper
5. Beam Combining with AWGs
5.1. AWGs
5.2. Multi-Spectral Lasers
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Day, T.; Pushkarsky, M.; Caffey, D.; Cecchetti, K.; Arp, R.; Whitmore, A.; Henson, M.; Takeuchi, E.B. Quantum cascade lasers for defense and security. Proc. SPIE 2013, 8898, 889802. [Google Scholar]
- Razeghi, M.; Lu, Q.; Bandyopadhyay, N.; Zhou, W.; Heydari, D.; Bai, Y.; Slivken, S. Quantum cascade lasers: from tool to product. Opt. Express 2015, 23, 8462–8475. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, M.S.; Scalari, G.; Williams, B.; De Natale, P. Quantum cascade lasers: 20 years of challenges. Opt. Express 2015, 23, 5167–5182. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.G.; Kansky, J.; Goyal, A.K.; Pflügl, C.; Diehl, L.; Belkin, M.A.; Sanchez, A.; Capasso, F.A. Beam combining of quantum cascade laser arrays. Opt. Express 2009, 17, 16216–16224. [Google Scholar] [CrossRef] [PubMed]
- Rauter, P.; Capasso, F. Multi-wavelength quantum cascade laser arrays. Laser Photonics Rev. 2015, 9, 452–477. [Google Scholar] [CrossRef]
- Huang, R.K.; Chann, B.; Burgess, J.; Lochman, B.; Zhou, W.; Cruz, M.; Cook, R.; Dugmore, D.; Shattuck, J.; Tayebati, P. Teradiode’s high brightness semiconductor lasers. In Proceedings of the Components and Packaging for Laser Systems II, San Francisco, CA, USA, 16–18 February 2016; Voume 9730, p. 0C. [Google Scholar]
- Koshkinbayeva, A.; Barritault, P.; Ortiz, S.; Boutami, S.; Brun, M.; Hartmann, J.M.; Brianceau, P.; Lartigue, O.; Boulila, F.; Orobtchouk, R.; et al. Impact of Non-Central Input in N × M Mid-IR Arrayed Waveguide Gratings Integrated on Si. IEEE Photonics Technol. Lett. 2016, 28, 2191–2194. [Google Scholar] [CrossRef]
- Hoffmann, L.K.; Klinkmüller, M.; Mujagić, E.; Semtsiv, M.P.; Schrenk, W.; Masselink, W.T.; Strasser, G. Tree array quantum cascade laser. Opt. Express 2009, 17, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Patel, C.K.N. Continuous wave operation of buried heterostructure 4.6 µm quantum cascade laser Y-junctions and tree arrays. Opt. Express 2014, 22, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wu, D.; McClintock, R.; Slivken, S.; Razeghi, M. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers. Optica 2017, 4, 1228–1231. [Google Scholar] [CrossRef]
- Labeye, P.; Koshkinbayeva, A.; Dupoy, M.; Barritault, P.; Lartigue, O.; Fournier, M.; Fedeli, J.; Garcia, S.; Nicoletti, S.; Duraffourg, L. Multiplexing photonic devices integrated on a silicon/germanium platform for mid-infrared gas sensing. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 25–29 June 2017. [Google Scholar]
- Labeye, P.; Koshkinbayeva, A.; Dupoy, M.; Barritault, P.; Lartigue, O.; Fournier, M.; Fedeli, J.M.; Boutami, S.; Garcia, S.; Nicoletti, S.; et al. Multiplexing photonic devices integrated on a silicon/germanium platform for the mid-infrared. In Integrated Optics: Devices, Materials, and Technologies XXI; SPIE: Bellingham, WA, USA, 2017; Volume 10106, p. 101060Y. [Google Scholar]
- Bizet, L.; Vallon, R.; Parvitte, B.; Brun, M.; Maisons, G.; Carras, M.; Zeninari, V. Multi-gas sensing with quantum cascade laser array in the mid-infrared region. Appl. Phys. B 2017, 123, 145. [Google Scholar] [CrossRef]
- Spott, A.; Peters, J.; Davenport, M.L.; Stanton, E.J.; Merritt, C.D.; Bewley, W.W.; Vurgaftman, I.; Kim, C.S.; Meyer, J.R.; Kirch, J.; et al. Quantum cascade laser on silicon. Optica 2016, 3, 545–551. [Google Scholar] [CrossRef]
- Spott, A.; Peters, J.; Davenport, M.L.; Stanton, E.J.; Zhang, C.; Merritt, C.D.; Bewley, W.W.; Vurgaftman, I.; Kim, C.S.; Meyer, J.R.; et al. Heterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon. Photonics 2016, 3, 35. [Google Scholar] [CrossRef]
- Go, R.; Krysiak, H.; Fetters, M.; Figueiredo, P.; Suttinger, M.; Fang, X.M.; Eisenbach, A.; Fastenau, J.M.; Lubyshev, D.; Liu, A.W.K.; et al. InP-based quantum cascade lasers monolithically integrated onto silicon. Opt. Express 2018, 26, 22389–22393. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Van, H.; Baranov, A.N.; Loghmari, Z.; Cerutti, L.; Rodriguez, J.B.; Tournet, J.; Narcy, G.; Boissier, G.; Patriarche, G.; Bahriz, M.; et al. Quantum cascade lasers grown on silicon. Sci. Rep. 2018, 8, 7206. [Google Scholar] [CrossRef] [PubMed]
- Stanton, E.J.; Heck, M.J.; Bovington, J.; Spott, A.; Bowers, J.E. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. Opt. Express 2015, 23, 11272–11283. [Google Scholar] [CrossRef] [PubMed]
- Spott, A.; Stanton, E.J.; Volet, N.; Peters, J.D.; Meyer, J.R.; Bowers, J.E. Heterogeneous Integration for Mid-Infrared Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 8200810. [Google Scholar] [CrossRef]
- Spott, A.; Stanton, E.J.; Torres, A.; Davenport, M.L.; Canedy, C.L.; Vurgaftman, I.; Kim, M.; Kim, C.S.; Merritt, C.D.; Bewley, W.W.; et al. Interband cascade laser on silicon. Optica 2018, 5, 996–1005. [Google Scholar] [CrossRef]
- Muneeb, M.; Chen, X.; Verheyen, P.; Lepage, G.; Pathak, S.; Ryckeboer, E.; Malik, A.; Kuyken, B.; Nedeljkovic, M.; Van Campenhout, J.; et al. Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 µm. Opt. Express 2013, 21, 11659–11669. [Google Scholar] [CrossRef]
- Miller, S.A.; Yu, M.; Ji, X.; Griffith, A.G.; Cardenas, J.; Gaeta, A.L.; Lipson, M. Low-loss silicon platform for broadband mid-infrared photonics. Optica 2017, 4, 707–712. [Google Scholar] [CrossRef]
- Keck, D.B.; Maurer, R.D.; Schultz, P.C. On the ultimate lower limit of attenuation in glass optical waveguides. Appl. Phys. Lett. 1973, 22, 307–309. [Google Scholar] [CrossRef]
- Izawa, T.; Shibata, N.; Takeda, A. Optical attenuation in pure and doped fused silica in the IR wavelength region. Appl. Phys. Lett. 1977, 31, 33–35. [Google Scholar] [CrossRef]
- Philipp, H.R. Optical properties of silicon nitride. J. Electrochem. Soc. 1973, 120, 295–300. [Google Scholar] [CrossRef]
- Lin, P.T.; Singh, V.; Lin, H.Y.G.; Tiwald, T.; Kimerling, L.C.; Agarwal, A.M. Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics. Adv. Opt. Mater. 2013, 1, 732–739. [Google Scholar] [CrossRef]
- Tai Lin, P.; Singh, V.; Kimerling, L.; Murthy Agarwal, A. Planar silicon nitride mid-infrared devices. Appl. Phys. Lett. 2013, 102, 251121. [Google Scholar] [CrossRef]
- Jung, S.; Kirch, J.; Kim, J.H.; Mawst, L.J.; Botez, D.; Belkin, M.A. Quantum cascade lasers transfer-printed on silicon-on-sapphire. Appl. Phys. Lett. 2017, 111, 211102. [Google Scholar] [CrossRef]
- Malik, A.; Muneeb, M.; Pathak, S.; Shimura, Y.; Van Campenhout, J.; Loo, R.; Roelkens, G. Germanium-on- Silicon Mid-Infrared Arrayed Waveguide Grating Multiplexers. IEEE Photonics Technol. Lett. 2013, 25, 1805–1808. [Google Scholar] [CrossRef]
- Malik, A.; Stanton, E.J.; Liu, J.; Spott, A.; Bowers, J.E. High Performance 7 × 8 Ge-on-Si Arrayed Waveguide Gratings for the Midinfrared. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Fedeli, J.M.; Nicoletti, S. Mid-infrared (Mid-IR) silicon-based photonics. Proc. IEEE 2018, 106, 2302–2312. [Google Scholar] [CrossRef]
- Stanton, E.J.; Spott, A.; Davenport, M.L.; Volet, N.; Bowers, J.E. Low-loss arrayed waveguide grating at 760 nm. Opt. Lett. 2016, 41, 1785–1788. [Google Scholar] [CrossRef]
- Stanton, E.J.; Volet, N.; Bowers, J.E. Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared. Opt. Express 2017, 25, 30651–30663. [Google Scholar] [CrossRef]
- Stanton, E.J.; Volet, N.; Bowers, J.E. Silicon arrayed waveguide gratings at 2.0-µm wavelength characterized with an on-chip resonator. Opt. Lett. 2018, 43, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Pankove, J. Temperature dependence of emission efficiency and lasing threshold in laser diodes. IEEE J. Quantum Electron. 1968, 4, 119–122. [Google Scholar] [CrossRef]
Layer | Material | Thickness (nm) |
---|---|---|
Top contact | InP | 1700 |
Top cladding | InP | 2500 |
Active core | QC structure | 1660 |
Bottom cladding | InP | 113 |
Bottom contact | InP | 230 |
Bonding super-lattice | InGaAs/InP | (9/9) × 2 |
Bonding layer | InP | 12 |
Waveguide core | Si | 1500 |
Bottom cladding | SiO | 1000 |
Substrate | Si | ∼720 × |
Number of channels | 8 | |
Number of AWs | 73 | |
Rowland radius | r | 75.23 µm |
AW length increment | 16.71 µm | |
AW width | 1.50 µm | |
AW width at FPR | 1.60 µm | |
i/o waveguide width | 1.80 µm | |
i/o waveguide width at FPR | 1.80 µm | |
AW pitch at FPR | 1.90 µm | |
i/o waveguide pitch at FPR | 3.60 µm | |
Footprint area | S | 3.68 mm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanton, E.J.; Spott, A.; Peters, J.; Davenport, M.L.; Malik, A.; Volet, N.; Liu, J.; Merritt, C.D.; Vurgaftman, I.; Kim, C.S.; et al. Multi-Spectral Quantum Cascade Lasers on Silicon With Integrated Multiplexers. Photonics 2019, 6, 6. https://doi.org/10.3390/photonics6010006
Stanton EJ, Spott A, Peters J, Davenport ML, Malik A, Volet N, Liu J, Merritt CD, Vurgaftman I, Kim CS, et al. Multi-Spectral Quantum Cascade Lasers on Silicon With Integrated Multiplexers. Photonics. 2019; 6(1):6. https://doi.org/10.3390/photonics6010006
Chicago/Turabian StyleStanton, Eric J., Alexander Spott, Jon Peters, Michael L. Davenport, Aditya Malik, Nicolas Volet, Junqian Liu, Charles D. Merritt, Igor Vurgaftman, Chul Soo Kim, and et al. 2019. "Multi-Spectral Quantum Cascade Lasers on Silicon With Integrated Multiplexers" Photonics 6, no. 1: 6. https://doi.org/10.3390/photonics6010006
APA StyleStanton, E. J., Spott, A., Peters, J., Davenport, M. L., Malik, A., Volet, N., Liu, J., Merritt, C. D., Vurgaftman, I., Kim, C. S., Meyer, J. R., & Bowers, J. E. (2019). Multi-Spectral Quantum Cascade Lasers on Silicon With Integrated Multiplexers. Photonics, 6(1), 6. https://doi.org/10.3390/photonics6010006