Fiber-Based Laser Doppler Vibrometer for Middle Ear Diagnostics
<p>The concept of a fiber-based vibrometer (AO—acousto-optic, EDFA—Erbium Doped Fiber Amplifier, Fibers—standard single mode fibers).</p> "> Figure 2
<p>The four-channel FLDV that was made at WUST [<a href="#B18-photonics-11-01152" class="html-bibr">18</a>].</p> "> Figure 3
<p>Default (universal) motorized FLDV head: (<b>a</b>) an idea; (<b>b</b>) a real photo.</p> "> Figure 4
<p>Ceramic hand probe tip: (<b>a</b>) the design; (<b>b</b>,<b>c</b>) photos.</p> "> Figure 5
<p>Handheld probe (HP): (<b>a</b>) photo; (<b>b</b>) far-field beam profiles (samples: 3760, target scan rate: 10 Hz, resolution 2.4 μm, 9.68 fps).</p> "> Figure 6
<p>Comparison of the beam’s diameter emitted from a fiber and a collimator.</p> "> Figure 7
<p>Retroreflective sticker with glass beads.</p> "> Figure 8
<p>Measuring the power of scattered light returning to the system: (<b>a</b>) setup with universal head (UH); (<b>b</b>) results.</p> "> Figure 9
<p>Measuring the power of scattered light returning to the system: (<b>a</b>) setup with handheld probe (HP); (<b>b</b>) results.</p> "> Figure 10
<p>Typical access to the middle ear: (<b>a</b>) setup for measuring middle ear vibrations; (<b>b</b>) actual photo with visible ossicles and dimensions; (<b>c</b>) photo of the measurement on the posterior crus of stapes.</p> "> Figure 11
<p>Averaged spectrum for 60 dB HL excitation over noise background [<a href="#B18-photonics-11-01152" class="html-bibr">18</a>].</p> "> Figure 12
<p>The amplitude of vibration of the superstructure of the stapes of an example ear as a function of stimulation intensity.</p> ">
Abstract
:1. Introduction
2. Fiber-Based Laser Doppler Vibrometer
2.1. The Concept of FLDV
2.2. Vibrometer Parameters
3. Fiber–Free Space Interface
3.1. Universal Head
3.2. Handheld Probe
3.3. Collimators vs. Fibers
4. Vibration Measurements of the Middle Ear Ossicles—Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huber, A.; Linder, T.; Dillier, N.; Ferrazzini, M.; Stoeckli, S.; Schmid, S.; Fisch, U. Intraoperative Assessment of Stapes Movement. Ann. Otol. Rhinol. Laryngol. 2001, 110, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Arechvo, I.; Lasurashvili, N.; Bornitz, M.; Kevanishvili, Z.; Zahnert, T. Laser Doppler vibrometry of the middle ear in humans: Derivation dependence, variability, and bilateral differences. Medicina 2009, 45, 878. [Google Scholar] [CrossRef]
- Szymański, M.; Rusinek, R.; Zadrożniak, M.; Warmiński, J.; Morshed, K. Drgania błony bębenkowej oceniane Dopplerowskim wibrometrem laserowym. Otolaryngol. Pol. 2009, 63, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.T.; Ghanad, I.; Remenschneider, A.; Rosowski, J. The onset of nonlinear growth of middle-ear responses to high intensity sounds. Hear. Res. 2021, 405, 108242. [Google Scholar] [CrossRef]
- Morris, D.P.; Bance, M.; Van Wijhe, R.G.; Kiefte, M.; Smith, R. Optimum Tension for Partial Ossicular Replacement Prosthesis Reconstruction in the Human Middle Ear. Laryngoscope 2004, 114, 305–308. [Google Scholar] [CrossRef]
- Jiang, D.; Bibas, A.; Santuli, C.; Donnelly, N.; Jeronimidis, G.; O’Connor, A.F. Equivalent Noise Level Generated by Drilling Onto the Ossicular Chain as Measured by Laser Doppler Vibrometry: A Temporal Bone Study. Laryngoscope 2007, 117, 1040–1045. [Google Scholar] [CrossRef]
- Peacock, J.; Dirckx, J.; Von Unge, M. Magnetically driven middle ear ossicles with laser vibrometry as a new diagnostic tool to quantify ossicular fixation. Acta Otolaryngol. 2014, 134, 352–357. [Google Scholar] [CrossRef]
- Dong, W.; Tian, Y.; Gao, X.; Jung, T.T.K. Middle-Ear Sound Transmission Under Normal, Damaged, Repaired, and Reconstructed Conditions. Otol. Neurotol. 2017, 38, 577–584. [Google Scholar] [CrossRef]
- Niklasson, A.; Gladiné, K.; Rönnblom, A.; Von Unge, M.; Dirckx, J.; Tano, K. An Optimal Partial Ossicular Prosthesis Should Connect Both to the Tympanic Membrane and Malleus: A Temporal Bone Study Using Laser Doppler Vibrometry. Otol. Neurotol. 2018, 39, 333–339. [Google Scholar] [CrossRef]
- Niemczyk, K.; Bartoszewicz, R.; Sokolowski, J.; Morawski, K.F. Ossiculoplasty Efficacy Monitored by ECoG—Laser—Doppler Technique. Otolaryngol. Neck Surg. 2011, 145, P222–P223. [Google Scholar] [CrossRef]
- Morawski, K.F.; Niemczyk, K.; Hryciuk, A.; Sokolowski, J.; Bartoszewicz, R. Intraoperative Monitoring of Hearing Improvement during Ossiculoplasty by LDV—ABR—ECochG Technique. Otolaryngol. Neck Surg. 2013, 149, P102–P103. [Google Scholar] [CrossRef]
- Morawski, K.; Niemczyk, K.; Sokolowski, J.; Hryciuk, A.; Bartoszewicz, R. Intraoperative Monitoring of Hearing Improvement during Ossiculoplasty by Laser—Doppler Vibrometry, Auditory Brainstem Responses, and Electrocochleography. Otolaryngol. Neck Surg. 2014, 150, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Stahn, P.; Lim, H.H.; Hinsberger, M.P.; Sorg, K.; Pillong, L.; Kannengießer, M.; Schreiter, C.; Foth, H.-J.; Langenbucher, A.; Schick, B.; et al. Frequency-specific activation of the peripheral auditory system using optoacoustic laser stimulation. Sci. Rep. 2019, 9, 4171. [Google Scholar] [CrossRef] [PubMed]
- Sokołowski, J.; Lachowska, M.; Bartoszewicz, R.; Niemczyk, K. Methodology for Intraoperative Laser Doppler Vibrometry Measurements of Ossicular Chain Reconstruction. Clin. Exp. Otorhinolaryngol. 2016, 9, 98–103. [Google Scholar] [CrossRef]
- Kunimoto, Y.; Hasegawa, K.; Arii, S.; Kataoka, H.; Yazama, H.; Kuya, J.; Fujiwara, K.; Takeuchi, H. Sequential motion of the ossicular chain measured by laser Doppler vibrometry. Acta Otolaryngol. 2017, 137, 1233–1237. [Google Scholar] [CrossRef]
- Gladiné, K.; Wales, J.; Silvola, J.; Muyshondt, P.G.G.; Topsakal, V.; Van De Heyning, P.; Dirckx, J.J.J.; von Unge, M. Evaluation of Artificial Fixation of the Incus and Malleus With Minimally Invasive Intraoperative Laser Vibrometry (MIVIB) in a Temporal Bone Model. Otol. Neurotol. 2020, 41, 45–51. [Google Scholar] [CrossRef]
- Mason, M.J.; Narins, P.M. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. The extrastapes. J. Exp. Biol. 2002, 205, 3153–3165. [Google Scholar] [CrossRef]
- Masalski, M.; Wąż, A.; Błauciak, P.; Zatoński, T.; Morawski, K. Handheld laser-fiber vibrometry probe for assessing auditory ossicles displacement. J. Biomed. Opt. 2021, 26, 077001. [Google Scholar] [CrossRef]
- Emre, I.E.; Cingi, C.; Muluk, N.B.; Nogueira, J.F. Endoscopic ear surgery. J. Otol. 2020, 15, 27–32. [Google Scholar] [CrossRef]
- Han, S.; Lee, D.Y.; Chung, J.; Kim, Y.H. Comparison of endoscopic and microscopic ear surgery in pediatric patients: A meta—Analysis. Laryngoscope 2019, 129, 1444–1452. [Google Scholar] [CrossRef]
- Kaczmarek, P.R.; Kazimierski, M.; Wąż, A.T.; Abramski, K.M. Laser-fiber vibrometry/velocimetry using telecommunications devices. Proc. SPIE 2004, 5503, 329–333. [Google Scholar]
- Waz, A.T.; Dudzik, G.; Kaczmarek, P.R.; Abramski, K.M. Multichannel WDM vibrometry at 1550 nm. Photonics Lett. Pol. 2014, 6, 133–135. [Google Scholar] [CrossRef]
- Bauer, M.; Ritter, F.; Siegmund, G. High-precision laser vibrometers based on digital Doppler signal processing. Proc. SPIE 2002, 4827, 50–61. [Google Scholar]
- Waz, A.; Kaczmarek, P.; Antończak, A.; Sotor, J.; Dudzik, G.; Krzempek, K.; Sobon, G.; Abramski, K.M. Multichannel flexible fiber vibrometer. Proc. SPIE 2011, 80370X, 267–273. [Google Scholar] [CrossRef]
- Waz, A.T.; Dudzik, G.; Kaczmarek, P.R.; Antonczak, A.J.; Sotor, J.Z.; Krzempek, K.; Sobon, G.J.; Abramski, K.M. Recent development of WDM fiber vibrometry. In Proceedings of the 10th International Conference on Vibration Measurements by Laser and Noncontact Techniques—AIVELA 2012, Ancona, Italy, 27–29 June 2012; pp. 227–233. [Google Scholar] [CrossRef]
- Martin, P.; Rothberg, S. Laser vibrometry and the secret life of speckle patterns. In Proceedings of the Eighth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, Ancona, Italy, 1 June 2008; p. 709812. [Google Scholar] [CrossRef]
- Tullis, I.D.C.; Halliwell, N.A.; Rothberg, S.J. Spatially integrated speckle intensity: Maximum resistance to decorrelation caused by in-plane target displacement. Appl. Opt. 1998, 37, 7062. [Google Scholar] [CrossRef]
- Asakura, T.; Takai, N. Dynamic laser speckles and their application to velocity measurements of the diffuse object. Appl. Phys. 1981, 25, 179–194. [Google Scholar] [CrossRef]
- Sirohi, R.S. (Ed.) Speckle Metrology; Marcel Dekker Inc.: New York, NY, USA, 1993. [Google Scholar]
- ISO 389-1:1998; Acoustics—Reference Zero for the Calibration of Audiometric Equipment—Part 1: Reference Equivalent Threshold Sound Pressure Levels for Pure Tones and Supra-Aural Earphones. International Organization for Standardization: Geneva, Switzerland, 1998. Available online: https://www.iso.org/obp/ui/#iso:std:iso:389:-1:ed-1:v1:en (accessed on 1 December 2024).
- Munro, K.J.; Lazenby, A. Use of the ‘real-ear to dial difference’ to derive real-ear SPL from hearing level obtained with insert earphones. Br. J. Audiol. 2001, 35, 297–306. [Google Scholar] [CrossRef]
- Charles, P.D.; Esper, G.J.; Davis, T.L.; Maciunas, R.J.; Robertson, D. Classification of Tremor and Update on Treatment. Am. Fam. Phys. 1999, 59, 1565–1572. [Google Scholar]
- Needham, A.J.; Jiang, D.; Bibas, A.; Jeronimidis, G.; O’Connor, A.F. The Effects of Mass Loading the Ossicles with a Floating Mass Transducer on Middle Ear Transfer Function. Otol. Neurotol. 2005, 26, 218–224. [Google Scholar] [CrossRef]
- Rosowski, J.J.; Chien, W.; Ravicz, M.E.; Merchant, S.N. Testing a Method for Quantifying the Output of Implantable Middle Ear Hearing Devices. Audiol. Neurotol. 2007, 12, 265–276. [Google Scholar] [CrossRef]
- Seidman, M.D.; Standring, R.T.; Ahsan, S.; Marzo, S.; Shohet, J.; Lumley, C.; Verzal, K. Normative Data of Incus and Stapes Displacement During Middle Ear Surgery Using Laser Doppler Vibrometry. Otol. Neurotol. 2013, 34, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, M.; Rusinek, R.; Zadrozniak, M.; Morshed, K.; Warminski, J. The Influence of Incudostapedial Joint Separation on the Middle Ear Transfer Function. Clin. Exp. Otorhinolaryngol. 2014, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Niklasson, A.; Rönnblom, A.; Muyshondt, P.; Dirckx, J.; Von Unge, M.; Tano, K. Ossiculoplasty on Isolated Malleus Fractures: A Human Temporal Bone Study Using Laser Doppler Vibrometry. Otol. Neurotol. 2016, 37, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Pazen, D.; Gostian, A.-O.; Lüers, J.-C.; Hüttenbrink, K.B. Evaluation of Coupling Efficiency in Round Window Vibroplasty With a New Handheld Probe. Otol. Neurotol. 2019, 40, e40–e47. [Google Scholar] [CrossRef]
- Sokołowski, J.; Orłowski, A.; Bartoszewicz, R.; Lachowska, M.; Gosiewska, A.; Biecek, P.; Niemczyk, K. Quantitative analysis of 3D-printed custom ossicular prostheses motion using laser Doppler vibrometry. Otolaryngol. Pol. 2024, 77, 23–30. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of channels | 4 |
Operating wavelengths | 1549.32, 1550.12, 1550.92, 1551.72 |
Number of demodulators | 3 (one phase, two frequency) |
Range of measured vibration velocity [m/s] | 0–5 |
Frequency of measured vibration [Hz] | 0.1–500 k |
Dynamic range (displacement measurement) @ 1 kHz | 70 pm–400 µm |
Measuring distance [m] | 1 mm–2.5 m (depending on the probe) |
Distance between the head and central unit of FLDV | up to 10 m–depending on fibers and coherence equalizers length |
Auxiliary laser radiation (observation of the analysis points) | 635 nm (red) |
Parameter | HP | UH |
---|---|---|
D—beam spot diameter [mm] | 0.85 | 0.85 |
z [mm] | 4 | 100 |
λ [nm] | 1550 | |
<σ0>[μm] | 6.56 | 164.1 |
A—aperture [μm] | 9 | 900 |
Number of speckles: A2/<σ0>2 | 1.88 | 30.1 |
Parameter | FLDV HP | Polytec OFV-534 |
---|---|---|
Operating wavelength | 1550 nm | 633 nm |
Construction type | Fiber optics | Bulk optics |
Minimum distance from the test object | 1 mm | 200 mm |
Laser depth-of field | ±1 mm | ±1 mm |
Spot diameter | 850 µm (5 mm from the tip of the probe) | 25 µm |
Probe/Sensor head dimensions L—length, W—width, H—height, D-diameter | 120 × 2.5 (L × D) mm | 201 × 39 × 71 (L × W × H) mm |
Probe/Sensor head weight | 2 g | 1000 g |
Possibility of insertion into the middle ear | yes | no |
Threshold intensity at audiometric frequencies for ossicle displacement measurement | ~40 dB HL | ~30 dB HL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waz, A.T.; Masalski, M.; Morawski, K. Fiber-Based Laser Doppler Vibrometer for Middle Ear Diagnostics. Photonics 2024, 11, 1152. https://doi.org/10.3390/photonics11121152
Waz AT, Masalski M, Morawski K. Fiber-Based Laser Doppler Vibrometer for Middle Ear Diagnostics. Photonics. 2024; 11(12):1152. https://doi.org/10.3390/photonics11121152
Chicago/Turabian StyleWaz, Adam T., Marcin Masalski, and Krzysztof Morawski. 2024. "Fiber-Based Laser Doppler Vibrometer for Middle Ear Diagnostics" Photonics 11, no. 12: 1152. https://doi.org/10.3390/photonics11121152
APA StyleWaz, A. T., Masalski, M., & Morawski, K. (2024). Fiber-Based Laser Doppler Vibrometer for Middle Ear Diagnostics. Photonics, 11(12), 1152. https://doi.org/10.3390/photonics11121152