Performance Improvement by FRFT-OFDM for Visible Light Communication and Positioning Systems
<p>Block diagram of RPFRFT-based OFDM system.</p> "> Figure 2
<p>Hammerstein model.</p> "> Figure 3
<p>VLC and VLP link with LOS and NLOS paths.</p> "> Figure 4
<p>Subcarrier allocation in the fractional Fourier domain for 4-LED VLC and VLP systems.</p> "> Figure 5
<p>BER performance comparison at various FRFT orders <span class="html-italic">p</span>.</p> "> Figure 6
<p>BER performance against <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>b</mi> </msub> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> for FRFT-OFDM and FT-OFDM schemes using 4-QAM and 16-QAM.</p> "> Figure 7
<p>Localization errors against <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>b</mi> </msub> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> for FRFT-OFDM and FT-OFDM schemes with 3- or 4-LED positioning.</p> "> Figure 8
<p>Localization errors at various positions throughout the room under the optimal order <span class="html-italic">p</span> of the FRFT.</p> "> Figure 9
<p>Improvement in positioning accuracy at various positions throughout the room under the optimal order <span class="html-italic">p</span> of the FRFT compared to the FT.</p> ">
Abstract
:1. Introduction
- To ensure the real-valued signal in VLC and VLP systems, we derive a reality-preserving FRFT (RPFRFT) method and implement it within these systems. The architecture of the proposed VLC and VLP systems based on the FRFT-OFDM scheme is described in detail, along with the derivation of relevant mathematical formulas.
- We simulate and validate the proposed VLC and VLP system architectures based on the FRFT-OFDM scheme. The results demonstrate the significant performance improvement of the FRFT-OFDM scheme over the FT-OFDM scheme. For communication, the FRFT-OFDM scheme achieves over 6-dB gain compared to the FT-OFDM scheme at a BER of when the receiver is positioned at (1, 1, 0.8). For positioning, the FRFT-OFDM scheme enhances positioning accuracy by more than 1 cm relative to the FT-OFDM scheme at most locations within the room.
2. Principle
2.1. Fractional Fourier Transform
2.2. System Model
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elfikky, A.; Boghdady, A.I.; Mumtaz, S.; Elsayed, E.E.; Singh, M.; Abd El-Mottaleb, S.A.; Mohsan, S.A.H.; Aly, M.H. Underwater visible light communication: Recent advancements and channel modeling. Opt. Quantum Electron. 2024, 56, 1617. [Google Scholar] [CrossRef]
- Elsayed, E.E.; Hayal, M.R.; Nurhidayat, I.; Shah, M.A.; Elfikky, A.; Boghdady, A.I.; Juraev, D.A.; Morsy, M. Coding techniques for diversity enhancement of dense wavelength division multiplexing MIMO-FSO fault protection protocols systems over atmospheric turbulence channels. IET Optoelectron. 2024, 18, 11–31. [Google Scholar] [CrossRef]
- Ariyanti, S.; Suryanegara, M. Visible Light Communication (VLC) for 6G Technology: The Potency and Research Challenges. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 490–493. [Google Scholar]
- Park, S.; Jung, D.; Shin, H.; Shin, D.; Hyun, Y.; Lee, K.; Oh, Y. Information broadcasting system based on visible light signboard. Proc. Wirel. Opt. Commun 2007, 30, 311–313. [Google Scholar]
- Nassiri, M.; Ashouri, S.; Baghersalimi, G.; Ghassemlooy, Z. A Comparative Performance Assessment Between Pre-Equalization and Post-Equalization Techniques in m-CAP Indoor VLC Systems with Bit Loading. In Proceedings of the First West Asian Colloquium on Optical Wireless Communications (WACOWC), Isfahan, Iran, 19–27 April 2018. [Google Scholar]
- Huang, X.; Wang, Z.; Shi, J.; Wang, Y.; Chi, N. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Opt. Express 2015, 23, 22034–22042. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Sheetal, A.; Sharma, R. Performance analysis of symmetrical and bidirectional 40 Gbps TWDM-PON employing m-QAM-OFDM modulation with multi-color LDs based VLC system. Opt. Quantum Electron. 2021, 53, 455. [Google Scholar] [CrossRef]
- Jabban, A.; Haese, S.; Helard, M. Theoretical and experimental optimization of DMT-based visible light communication under lighting constraints. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar]
- Ying, K.; Qian, H.; Baxley, R.J.; Yao, S. Joint optimization of precoder and equalizer in MIMO VLC systems. IEEE J. Sel. Areas Commun. 2015, 33, 1949–1958. [Google Scholar] [CrossRef]
- Hameed, S.M.; Abdulsatar, S.M.; Sabri, A.A. BER Comparison and Enhancement of Different Optical OFDM for VLC. Int. J. Intell. Eng. Syst. 2021, 14, 326–336. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Alves, L.N.; Zvanovec, S.; Khalighi, M.A. Visible Light Communications: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Huang, Y.; Han, D.; Zhang, M.; Zhu, Y.; Wang, L. BiGRU-Based Adaptive Receiver for Indoor DCO-OFDM Visible Light Communication. Photonics 2023, 10, 960. [Google Scholar] [CrossRef]
- Heidari, M.; Akbari, M.; Olyaee, S. Investigating and Improving the Efficiency of Space-time Codes in Visible light Communication Systems based on a Multi-input-multi-output Channel Model. Recent Adv. Electr. Electron. Eng. 2024, 17, 687–697. [Google Scholar] [CrossRef]
- Shi, X.; Leung, S.H.; Min, J. Adaptive least squares channel estimation for visible light communications based on tap detection. Opt. Commun. 2020, 467, 125712. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Xu, Y.; Wei, Z.; Yuan, S.; Lin, P.; Wu, H.; Lei, W.; Fang, J.; Chen, Z. A fast and high-accuracy real-time visible light positioning system based on single LED lamp with a beacon. IEEE Photonics J. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Menéndez, J.M.; Steendam, H. On the optimisation of illumination LEDs for VLP systems. Photonics 2022, 9, 750. [Google Scholar] [CrossRef]
- Rekkas, V.P.; Sotiroudis, S.; Plets, D.; Joseph, W.; Goudos, S.K. Visible Light Positioning: A Machine Learning Approach. In Proceedings of the 2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Ioannina, Greece, 23–25 September 2022; pp. 1–5. [Google Scholar]
- Palitharathna, K.W.; Suraweera, H.A.; Godaliyadda, R.I.; Herath, V.R.; Ding, Z. Neural network-based blockage prediction and optimization in lightwave power transfer-enabled hybrid VLC/RF systems. IEEE Internet Things J. 2024, 11, 5237–5248. [Google Scholar] [CrossRef]
- Bastiaens, S.; Alijani, M.; Joseph, W.; Plets, D. Visible light positioning as a next-generation indoor positioning technology: A tutorial. IEEE Commun. Surv. Tutor. 2024. [Google Scholar] [CrossRef]
- Cincotti, G. Optical OFDM Based on the Fractional Fourier Transform. In Proceedings of the Next-Generation Optical Communication: Components, Sub-Systems, and Systems, San Francisco, CA, USA, 21–26 January 2012; Volume 8284, pp. 60–64. [Google Scholar]
- Martone, M. A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels. IEEE Trans. Commun. 2001, 49, 1011–1020. [Google Scholar] [CrossRef]
- Chawla, T.; Kansal, A. Intercarrier interference analysis for massive MIMO fractional Fourier transform-OFDM systems over time-varying channels. Int. J. Commun. Syst. 2020, 33, e4586. [Google Scholar] [CrossRef]
- Mallaiah, R.; Mani, V. A novel OTFS system based on DFrFT-OFDM. IEEE Wirel. Commun. Lett. 2022, 11, 1156–1160. [Google Scholar] [CrossRef]
- Jia, S.; Zou, S.; Zhang, X.; Tian, D.; Da, L. Multi-block Sparse Bayesian learning channel estimation for OFDM underwater acoustic communication based on fractional Fourier transform. Appl. Acoust. 2022, 192, 108721. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Sabbaghian, M. Near-optimal angle of transform in FRFT-OFDM systems based on ICI analysis. IEEE Trans. Veh. Technol. 2015, 65, 5777–5783. [Google Scholar] [CrossRef]
- Yang, A.; Liu, X.; Chen, X. A FrFT based method for measuring chromatic dispersion and SPM in optical fibers. Opt. Fiber Technol. 2017, 34, 59–64. [Google Scholar] [CrossRef]
- Mendlovic, D.; Ozaktas, H.M.; Lohmann, A.W. Self Fourier functions and fractional Fourier transforms. Opt. Commun. 1994, 105, 36–38. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, P.; Wang, Y. A New Underwater Acoustic Communication System Based on Fractional Fourier Transform. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 413–418. [Google Scholar]
- Ozaktas, H.M.; Arikan, O.; Kutay, M.A.; Bozdagt, G. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 1996, 44, 2141–2150. [Google Scholar] [CrossRef]
- Pei, S.C.; Ding, J.J. Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 2000, 48, 1338–1353. [Google Scholar]
- Pei, S.C.; Yeh, M.H.; Tseng, C.C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. Signal Process. 1999, 47, 1335–1348. [Google Scholar]
- Pei, S.C.; Yeh, M.H. Improved discrete fractional Fourier transform. Opt. Lett. 1997, 22, 1047–1049. [Google Scholar] [CrossRef]
- Yeh, M.H.; Pei, S.C. A method for the discrete fractional Fourier transform computation. IEEE Trans. Signal Process. 2003, 51, 889–891. [Google Scholar]
- Venturini, I.; Duhamel, P. Reality Preserving Fractional Transforms [Signal Processing Applications]. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004; Volume 5, p. V–205. [Google Scholar]
- Lang, J. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform. Opt. Commun. 2012, 285, 2584–2590. [Google Scholar] [CrossRef]
- Nassiri, M.; Baghersalimi, G.; Ghassemlooy, Z. Optical OFDM based on the fractional Fourier transform for an indoor VLC system. Appl. Opt. 2021, 60, 2664–2671. [Google Scholar] [CrossRef]
- Chen, E.; Chu, C. Single-carrier fractional Fourier domain equalization system with zero padding for fast time-varying channels. EURASIP J. Wirel. Commun. Netw. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Kamalakis, T.; Walewski, J.W.; Ntogari, G.; Mileounis, G. Empirical Volterra-series modeling of commercial light-emitting diodes. J. Light. Technol. 2011, 29, 2146–2155. [Google Scholar] [CrossRef]
- Qian, H.; Yao, S.; Cai, S.; Zhou, T. Adaptive postdistortion for nonlinear LEDs in visible light communications. IEEE Photonics J. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Ying, K.; Yu, Z.; Baxley, R.J.; Qian, H.; Chang, G.K.; Zhou, G.T. Nonlinear distortion mitigation in visible light communications. IEEE Wirel. Commun. 2015, 22, 36–45. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Li, S.; Gao, Q.; Gong, C.; Xu, Z. Volterra-Based Nonlinear Equalization for Nonlinearity Mitigation in Organic VLC. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 616–621. [Google Scholar]
- Li, X.; Gao, Q.; Gong, C.; Xu, Z. Nonlinearity Mitigation for VLC with an Artificial Neural Network Based Equalizer. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Stepniak, G.; Siuzdak, J.; Zwierko, P. Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE. IEEE Photonics Technol. Lett. 2013, 25, 1597–1600. [Google Scholar] [CrossRef]
- Ling, X.; Li, S.; Ge, P.; Wang, J.; Chi, N.; Gao, X. Optimal DCO-OFDM signal shaping with double-sided clipping in visible light communications. Opt. Express 2020, 28, 30391–30409. [Google Scholar] [CrossRef]
- Jain, S.; Mitra, R.; Bhatia, V. On BER analysis of nonlinear VLC systems under ambient light and imperfect/outdated CSI. OSA Contin. 2020, 3, 3125–3140. [Google Scholar] [CrossRef]
- Miao, P.; Yin, W.; Peng, H.; Yao, Y. Study of the performance of deep learning-based channel equalization for indoor visible light communication systems. Photonics 2021, 8, 453. [Google Scholar] [CrossRef]
- Ling, X.; Zhang, X.; Sun, J.; Ge, P.; Wang, J.; Zhao, C.; Gao, X. When Hammerstein meets wiener: Nonlinearity modeling for end-to-end visible light communication links. IEEE Trans. Commun. 2022, 71, 310–323. [Google Scholar] [CrossRef]
- Tsonev, D.; Sinanovic, S.; Haas, H. Complete modeling of nonlinear distortion in OFDM-based optical wireless communication. J. Light. Technol. 2013, 31, 3064–3076. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Modulation type | QAM |
Total number of SCs | 128 |
Number of data SCs | 64 |
Number of ZP samples | 16 |
Maximum value of current, | 1 A |
DC-bias current, | 0.55 A |
Number of light-emitting diode (LEDs) | 4 |
Room size | |
Height of receiver | 0.8 m |
Modulating bandwidth of LED, | 4.5 MHz |
Total bandwidth of OFDM, B | 5 MHz |
Semiangle at half power, | |
PD’s FOV, | |
Active area of PD, A | |
Responsivity of PD, | 0.6 A/W |
TIA gain, | 50 dB |
Specific Locations | Localization Errors | Positioning Accuracy Improvement |
---|---|---|
(0.5, 0.5, 0.8) | 3.09 cm | 0.74 cm |
(1, 1, 0.8) | 6.07 cm | 1.46 cm |
(1.5, 1.5, 0.8) | 9.12 cm | 2.18 cm |
(2, 2, 0.8) | 12.14 cm | 2.93 cm |
(2.5, 2.5, 0.8) | 15.19 cm | 3.63 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, Z.; Yu, J. Performance Improvement by FRFT-OFDM for Visible Light Communication and Positioning Systems. Photonics 2024, 11, 1147. https://doi.org/10.3390/photonics11121147
Li W, Wang Z, Yu J. Performance Improvement by FRFT-OFDM for Visible Light Communication and Positioning Systems. Photonics. 2024; 11(12):1147. https://doi.org/10.3390/photonics11121147
Chicago/Turabian StyleLi, Wenyang, Zixiong Wang, and Jinlong Yu. 2024. "Performance Improvement by FRFT-OFDM for Visible Light Communication and Positioning Systems" Photonics 11, no. 12: 1147. https://doi.org/10.3390/photonics11121147
APA StyleLi, W., Wang, Z., & Yu, J. (2024). Performance Improvement by FRFT-OFDM for Visible Light Communication and Positioning Systems. Photonics, 11(12), 1147. https://doi.org/10.3390/photonics11121147