A Low-Cost Modulated Laser-Based Imaging System Using Square Ring Laser Illumination for Depressing Underwater Backscatter
<p>Schematics of the underwater optical imaging process.</p> "> Figure 2
<p>(<b>a</b>) Schematics (<b>top</b>) and actual figure (<b>bottom</b>) of the modulated laser illumination system for underwater imaging. (<b>b</b>) Underwater experiment field figure of the modulated laser illumination system for underwater imaging (<b>bottom</b>) and square ring laser spot (<b>top</b>).</p> "> Figure 3
<p>(<b>a</b>) The block chain of the optoelectronic system. (<b>b</b>) The diagram (<b>left</b>) and actual figure (<b>right</b>) of the electrical control system based on STM32. (<b>c</b>) Flow chart of dedicated firmware.</p> "> Figure 4
<p>Comparison of original images captured by the camera with the illumination of the modulated laser (<b>top</b>) and the diverging laser (<b>bottom</b>) at different distances.</p> "> Figure 5
<p>Effects of the relationship between the FOV and MLDA on imaging: (<b>a</b>) FOV <math display="inline"><semantics> <mrow> <mo><</mo> </mrow> </semantics></math> MLDA, (<b>b</b>) FOV = MLDA, and (<b>c</b>) FOV <math display="inline"><semantics> <mrow> <mo>></mo> </mrow> </semantics></math> MLDA.</p> "> Figure 6
<p>Comparison of original images captured by DS-2XC6244F and the MLIS at different distances.</p> "> Figure 7
<p>Comparison of images captured by the MLIS and enhanced with the optimized algorithm with the average UCIQUE improved from 0.428 to 0.925.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Modulated Laser-Based Imaging System (MLIS)
2.2. Electrical Control System
2.3. Imaging Quality Evaluation Metrics
3. Experiments
4. Results and Discussion
4.1. Comparison of the Modulated Laser and the Diverging Laser
4.2. Matching Effect of FOV and Modulated Laser Divergence Angle (MLDA)
4.3. Comparison of the MLIS with a Conventional Underwater Imaging Camera (DS-2XC6244F)
4.4. Enhancement with the CycleGAN-Based Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aguzzi, J.; Thomsen, L.; Flögel, S.; Robinson, N.J.; Picardi, G.; Chatzievangelou, D.; Bahamon, N.; Stefanni, S.; Grinyó, J.; Fanelli, E.; et al. New technologies for monitoring and upscaling marine ecosystem restoration in deep-sea environments. Engineering 2024, 34, 195–211. [Google Scholar] [CrossRef]
- Mariani, P.; Quincoces, I.; Haugholt, K.H.; Chardard, Y.; Visser, A.W.; Yates, C.; Piccinno, G.; Reali, G.; Risholm, P.; Thielemann, J.T. Range-gated imaging system for underwater monitoring in ocean environment. Sustainability 2018, 11, 162. [Google Scholar] [CrossRef]
- Noguchi, Y.; Sekimori, Y.; Maki, T. Guidance method of underwater vehicle for rugged seafloor observation in close proximity. J. Field Robot. 2024, 41, 314–326. [Google Scholar] [CrossRef]
- Leng, Z.; Zhang, J.; Ma, Y.; Zhang, J. Underwater Topography Inversion in Liaodong Shoal Based on GRU Deep Learning Model. Remote Sens. 2020, 12, 4068. [Google Scholar] [CrossRef]
- Mandlburger, G. A review of active and passive optical methods in hydrography. Int. Hydrogr. Rev. 2022, 28, 8–52. [Google Scholar] [CrossRef]
- Darodes de Tailly, J.B.; Keitel, J.; Owen, M.A.; Alcaraz-Calero, J.M.; Alexander, M.E.; Sloman, K.A. Monitoring methods of feeding behaviour to answer key questions in penaeid shrimp feeding. Rev. Aquac. 2021, 13, 1828–1843. [Google Scholar] [CrossRef]
- Wang, Y.; Xiaoning, Y.; An, D.; Wei, Y. Underwater image enhancement and marine snow removal for fishery based on integrated dual-channel neural network. Comput. Electron. Agric. 2021, 186, 106182. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Yang, X.; Liu, Y.; Liu, B.; Zhang, J.; Gao, K.; Meng, D.; Ding, Y. Mapping China’s offshore mariculture based on dense time-series optical and radar data. Int. J. Digit. Earth 2022, 15, 1326–1349. [Google Scholar] [CrossRef]
- Raveendran, S.; Patil, M.D.; Birajdar, G.K. Underwater image enhancement: A comprehensive review, recent trends, challenges and applications. Artif. Intell. Rev. 2021, 54, 5413–5467. [Google Scholar] [CrossRef]
- Chemisky, B.; Menna, F.; Nocerino, E.; Drap, P. Underwater Survey for Oil and Gas Industry: A Review of Close Range Optical Methods. Remote Sens. 2021, 13, 2789. [Google Scholar] [CrossRef]
- Hao, Y.; Yuan, Y.; Zhang, H.; Zhang, Z. Underwater Optical Imaging: Methods, Applications and Perspectives. Remote Sens. 2024, 16, 3773. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, C.; Liu, Y.; Wang, S.; Huang, F. Underwater optical imaging: Key technologies and applications review. IEEE Access 2021, 9, 85500–85514. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Sun, L.; Yang, Y.; Zhou, Y. Underwater 3D deblurring-gated range-intensity correlation imaging. Opt. Lett. 2020, 45, 1455–1458. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, X.; Zhang, Y.; Sun, L.; Lei, P.; Yang, Y.; Chen, J.; He, J.; Zhou, Y. Range-intensity-profile prior dehazing method for underwater range-gated imaging. Opt. Express 2021, 29, 7630–7640. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, Z.; Li, C.; Wang, H.; Zhai, Y.; Dong, L. A laser field synchronous scanning imaging system for underwater long-range detection. Opt. Laser Technol. 2024, 175, 110849. [Google Scholar] [CrossRef]
- Zhuang, P.; Li, C.; Wu, J. Bayesian retinex underwater image enhancement. Eng. Appl. Artif. Intell. 2021, 101, 104171. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, T.; Chu, W.; Zhang, W.-S. Underwater image restoration via backscatter pixel prior and color compensation. Eng. Appl. Artif. Intell. 2022, 111, 104785. [Google Scholar] [CrossRef]
- Menon, A.; Aarthi, R. A Hybrid Approach for Underwater Image Enhancement using CNN and GAN. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 742–748. [Google Scholar] [CrossRef]
- Cong, R.; Yang, W.; Zhang, W.; Li, C.; Guo, C.L.; Huang, Q.; Kwong, S. PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with Dual-Discriminators. IEEE Trans. Image Process. 2023, 32, 4472–4485. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, T.; Zhang, W. Underwater vision enhancement technologies: A comprehensive review, challenges, and recent trends. Appl. Intell. 2023, 53, 3594–3621. [Google Scholar] [CrossRef]
- Du, R.; Li, W.; Chen, S.; Li, C.; Zhang, Y. Unpaired Underwater Image Enhancement Based on CycleGAN. Information 2022, 13, 1. [Google Scholar] [CrossRef]
- Dubreuil, M.; Delrot, P.; Leonard, I.; Alfalou, A.; Brosseau, C.; Dogariu, A. Exploring underwater target detection by imaging polarimetry and correlation techniques. Appl. Opt. 2013, 52, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar]
Methods | 2 m | 4 m | 6 m | 7 m | 8 m | 9 m | 10 m |
---|---|---|---|---|---|---|---|
DS-2XC6244F | 15.588 | 13.815 | 9.41 | 6.923 | 6.589 | 6.861 | 6.946 |
MLIS | 18.253 | 15.263 | 11.287 | 9.4 | 8.078 | 7.67 | 9.295 |
Methods | 2 m | 4 m | 6 m | 7 m | 8 m | 9 m | 10 m |
---|---|---|---|---|---|---|---|
MLIS | 0.408 | 0.364 | 0.451 | 0.477 | 0.481 | 0.468 | 0.538 |
Enhanced MLIS | 0.768 | 0.637 | 0.693 | 1.195 | 0.895 | 0.898 | 1.099 |
Methods | 2 m | 4 m | 6 m | 7 m | 8 m | 9 m | 10 m |
---|---|---|---|---|---|---|---|
MLIS | 18.253 | 15.263 | 11.287 | 9.4 | 8.078 | 7.67 | 9.295 |
Enhanced MLIS | 18.192 | 16.269 | 13.745 | 11.414 | 12.169 | 11.292 | 12.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Yuan, Y.; Zhang, H.; Zhang, S.; Zhang, Z. A Low-Cost Modulated Laser-Based Imaging System Using Square Ring Laser Illumination for Depressing Underwater Backscatter. Photonics 2024, 11, 1070. https://doi.org/10.3390/photonics11111070
Hao Y, Yuan Y, Zhang H, Zhang S, Zhang Z. A Low-Cost Modulated Laser-Based Imaging System Using Square Ring Laser Illumination for Depressing Underwater Backscatter. Photonics. 2024; 11(11):1070. https://doi.org/10.3390/photonics11111070
Chicago/Turabian StyleHao, Yansheng, Yaoyao Yuan, Hongman Zhang, Shao Zhang, and Ze Zhang. 2024. "A Low-Cost Modulated Laser-Based Imaging System Using Square Ring Laser Illumination for Depressing Underwater Backscatter" Photonics 11, no. 11: 1070. https://doi.org/10.3390/photonics11111070
APA StyleHao, Y., Yuan, Y., Zhang, H., Zhang, S., & Zhang, Z. (2024). A Low-Cost Modulated Laser-Based Imaging System Using Square Ring Laser Illumination for Depressing Underwater Backscatter. Photonics, 11(11), 1070. https://doi.org/10.3390/photonics11111070