Thomson Scattering and Radiation Reaction from a Laser-Driven Electron
<p>Schematic representation of the studied process. Initially, the laser and the electron bunch are counter-propagating. The laser moves towards the positive Z-axis, and the electron bunch moves initially in the opposite direction. The upper figure shows the initial position with the electron bunch centered at <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>00</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and the laser pulse peak at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>24</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (19.2 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>). Neglecting the interaction before this point is a reasonable assumption. Since the electron’s initial speed is very close to <span class="html-italic">c</span>, the electron would cross the laser pulse close to <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>12</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. However, for extreme intensities, as we will describe, the trajectory of the electrons will be significantly modified.</p> "> Figure 2
<p>Schematic representation of the TS radiation pattern. Electrons driven exclusively by the laser polarization radiate mainly in the YZ plane (<b>a</b>). However, electrons driven by the laser magnetic field radiate mostly in the XY plane (<b>b</b>). Comparing Thomson radiation along these two planes provides relevant information on RR-induced dynamics. The YZ pattern, driven by the laser electric field, corresponds to even harmonics of the fundamental frequency. The XY radiation, due to coupling with the laser magnetic field, also shows strong even harmonics. Relativistic distortion of these donut shapes is not depicted for simplicity.</p> "> Figure 3
<p>Spectral location of the Thomson scattered main peak (i.e., <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>norm</mi> </msub> <mo>=</mo> <msub> <mi>ω</mi> <mi>peak</mi> </msub> <mo>/</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>), X-polarization, spectra averaged for an electron sample aimed at the central part of the <math display="inline"><semantics> <msub> <mi>TEM</mi> <mn>00</mn> </msub> </semantics></math> laser pulse, including RR, as a function of <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>s</mi> </msub> </semantics></math>. Scattering is computed in the YZ plane. Notice the extremely fast increase in the (blue-shifted) peak frequency with the scattering angle as the angle approaches <math display="inline"><semantics> <mi>π</mi> </semantics></math> (this corresponds to light scattered counter-propagating with respect to the laser).</p> "> Figure 4
<p>Integrated spectral power, X-polarization in red and the other orthogonal quadrature in blue, averaged for an electron sample aimed at the central part of the <math display="inline"><semantics> <msub> <mi>TEM</mi> <mn>00</mn> </msub> </semantics></math> laser pulse, including RR, as a function of the scattering angle. Scattering plane is YZ. Notice that for a scattering angle of <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, the light is nearly completely polarized along the X-axis, and notice how the two orthogonal contributions become more balanced as the scattering angle approaches <math display="inline"><semantics> <mi>π</mi> </semantics></math>.</p> "> Figure 5
<p>Schematic representation of the angles where the TS spectra have been calculated. Labels (<b>a</b>–<b>i</b>) refer to the directions of observation of the spectra shown in the next figure.</p> "> Figure 6
<p>Averaged TS spectra including RR for several scattering angles in the YZ plane; see main text for details. (<b>a</b>–<b>i</b>) Scattering angles are, respectively, <math display="inline"><semantics> <mrow> <mn>64</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>72</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>80</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>88</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>96</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>104</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>120</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>126</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>127</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>. Observe that the last one, (<b>i</b>), corresponds to scattering almost perfectly counter-propagating to the laser pulse. The colors red and blue are the same as in the previous figure, with quadrature <math display="inline"><semantics> <msub> <mi>q</mi> <mn>1</mn> </msub> </semantics></math> in red (polarization along the electric field) and quadrature <math display="inline"><semantics> <msub> <mi>q</mi> <mn>2</mn> </msub> </semantics></math> in blue.</p> "> Figure 7
<p>Projection of a sample trajectory onto the XZ plane, including RR. The electron is initially located at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, moves from right to left, strongly interacts with the laser pulse around <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>12</mn> </mrow> </semantics></math>, and gets deflected, eventually becoming a free electron. The center of the laser pulse was initially at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>24</mn> </mrow> </semantics></math> and propagates from left to right along the Z axis.</p> "> Figure 8
<p>Time evolution of the relativistic <math display="inline"><semantics> <mi>γ</mi> </semantics></math> factor (<b>a</b>) and the normalized velocity (<b>b</b>) for the sample trajectory in <a href="#photonics-11-00971-f007" class="html-fig">Figure 7</a>. The significant reduction in the <math display="inline"><semantics> <mi>γ</mi> </semantics></math> factor (i.e., the electron energy) due to RR is evident, along with substantial perturbations in <math display="inline"><semantics> <msub> <mi>v</mi> <mi>x</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>v</mi> <mi>z</mi> </msub> </semantics></math>. Color code in (<b>b</b>): red, green, and blue correspond to <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 9
<p>Radiated electric field at the detector in the time domain (<b>a</b>) and a close-up (<b>b</b>) displaying the spike structure under the radiated pulse envelope. The scattering plane is YZ. The electric field component parallel to the X axis is shown in red, while the other component is in blue. In (<b>b</b>), the component along the scattering vector is also displayed in green and is negligible compared to the other components.</p> "> Figure 10
<p>Asymptotic momentum components for counter-propagating 1 GeV electrons, including RR. (<b>a</b>–<b>c</b>) correspond respectively to the asymptotic distributions of <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>y</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>z</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math>. The sample contains 4096 electrons randomly distributed up to <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>. The laser is in the <math display="inline"><semantics> <msub> <mi>TEM</mi> <mn>00</mn> </msub> </semantics></math> mode, X polarized, with a peak intensity of <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>22</mn> </msup> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">W</mi> <mo>/</mo> <mi>cm</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>.</p> "> Figure 11
<p>Asymptotic kinetic energy for counter-propagating 1 GeV electrons with RR. The sample includes 4096 electrons randomly distributed up to <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> <mo>×</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>. The laser is in the <math display="inline"><semantics> <msub> <mi>TEM</mi> <mn>00</mn> </msub> </semantics></math> mode, X polarized, with a peak intensity of <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>22</mn> </msup> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">W</mi> <mo>/</mo> <mi>cm</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>. A strong reduction in kinetic energy is predicted under these conditions with RR. Contour plots of iso-energy show an approximate circular symmetry around the laser propagation axis.</p> "> Figure 12
<p>Integrated spectral power: X-polarization in red and the orthogonal quadrature (q2) in blue, averaged over electron samples (typically 2048 or 4096 at each scattering angle) aimed at the central part of the <math display="inline"><semantics> <msub> <mi>TEM</mi> <mn>00</mn> </msub> </semantics></math> laser pulse, including RR, as a function of the scattering angle. The scattering plane is YZ. Notice the rapid increase in integrated power with the scattering angle.</p> "> Figure 13
<p>Averaged TS spectra. The scattering plane is YZ. Scattering angles for (<b>a</b>–<b>i</b>) are respectively <math display="inline"><semantics> <mrow> <mn>64</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>68</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>72</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>76</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>80</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>84</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>88</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>92</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>96</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>. A spectrum extending up to <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>/</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>≥</mo> <mn>3000</mn> </mrow> </semantics></math> is obtained for <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>96</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>.</p> "> Figure 14
<p>Comparison of TS spectra (X-quadrature in red, q2-quadrature in blue) with (<b>a</b>) and without (<b>b</b>) RR. The scattering angle is <math display="inline"><semantics> <mrow> <mn>72</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>. The shape, amplitude, and power ratio of the two quadratures are altered by RR, which can help distinguish and detect RR signatures in the spectra. See more details in the main text.</p> "> Figure 15
<p>Projection of a sample trajectory onto the X-Z plane, including RR. The electron, initially at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, moves from right to left, interacts strongly with the laser pulse around <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>11</mn> </mrow> </semantics></math>, and is deflected nearly <math display="inline"><semantics> <msup> <mn>45</mn> <mo>∘</mo> </msup> </semantics></math> from its initial direction. Note the reversal in electron motion after deceleration (curly part moving towards the positive side of the <span class="html-italic">z</span>-axis).</p> "> Figure 16
<p>Time evolution of the relativistic <math display="inline"><semantics> <mi>γ</mi> </semantics></math> factor (<b>a</b>) and normalized velocity (<b>b</b>) for the trajectory shown in <a href="#photonics-11-00971-f015" class="html-fig">Figure 15</a>. The strong reduction in <math display="inline"><semantics> <mi>γ</mi> </semantics></math> due to RR is evident, along with substantial perturbations in <math display="inline"><semantics> <msub> <mi>v</mi> <mi>x</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>v</mi> <mi>z</mi> </msub> </semantics></math>, and to a lesser extent in <math display="inline"><semantics> <msub> <mi>v</mi> <mi>y</mi> </msub> </semantics></math>. Note that <math display="inline"><semantics> <msub> <mi>v</mi> <mi>z</mi> </msub> </semantics></math> reverses from counter-propagating to co-propagating at various points in the trajectory. In (<b>b</b>), the color code is as follows: red, green, and blue represent <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 17
<p>Radiated electric field at the detector in the time domain (<b>a</b>) and a close-up view (<b>b</b>) showing the structure of spikes under the radiated pulse envelope. The scattering plane is Y-Z. The electric field component parallel to the X-axis is shown in red, while the other component is shown in blue. In (<b>b</b>), the component along the scattering vector is also displayed (in green), which is negligible compared to the other components.</p> "> Figure 18
<p>Three-dimensional asymptotic distributions of <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math> (<b>a</b>), <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>y</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math> (<b>b</b>), and <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>z</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math> (<b>c</b>) as functions of the initial transverse position of the electrons. The panels show 4096 sample electrons, uniformly and randomly distributed up to <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 19
<p>Asymptotic distribution of <math display="inline"><semantics> <msub> <mi>E</mi> <mi>kin</mi> </msub> </semantics></math> projected onto the X-axis. The panel includes 4096 sample electrons, uniformly and randomly distributed up to <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> <mo>×</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. RR accounts for up to 98.5% loss of the initial kinetic energy for electrons near the center of the <math display="inline"><semantics> <msub> <mi>TEM</mi> <mn>00</mn> </msub> </semantics></math> mode laser axis.</p> "> Figure 20
<p>Averaged TS spectra. The scattering plane is YZ, and scattering angles for (<b>a</b>–<b>i</b>) are, respectively, <math display="inline"><semantics> <mrow> <mn>48</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>56</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>60</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>64</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>68</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>72</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>76</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>80</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>96</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>. An extremely broad spectrum, extending well beyond <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>/</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>≥</mo> <mn>15</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics></math>, is obtained for <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>96</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math>.</p> "> Figure 21
<p>Visualization of the scattering process on a unit momentum sphere. Each point on the sphere’s surface represents the asymptotic direction of electron scattering; dot colors indicate asymptotic energy, with dark blue representing minimum and red representing maximum energy.</p> "> Figure 22
<p>Projection of a sample trajectory onto the XZ plane, including RR. The electron is initially located at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, moves from right to left, strongly interacts with the laser pulse around <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>10.5</mn> </mrow> </semantics></math>, and is deflected at an angle larger than <math display="inline"><semantics> <msup> <mn>90</mn> <mo>∘</mo> </msup> </semantics></math> with respect to its initial direction. The <math display="inline"><semantics> <msub> <mi>v</mi> <mi>z</mi> </msub> </semantics></math> (or <math display="inline"><semantics> <msub> <mi>p</mi> <mi>z</mi> </msub> </semantics></math>) component changes from counter-propagating to co-propagating. The thick gray line indicates the initial position of the electron bunch. For this extreme intensity, the electron trajectory is reversed.</p> "> Figure 23
<p>Time evolution of the relativistic <math display="inline"><semantics> <mi>γ</mi> </semantics></math> factor (<b>a</b>) and of the normalized velocity (<b>b</b>) for the sample trajectory in <a href="#photonics-11-00971-f022" class="html-fig">Figure 22</a>. The strong reduction in <math display="inline"><semantics> <mi>γ</mi> </semantics></math> due to RR is apparent, as well as the large perturbations on <math display="inline"><semantics> <msub> <mi>v</mi> <mi>x</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>v</mi> <mi>z</mi> </msub> </semantics></math>, and also to some extent on <math display="inline"><semantics> <msub> <mi>v</mi> <mi>y</mi> </msub> </semantics></math>. Note that <math display="inline"><semantics> <msub> <mi>v</mi> <mi>z</mi> </msub> </semantics></math> asymptotically reverses from counter-propagating to co-propagating. Color code in (<b>b</b>) is red, green, and blue corresponding to <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 24
<p>Radiated electric field at the detector in the time domain (<b>a</b>) and a close-up (<b>b</b>) displaying the structure of the spikes under the radiated pulse envelope. The scattering plane is YZ. The electric field component parallel to the X axis is displayed in red, the other one in blue. In (<b>b</b>), the component along the scattering vector is also displayed (in green), showing it to be negligible compared to the other components. Note the highly asymmetric shape of the electric pulse envelope in this particular case.</p> "> Figure 25
<p>Three-dimensional asymptotic normalized momentum components for counter-propagating 1 GeV electrons. (<b>a</b>–<b>c</b>) correspond respectively to the asymptotic distributions of <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>y</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>z</mi> </msub> <mo>/</mo> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math>. The sample includes 4096 electrons randomly distributed up to <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> <mo>×</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, where <math display="inline"><semantics> <msub> <mi>w</mi> <mn>0</mn> </msub> </semantics></math> is 4 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m. The laser is in the <math display="inline"><semantics> <msub> <mi>TEM</mi> <mn>00</mn> </msub> </semantics></math> mode, X polarized, with a peak intensity of <math display="inline"><semantics> <mrow> <msup> <mn>10</mn> <mn>23</mn> </msup> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">W</mi> <mo>/</mo> <mi>cm</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>. Close to the center of the laser <math display="inline"><semantics> <msub> <mi>TEM</mi> <mn>00</mn> </msub> </semantics></math> mode, RR accounts for up to 99 percent energy loss.</p> "> Figure 26
<p>Asymptotic velocity distribution (final velocity of the electrons) depicted over the unit sphere. The pink circle is the equator of the unit sphere and the gray circle crosses the unit sphere poles. The value of the final velocity is given by the color scale. The orange dotted ribbon indicates the multiple trajectories with asymptotic speeds that have been reversed, i.e., points towards the positive values of <span class="html-italic">z</span>.</p> "> Figure 27
<p>A comparison of TS spectra (X-quadrature in red, q2-quadrature in blue) with (<b>a</b>) and without (<b>b</b>) RR. The scattering angle is <math display="inline"><semantics> <mrow> <mn>28</mn> <mi>π</mi> <mo>/</mo> <mn>128</mn> </mrow> </semantics></math> in this case. The shape, amplitude, and power ratio of the two quadratures are altered by RR, which can help distinguish and detect RR signatures in the spectra. See more details in the main text.</p> ">
Abstract
:1. Introduction
2. Formulation of the Model
2.1. Radiation Reaction for Relativistic Electrons: Landau–Lifshitz–Hartemann Approximation
2.2. Thomson Scattering Computational Details
- q is the charge of the particle.
- is the permittivity of free space.
- is the velocity of the charge at the retarded time.
- is the acceleration of the charge at the retarded time.
- c is the speed of light in a vacuum.
- is the distance between the charge and the observer or detector at the retarded time .
- is a unit vector pointing from the charge to the observer or detector (retarded position).
- is the retarded time, defined by the equation .
3. Studied Scenario
4. Case of a Relatively Large Laser Pulse Waist and a Not-So-Extreme Laser Intensity
5. Case of an Intense and Focused Laser Pulse
6. Case of an Extreme Laser Pulse with a Wide Focus
7. Case of a Record High Peak Intensity
8. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56, 219. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Yoon, J.W.; Kim, Y.G.; Choi, I.W.; Sung, J.H.; Lee, H.W.; Lee, S.K.; Nam, C.H. Realization of laser intensity over 1023 W/cm2. Optica 2021, 8, 630. [Google Scholar] [CrossRef]
- Jones, E.C.; Andreula, Z.P.; Walker, B.C. Polarizability, Stark shifts, and field ionization of highly charged ions in ultraintense lasers. Phys. Rev. A 2023, 107, 033102. [Google Scholar] [CrossRef]
- Sarachik, E.S.; Schappert, G.T. Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1970, 1, 2738. [Google Scholar] [CrossRef]
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely High- Intensity Laser Interactions with Fundamental Quantum Systems. Rev. Mod. Phys. 2012, 84, 1177. [Google Scholar] [CrossRef]
- Fedotov, A.; Ilderton, A.; Karbstein, F.; King, B.; Seipt, D.; Taya, H.; Torgrimsson, G. Advances in QED with intense background fields. Phys. Rep. 2023, 1010, 1–138. [Google Scholar]
- Tarbox, G.; Cunningham, E.; Sandberg, R.; Peatross, J.; Ware, M. Radiation from free electrons in a laser focus at 1018W/cm2: Modeling of photon yields and required focal conditions. J. Opt. Soc. Am. B 2015, 32, 743–750. [Google Scholar] [CrossRef]
- He, C.Z.; Longman, A.; Perez-Hernandez, J.A.; De Marco, M.; Salgado, C.; Zeraouli, G.; Gatti, G.; Roso, L.; Fedosejevs, R.; Hill, W.T. Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers. Opt. Express 2019, 27, 30020–30030. [Google Scholar] [CrossRef]
- Esarey, E.; Sprangle, P.; Krall, J. Laser acceleration of electrons in vacuum. Phys. Rev. E 1995, 52.5, 5443. [Google Scholar] [CrossRef]
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef]
- Erikson, W.L.; Singh, S. Polarization properties of Maxwell-Gaussian laser beams. Phys. Rev. E 1994, 49, 5778. [Google Scholar] [CrossRef]
- Breit, G.; Wheeler, J.A. Collision of Two Light Quanta. Phys. Rev. 1934, 46, 1087. [Google Scholar] [CrossRef]
- Reiss, H.R. Absorption of Light by Light. J. Math. Phys. 1962, 3, 59. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F.; Pastor, I.; Roso, L.; Castejón, F. Classical relativistic electron-field dynamics: Hamiltonian approach to radiation reaction. J. Phys. Comm. 2023, 7, 12500. [Google Scholar] [CrossRef]
- Pastor, I.; Pastor, I.; Roso, L.; Castejón, F. Classical Scattering of High-Energy Electrons off Ultra-Intense Laser Beams Taking into Account Radiation Reaction. Photonics 2024, 11, 113. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Pergamon Press: New York, NY, USA, 1975. [Google Scholar]
- Fulton, T.; Rohrlich, F. Classical radiation from a uniformly accelerated charge. Ann. Phys. 1960, 9, 499. [Google Scholar] [CrossRef]
- Rohrlich, F. The self-force and radiation reaction. Am. J. Phys. 2000, 68, 1109. [Google Scholar] [CrossRef]
- Rohrlich, F. The correct equation of motion of a classical point charge. Phys. Lett. A 2001, 283, 276. [Google Scholar] [CrossRef]
- Rohrlich, F. Classical Charged Particles, 3rd ed.; World Scientific: Singapore, 2007. [Google Scholar]
- Griffiths, D.J.; Szeto, E.W. Dumbbell model for the classical radiation reaction. Am. J. Phys. 1978, 46, 244–248. [Google Scholar] [CrossRef]
- Abbott, T.A.; Griffiths, D.J. Acceleration without radiation. Am. J. Phys. 1985, 53, 1203–1211. [Google Scholar] [CrossRef]
- Vranic, M.; Martins, J.L.; Vieira, J.; Fonseca, R.A.; Silva, L.O. All-optical radiation reaction at 1021 W/cm2. Phys. Rev. Lett. 2014, 113, 134801. [Google Scholar] [CrossRef]
- Thomas, A.G.R.; Ridgers, C.P.; Bulanov, S.S.; Griffin, B.J.; Mangles, S.P.D. Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam. Phys. Rev. X 2012, 2, 041004. [Google Scholar] [CrossRef]
- Vranic, M.; Grismayer, T.; Fonseca, R.A.; Silva, L.O. Quantum radiation reaction in head-on laser-electron beam interaction. New J. Phys. 2016, 18, 073035. [Google Scholar] [CrossRef]
- Gonoskov, A.; Blackburn, T.G.; Marklund, M.; Bulanov, S.S. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 2022, 94, 045001. [Google Scholar] [CrossRef]
- Poder, K.; Tamburini, M.; Sarri, G.; Di Piazza, A.; Kuschel, S.; Baird, C.D.; Behm, K.; Bohlen, S.; Cole, J.M.; Corvan, D.J.; et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 2018, 8, 031004. [Google Scholar] [CrossRef]
- Peatross, J.; Berrondo, M.; Smith, D.; Ware, M. Vector fields in a tight laser focus: Comparison of models. Optics Express 2017, 25, 13990–14007. [Google Scholar] [CrossRef]
- Tschentscher, T.; Bressler, C.; Grunert, J.; Madsen, A.; Mancuso, A.P.; Meyer, M.; Scherz, A.; Sinn, H.; Zastrau, U. Photon beam transport and scientific instruments at the European XFEL. Appl. Sci. 2017, 7, 592. [Google Scholar] [CrossRef]
- Bamber, C.; Boege, S.J.; Koffas, T.; Kotseroglou, T.; Melissinos, A.C.; Meyerhofer, D.D.; Reis, D.A.; Ragg, W.; Bula, C.; McDonald, K.T.; et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 1999, 60, 092004. [Google Scholar] [CrossRef]
- Mishra, S.K.; Sengupta, S. Exact solution of Hartemann–Luhmann equation of motion for a charged particle interacting with an intense electromagnetic wave/pulse. Eur. Phys. J. Spec. Top. 2021, 230, 4165–4174. [Google Scholar] [CrossRef]
- Plaja, L.; Roso, L.; Rzazewski, K.; Lewenstein, M. Generation of attosecond pulse trains during the reflection of a very intense laser on a solid surface. JOSA B 1998, 15, 1904–1911. [Google Scholar] [CrossRef]
- Von der Linde, D. Generation of high order optical harmonics from solid surfaces. Appl Phys. B Lasers Opt. 1999, 68, 315–319. [Google Scholar] [CrossRef]
- Rzazewski, K.; Plaja, L.; Roso, L.; von der Linde, D. Probe-field reflection on a plasma surface driven by a strong electromagnetic field. J. Phys. B Atomic Mol. Opt. Phys. 2000, 33, 2549–2558. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor, I.; Roso, L.; Álvarez-Estrada, R.F.; Castejón, F. Thomson Scattering and Radiation Reaction from a Laser-Driven Electron. Photonics 2024, 11, 971. https://doi.org/10.3390/photonics11100971
Pastor I, Roso L, Álvarez-Estrada RF, Castejón F. Thomson Scattering and Radiation Reaction from a Laser-Driven Electron. Photonics. 2024; 11(10):971. https://doi.org/10.3390/photonics11100971
Chicago/Turabian StylePastor, Ignacio, Luis Roso, Ramón F. Álvarez-Estrada, and Francisco Castejón. 2024. "Thomson Scattering and Radiation Reaction from a Laser-Driven Electron" Photonics 11, no. 10: 971. https://doi.org/10.3390/photonics11100971
APA StylePastor, I., Roso, L., Álvarez-Estrada, R. F., & Castejón, F. (2024). Thomson Scattering and Radiation Reaction from a Laser-Driven Electron. Photonics, 11(10), 971. https://doi.org/10.3390/photonics11100971