Switchable Dual-Wavelength Fiber Laser with Narrow-Linewidth Output Based on Parity-Time Symmetry System and the Cascaded FBG
<p>Experimental structure of the proposed PT-symmetric fiber laser.</p> "> Figure 2
<p>Schematic diagram of non-reciprocal light transmission in a dual-physical ring PT-symmetric structure.</p> "> Figure 3
<p>Trend of the enhancement factor G with gain ratio variation.</p> "> Figure 4
<p>(<b>a</b>) Dual wavelength spectrum of laser output. (<b>b</b>) The output spectra of the laser’s dual wavelength at 6-minute intervals over 60 min; (<b>c</b>,<b>d</b>) the wavelength and power stability of λ<sub>1</sub> and λ<sub>2</sub>.</p> "> Figure 5
<p>Output laser spectra. (<b>a</b>,<b>b</b>) Output laser spectra; (<b>c</b>,<b>d</b>) spectral fluctuations within 60 min. (<b>e</b>,<b>f</b>) wavelength and power fluctuations for λ<sub>1</sub> and λ<sub>2</sub>.</p> "> Figure 6
<p>Corresponding relationship between pump power and laser output of (<b>a</b>) λ<sub>1</sub>, (<b>b</b>) λ<sub>2</sub>, and (<b>c</b>) a dual-wavelength test.</p> "> Figure 7
<p>Spectra of laser output under different conditions. (<b>a</b>,<b>b</b>) Output spectra without the PT-symmetric system; (<b>c</b>,<b>d</b>) output spectra without the 2 × 2 coupled sub-cavity; (<b>e</b>,<b>f</b>) spectra when PT symmetry was unbroken; (<b>g</b>,<b>h</b>) spectra when λ<sub>1</sub> and λ<sub>2</sub> were in the PT-broken phase.</p> "> Figure 8
<p>Frequency spectra stability of stable SLM operation at λ<sub>1</sub> and λ<sub>2</sub>.</p> "> Figure 9
<p>Measurement of the DW-EDFL linewidth: measurement results for (<b>a</b>) λ<sub>1</sub> and (<b>b</b>) λ<sub>2</sub>.</p> "> Figure 10
<p>Laser intensity noise. (<b>a</b>) Detector baseline noise; (<b>b</b>–<b>d</b>) intensity noise of λ<sub>1</sub>, λ<sub>2</sub>, and dual-wavelength operation.</p> "> Figure 11
<p>Phase noise of output laser (<b>a</b>) λ<sub>1</sub> and (<b>b</b>) λ<sub>2</sub>.</p> ">
Abstract
:1. Introduction
2. Working Structure and Experimental Principle
2.1. PT Symmetry
2.2. Laser Structure
2.3. Longitudinal Mode Selection Based on Dual-Physics Ring PT-Symmetric Structure
2.4. Switchable Wavelength Output Based on Birefringence Filtering and PC Adjustment
3. Experimental Results and Discussion
3.1. Laser Spectral Characterization and Stability Studies
3.2. Laser Longitudinal Modeling and Stability Study
3.3. The Measured Linewidth Characteristics Based on the Self-Heterodyne Method
3.4. RIN Measurement Based on the Direct Detection Method
3.5. Phase Noise Measurements Based on the Unbalanced Interferometer Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, W.; Schulzgen, A.; Amezcua, R.; Zhu, X.S.; Alam, S.U. Fiber lasers and their applications: Introduction. J. Opt. Soc. Am. B-Opt. Phys. 2017, 34, FLA1. [Google Scholar] [CrossRef]
- Al-Mashhadani, M.K.S.; Al-Mashhadani, T.F.; Goktas, H.H. Broadly tunable 40 GHz Brillouin frequency spacing multiwavelength Brillouin-Erbium fiber laser for DWDM. Opt. Commun. 2019, 451, 116–123. [Google Scholar] [CrossRef]
- Liu, D.; Ngo, N.Q.; Tjin, S.C.; Dong, X. A dual-wavelength fiber laser sensor system for measurement of temperature and strain. IEEE Photonics Technol. Lett. 2007, 19, 1148–1150. [Google Scholar] [CrossRef]
- Fotiadi, A.A.; Korobko, D.A.; Zolotovskii, I.O. Brillouin Lasers and Sensors: Trends and Possibilities. Optoelectron. Instrum. Data Process. 2023, 59, 66–76. [Google Scholar] [CrossRef]
- Jingguo, Z.; Ye, Y.; Chenghao, J.; Yu, L.; Zhengwei, Z. Research progress of on-chip integrated FMCW LiDAR (cover paper· invited). Infrared Laser Eng. 2024, 53, 20240239-1–20240239-17. [Google Scholar]
- Kaushal, H.; Kaddoum, G. Applications of Lasers for Tactical Military Operations. IEEE Access 2017, 5, 20736–20753. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, X.; Xu, S.; Zhang, H. Recent progress in multi-wavelength fiber lasers: Principles, status, and challenges. Chin. Opt. Lett. 2020, 18, 36–62. [Google Scholar] [CrossRef]
- Wang, L.; Sun, S.; Yan, W.; Qu, J.; Wang, Y. L-band switchable dual-wavelength, high-energy pulsed fiber laser. Infrared Laser Eng. 2021, 50, 20200370. [Google Scholar]
- Bianchetti, M.; Sierra-Hernandez, J.M.; Mata-Chavez, R.I.; Gallegos-Arellano, E.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Fernandez-Jaramillo, A.A.; Salceda-Delgado, G.; Rojas-Laguna, R. Switchable multi-wavelength laser based on a core-offset Mach-Zehnder interferometer with non-zero dispersion-shifted fiber. Opt. Laser Technol. 2018, 104, 49–55. [Google Scholar] [CrossRef]
- Sun, Z.; Ding, X.; Yin, B.; Lv, Y.; Lv, C.; Wang, M.; Wu, S. Tunable and switchable dual-wavelength SLM narrow-linewidth fiber laser with Lyot filter cascaded by double-ring cavity. Infrared Phys. Technol. 2024, 140, 105397. [Google Scholar] [CrossRef]
- Feng, X.H.; Sun, L.; Xiong, L.Y.; Liu, Y.G.; Yuan, S.H.; Kai, G.Y.; Dong, X.Y. Switchable and tunable dual-wavelength erbium-doped fiber laser based on one fiber Bragg grating. Opt. Fiber Technol. 2004, 10, 275–282. [Google Scholar] [CrossRef]
- Wang, D.N.; Tong, F.W.; Fang, X.H.; Jin, W.; Wai, P.K.A.; Gong, J.M. Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium. Opt. Commun. 2003, 228, 295–301. [Google Scholar] [CrossRef]
- Yin, B.; Feng, S.; Bai, Y.; Liu, Z.; Liang, L.; Liu, S.; Jian, S. Switchable Single-Polarization Dual-Wavelength Ring Laser Based on Structured PM-CFBG. IEEE Photonics Technol. Lett. 2014, 26, 1227–1230. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, X.; Liu, F.; Weng, Y.; Wang, R.; Ma, Y.; Rong, Q.; Hu, M.; Feng, Z. A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter. J. Opt. 2012, 14, 015402. [Google Scholar] [CrossRef]
- Wang, S.; Wan, J.; Lei, H.; Zhao, L.; Luo, H.; Li, J. High reflectivity, ultraflat-spectrum chirped fiber Bragg grating written using low energy UV femtosecond pulses. Opt. Laser Technol. 2024, 176, 111035. [Google Scholar] [CrossRef]
- Lu, B.-L.; Kang, J.; Qi, X.-Y.; Feng, X.-Q.; Hou, L.; Jiang, M.; Chen, H.-W.; Wang, Y.; Wang, K.-L.; Bai, J.-T. High-Stability Broadband Wavelength-Tunable Single-Frequency Ytterbium-Doped All-Fiber Compound Ring Cavity. IEEE Photonics J. 2017, 9, 1501708. [Google Scholar] [CrossRef]
- Zayhowski, J.J. Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities. Opt. Lett. 1990, 15, 431–433. [Google Scholar] [CrossRef]
- Lu, J.; Chen, S.; Bai, Y. Study on single-mode compound-ring fiber laser. Opt. Technol. 2005, 31, 212–213. [Google Scholar]
- Gao, M.; Yin, B.; Lv, Y.; Sang, G.; Hou, B.; Li, H.; Wang, M.; Wu, S. Tunable and Switchable Dual-Wavelength SLM Narrow-Linewidth Fiber Laser with a PMFBG-FP Filter Cascaded by Multi-Ring Cavity. Photonics 2022, 9, 756. [Google Scholar] [CrossRef]
- Feng, L.; Wong, Z.J.; Ma, R.-M.; Wang, Y.; Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 2014, 346, 972–975. [Google Scholar] [CrossRef]
- Hodaei, H.; Miri, M.-A.; Heinrich, M.; Christodoulides, D.N.; Khajavikhan, M. Parity-time-symmetric microring lasers. Science 2014, 346, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Wang, Y.; Wang, X.; Chen, J.; Zhou, X.; Zheng, W. Microstructure Lasers Based on Parity-Time Symmetry and Supersymmetry. Chin. J. Lasers 2021, 48, 1201005. [Google Scholar] [CrossRef]
- Li, L.; Cao, Y.; Zhi, Y.; Zhang, J.; Zou, Y.; Feng, X.; Guan, B.-O.; Yao, J. Polarimetric parity-time symmetry in a photonic system. Light Sci. Appl. 2020, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Seker, E.; Olyaeefar, B.; Dadashi, K.; Sengul, S.; Teimourpour, M.H.; El-Ganainy, R.; Demir, A. Single-mode quasi PT-symmetric laser with high power emission. Light-Sci. Appl. 2023, 12, 149. [Google Scholar] [CrossRef]
- Ramezani, H.; Kottos, T.; El-Ganainy, R.; Christodoulides, D.N. Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 2010, 82, 043803. [Google Scholar] [CrossRef]
- Kang, M.; Liu, F.; Li, J. Effective spontaneous PT-symmetry breaking in hybridized metamaterials. Phys. Rev. A 2013, 87, 053824. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Complex extension of quantum mechanics. Phys. Rev. Lett. 2002, 89, 270401. [Google Scholar] [CrossRef]
- El-Ganainy, R.; Makris, K.G.; Christodoulides, D.N.; Musslimani, Z.H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 2007, 32, 2632–2634. [Google Scholar] [CrossRef]
- Lv, Y.; Yin, B.; Chen, X.; Sang, G.; Liu, S.; Li, G.; Xiao, S.; Wang, M.; Wu, S. Tunable single frequency Hz-magnitude narrow linewidth Brillouin fiber laser based on parity-time symmetry. Opt. Express 2024, 32, 4974–4986. [Google Scholar] [CrossRef]
- Lv, Y.; Yin, B.; Wang, M.; Li, H.; Gao, M.; Sang, G.; Wang, Q.; Wu, S. Switchable and tunable orthogonal single-polarization dual wavelength SLM fiber laser based on parity-time symmetric system and PM-FBG. Opt. Laser Technol. 2023, 166, 109695. [Google Scholar] [CrossRef]
- Lv, Y.; Yin, B.; Gao, M.; Liu, S.; Li, H.; Wang, M.; Wu, S. Polarimetric parity-time symmetry fiber laser with switchable and tunable orthogonal single-polarization narrow-linewidth output. Results Phys. 2023, 51, 106637. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Yao, J. Tunable Microwave and Sub-Terahertz Generation Based on Frequency Quadrupling Using a Single Polarization Modulator. J. Light. Technol. 2013, 31, 1636–1644. [Google Scholar] [CrossRef]
- Dai, Z.; Fan, Z.; Li, P.; Yao, J. Widely Wavelength-Tunable Parity-Time Symmetric Single-Longitudinal-Mode Fiber Ring Laser With a Single Physical Loop. J. Light. Technol. 2021, 39, 2151–2157. [Google Scholar] [CrossRef]
- Krasnok, A.; Nefedkin, N.; Alu, A. Parity-Time Symmetry and Exceptional Points. IEEE Antennas Propag. Mag. 2021, 63, 110–121. [Google Scholar] [CrossRef]
- Haus, H.A.; Huang, W.P. Coupled-Mode Theory. Proc. IEEE 1991, 79, 1505–1518. [Google Scholar] [CrossRef]
- Zhao, X.-l.; Luo, F.; Zhang, Y.-m.; Meng, F.-y.; Dong, M.-l. A switchable dual-wavelength fiber laser based on phase-shifted fiber Bragg grating combined with Sagnac loop. Optoelectron. Lett. 2019, 15, 122–126. [Google Scholar] [CrossRef]
- Meng, X.; Wen, H.; Chen, H.; Sun, B.; Lu, B.; Bai, J. Wavelength switchable and tunable single-frequency narrow linewidth ytterbium doped fiber laser (Invited). Infrared Laser Eng. 2022, 51, 20220325. [Google Scholar]
- Xiao, H.; Wang, X.; Ma, Y.; Zhang, J. Linewidth Measurement of Narrow Fiber Laser Based on the DSHI. Opto-Electron. Eng. 2010, 37, 57–61. [Google Scholar]
- Hu, G.; Guo, Y.; Li, X.; Wang, Y. Noise measuring methods of semiconductor lasers. Semicond. Technol. 2001, 1, 53–56. [Google Scholar]
- Collin, R.; Chartier, T.; Besnard, P. Numerical investigation of relative intensity noise in frequency-doubled multimode fiber lasers. Opt. Commun. 2021, 485, 126724. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, F.; Han, W.; Zhang, L.; Cheng, D.; Bai, Z.; Wen, X. High-stability laser phase demodulation system based on 3*3 polarization maintaining fiber coupler. Opt. Precis. Eng. 2019, 27, 739–746. [Google Scholar]
- Kikuchi, K. Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit. IEEE J. Quantum Electron. 1989, 25, 684–688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Yin, B.; Lv, C.; Lv, Y.; Wang, Y.; Liang, H.; Wang, Q.; Wang, S.; Yu, F.; Zhang, Z.; et al. Switchable Dual-Wavelength Fiber Laser with Narrow-Linewidth Output Based on Parity-Time Symmetry System and the Cascaded FBG. Photonics 2024, 11, 946. https://doi.org/10.3390/photonics11100946
Wang K, Yin B, Lv C, Lv Y, Wang Y, Liang H, Wang Q, Wang S, Yu F, Zhang Z, et al. Switchable Dual-Wavelength Fiber Laser with Narrow-Linewidth Output Based on Parity-Time Symmetry System and the Cascaded FBG. Photonics. 2024; 11(10):946. https://doi.org/10.3390/photonics11100946
Chicago/Turabian StyleWang, Kaiwen, Bin Yin, Chao Lv, Yanzhi Lv, Yiming Wang, Hao Liang, Qun Wang, Shiyang Wang, Fengjie Yu, Zhong Zhang, and et al. 2024. "Switchable Dual-Wavelength Fiber Laser with Narrow-Linewidth Output Based on Parity-Time Symmetry System and the Cascaded FBG" Photonics 11, no. 10: 946. https://doi.org/10.3390/photonics11100946
APA StyleWang, K., Yin, B., Lv, C., Lv, Y., Wang, Y., Liang, H., Wang, Q., Wang, S., Yu, F., Zhang, Z., Li, Z., & Wu, S. (2024). Switchable Dual-Wavelength Fiber Laser with Narrow-Linewidth Output Based on Parity-Time Symmetry System and the Cascaded FBG. Photonics, 11(10), 946. https://doi.org/10.3390/photonics11100946