Addition of Bevacizumab to Chemotherapy and Its Impact on Clinical Efficacy in Cervical Cancer: A Systematic Review and Meta-Analysis
<p>PRISMA flow diagram of the study selection process.</p> "> Figure 2
<p>Forest plot showing efficacy of bevacizumab on PFS in cervical cancer patients. The meta-analysis results are illustrated as pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for PFS across the included studies. Each square represents an individual study’s effect size [<a href="#B1-pharmacy-12-00180" class="html-bibr">1</a>,<a href="#B2-pharmacy-12-00180" class="html-bibr">2</a>,<a href="#B11-pharmacy-12-00180" class="html-bibr">11</a>,<a href="#B12-pharmacy-12-00180" class="html-bibr">12</a>,<a href="#B17-pharmacy-12-00180" class="html-bibr">17</a>,<a href="#B18-pharmacy-12-00180" class="html-bibr">18</a>,<a href="#B45-pharmacy-12-00180" class="html-bibr">45</a>,<a href="#B47-pharmacy-12-00180" class="html-bibr">47</a>,<a href="#B49-pharmacy-12-00180" class="html-bibr">49</a>,<a href="#B51-pharmacy-12-00180" class="html-bibr">51</a>,<a href="#B52-pharmacy-12-00180" class="html-bibr">52</a>,<a href="#B53-pharmacy-12-00180" class="html-bibr">53</a>,<a href="#B55-pharmacy-12-00180" class="html-bibr">55</a>,<a href="#B56-pharmacy-12-00180" class="html-bibr">56</a>]. The horizontal lines show 95% CIs, and the diamond represents the overall pooled estimate (0.77 [0.58–0.96]). The I<sup>2</sup> statistic (58%) indicates heterogeneity across the studies.</p> "> Figure 3
<p>Forest plot showing efficacy of bevacizumab on PFS in metastatic (stage IVB) cervical cancer patients. The meta-analysis results are illustrated as pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for PFS in stage IVB patients across the included studies. Each square represents an individual study’s effect size [<a href="#B2-pharmacy-12-00180" class="html-bibr">2</a>,<a href="#B5-pharmacy-12-00180" class="html-bibr">5</a>,<a href="#B11-pharmacy-12-00180" class="html-bibr">11</a>,<a href="#B18-pharmacy-12-00180" class="html-bibr">18</a>,<a href="#B43-pharmacy-12-00180" class="html-bibr">43</a>,<a href="#B47-pharmacy-12-00180" class="html-bibr">47</a>,<a href="#B49-pharmacy-12-00180" class="html-bibr">49</a>,<a href="#B53-pharmacy-12-00180" class="html-bibr">53</a>,<a href="#B55-pharmacy-12-00180" class="html-bibr">55</a>,<a href="#B56-pharmacy-12-00180" class="html-bibr">56</a>]. The horizontal lines show 95% CIs, and the diamond represents the overall pooled estimate (0.69 [0.54–0.79]). The I<sup>2</sup> statistic (48.51%) indicates heterogeneity across the studies.</p> "> Figure 4
<p>Forest plot showing efficacy of bevacizumab on OS in cervical cancer patients. The meta-analysis results are illustrated as pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for OS patients across the included studies. Each square represents an individual study’s effect size [<a href="#B1-pharmacy-12-00180" class="html-bibr">1</a>,<a href="#B2-pharmacy-12-00180" class="html-bibr">2</a>,<a href="#B5-pharmacy-12-00180" class="html-bibr">5</a>,<a href="#B12-pharmacy-12-00180" class="html-bibr">12</a>,<a href="#B14-pharmacy-12-00180" class="html-bibr">14</a>,<a href="#B44-pharmacy-12-00180" class="html-bibr">44</a>,<a href="#B45-pharmacy-12-00180" class="html-bibr">45</a>,<a href="#B48-pharmacy-12-00180" class="html-bibr">48</a>,<a href="#B49-pharmacy-12-00180" class="html-bibr">49</a>,<a href="#B52-pharmacy-12-00180" class="html-bibr">52</a>,<a href="#B53-pharmacy-12-00180" class="html-bibr">53</a>,<a href="#B57-pharmacy-12-00180" class="html-bibr">57</a>]. The horizontal lines show 95% CIs, and the diamond represents the overall pooled estimate (0.63 [0.45–0.89]). The I<sup>2</sup> statistic (41%) indicates heterogeneity across the studies.</p> "> Figure 5
<p>Forest plot showing efficacy of bevacizumab on OS in metastatic (stage IVB) cervical cancer patients. The meta-analysis results are illustrated as pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for OS in stage IVB patients across the included studies. Each square represents an individual study’s effect size [<a href="#B2-pharmacy-12-00180" class="html-bibr">2</a>,<a href="#B5-pharmacy-12-00180" class="html-bibr">5</a>,<a href="#B14-pharmacy-12-00180" class="html-bibr">14</a>,<a href="#B48-pharmacy-12-00180" class="html-bibr">48</a>,<a href="#B49-pharmacy-12-00180" class="html-bibr">49</a>,<a href="#B53-pharmacy-12-00180" class="html-bibr">53</a>,<a href="#B57-pharmacy-12-00180" class="html-bibr">57</a>]. The horizontal lines show 95% CIs, and the diamond represents the overall pooled estimate (0.57 [0.46–0.73]). The I<sup>2</sup> statistic (47.21%) indicates heterogeneity across the studies.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Registration
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Outcomes
2.5. Study Selection and Data Extraction
2.6. Risk of Biasness
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Included Studies
3.2. Demographics
3.3. Efficacy Measures:
3.3.1. Efficacy of Bevacizumab on PFS in Cervical Cancer
3.3.2. Efficacy of Bevacizumab on PFS in Metastatic (Stage IVB) Cervical Cancer Patients
3.3.3. Efficacy of Bevacizumab on OS in Cervical Cancer
3.3.4. Efficacy of Bevacizumab on OS in Metastatic (Stage IVB) Cervical Cancer Patients
3.4. Risk of Bias Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kotaka, S.; Kondo, E.; Kawai, Y.; Okamoto, K.; Kishigami, Y.; Yamawaki, T.; Nagao, K.; Hirata, T.; Suzuki, S. Real-world efficacy and safety of bevacizumab single-maintenance therapy following platinum-paclitaxel chemotherapy plus bevacizumab in patients with advanced cervical cancer. J. Gynecol. Oncol. 2023, 34, e60. [Google Scholar] [CrossRef]
- Čerina, D.; Matković, V.; Katić, K.; Belac Lovasić, I.; Šeparović, R.; Canjko, I.; Jakšić, B.; Petrić-Miše, B.; Bajić, Ž.; Boban, M.; et al. Real-World Efficacy and Safety of Bevacizumab in the First-Line Treatment of Metastatic Cervical Cancer: A Cohort Study in the Total Population of Croatian Patients. J. Oncol. 2021, 2021, 2815623. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Gao, K.; Gu, S.; You, L.; Qian, S.; Tang, M.; Wang, J.; Chen, K.; Jin, M. Worldwide trends in cervical cancer incidence and mortality, with predictions for the next 15 years. Cancer 2021, 127, 4030–4039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2020, 32, 720–728. [Google Scholar] [CrossRef]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef]
- Marquina, G.; Manzano, A.; Casado, A. Targeted Agents in Cervical Cancer: Beyond Bevacizumab. Curr. Oncol. Rep. 2018, 20, 40. [Google Scholar] [CrossRef]
- Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018, 143 (Suppl. S2), 22–36. [Google Scholar] [CrossRef]
- Kumar, L.; Harish, P.; Malik, P.S.; Khurana, S. Chemotherapy and targeted therapy in the management of cervical cancer. Curr. Probl. Cancer 2018, 42, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.K. Updates in Cervical Cancer Treatment. Clin. Obstet. Gynecol. 2020, 63, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Skelton, W.P.t.; Castagno, J.; Cardenas-Goicoechea, J.; Daily, K.; Yeung, A.; Markham, M.J. Bevacizumab Eligibility in Patients with Metastatic and Recurrent Cervical Cancer: A Retrospective Review. Clin. Med. Insights Oncol. 2018, 12, 1179554918779587. [Google Scholar] [CrossRef]
- Lee, N.; Kim, S.I.; Lee, M.; Kim, H.S.; Kim, J.W.; Park, N.H.; Song, Y.S. Bevacizumab Efficacy and Recurrence Pattern of Persistent and Metastatic Cervical Cancer. In Vivo 2019, 33, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Kung, Y.H.; Chien-Fu Lin, J.; Chuang, C.M.; Wu, H.H.; Jiang, L.Y.; Shih, Y.C.; Wang, P.H.; Chen, Y.J. Synergistic therapeutic effect of low-dose bevacizumab with cisplatin-based chemotherapy for advanced or recurrent cervical cancer. J. Chin. Med. Assoc. 2021, 84, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Ortiz, A.; Plata, Y.; Alcaide, J.; Galeote, A.; Pajares, B.; Saez, E.; Alba, E.; Sánchez-Muñoz, A. Bevacizumab for recurrent, persistent or advanced cervical cancer: Reproducibility of GOG 240 study results in ”real world” patients. Clin. Transl. Oncol. 2018, 20, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Long, H.J., 3rd; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; et al. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 2014, 370, 734–743. [Google Scholar] [CrossRef]
- Grau, J.F.; Farinas-Madrid, L.; Oaknin, A. A randomized phase III trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage IVB), persistent, or recurrent carcinoma of the cervix: The BEATcc study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int. J. Gynecol. Cancer 2020, 30, 139–143. [Google Scholar] [CrossRef]
- Alldredge, J.K.; Tewari, K.S. Clinical Trials of Antiangiogenesis Therapy in Recurrent/Persistent and Metastatic Cervical Cancer. Oncologist 2016, 21, 576–585. [Google Scholar] [CrossRef]
- Redondo, A.; Colombo, N.; McCormack, M.; Dreosti, L.; Nogueira-Rodrigues, A.; Scambia, G.; Lorusso, D.; Joly, F.; Schenker, M.; Ruff, P.; et al. Primary results from CECILIA, a global single-arm phase II study evaluating bevacizumab, carboplatin and paclitaxel for advanced cervical cancer. Gynecol. Oncol. 2020, 159, 142–149. [Google Scholar] [CrossRef]
- Youn, S.H.; Kim, Y.J.; Seo, S.S.; Kang, S.; Lim, M.C.; Chang, H.K.; Park, S.Y.; Kim, J.Y. Effect of addition of bevacizumab to chemoradiotherapy in newly diagnosed stage IVB cervical cancer: A single institution experience in Korea. Int. J. Gynecol. Cancer 2020, 30, 764–771. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Li, X.; Hu, S.Y.; He, Y.; Hernandez Donoso, L.; Qu, K.Q.; Van Kriekinge, G.; Zhao, F.H. Systematic literature review of risk factors for cervical cancer in the Chinese population. Womens Health 2018, 14, 1745506518816599. [Google Scholar] [CrossRef]
- Rehman, A.U.; Khattak, M.; Mushtaq, U.; Latif, M.; Ahmad, I.; Rasool, M.F.; Shakeel, S.; Hayat, K.; Hussain, R.; Alhazmi, G.A.; et al. The impact of diabetes mellitus on the emergence of multi-drug resistant tuberculosis and treatment failure in TB-diabetes comorbid patients: A systematic review and meta-analysis. Front. Public. Health 2023, 11, 1244450. [Google Scholar] [CrossRef] [PubMed]
- Nakao, Y.; Tamauchi, S.; Yoshikawa, N.; Suzuki, S.; Kajiyama, H.; Kikkawa, F. Complete Response of Recurrent Small Cell Carcinoma of the Uterine Cervix to Paclitaxel, Carboplatin, and Bevacizumab Combination Therapy. Case Rep. Oncol. 2020, 13, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Takano, M.; Kikuchi, Y.; Kita, T.; Goto, T.; Yoshikawa, T.; Kato, M.; Watanabe, A.; Sasaki, N.; Miyamoto, M.; Inoue, H.; et al. Complete remission of metastatic and relapsed uterine cervical cancers using weekly administration of bevacizumab and paclitaxel/carboplatin. Onkologie 2009, 32, 595–597. [Google Scholar] [CrossRef]
- Isono-Nakata, R.; Tsubamoto, H.; Ueda, T.; Inoue, K.; Shibahara, H. Bevacizumab with metronomic chemotherapy of low-dose oral cyclophosphamide in recurrent cervical cancer: Four cases. Gynecol. Oncol. Rep. 2018, 24, 57–60. [Google Scholar] [CrossRef]
- Shoji, T.; Takeshita, R.; Mukaida, R.; Takatori, E.; Nagasawa, T.; Omi, H.; Sugiyama, T. Safe administration of bevacizumab combination chemotherapy for the patients with recurrent cervical cancer after pelvic radiotherapy: Two case reports. Mol. Clin. Oncol. 2018, 9, 173–177. [Google Scholar] [CrossRef]
- Schefter, T.E.; Winter, K.; Kwon, J.S.; Stuhr, K.; Balaraj, K.; Yaremko, B.P.; Small, W., Jr.; Gaffney, D.K. A phase II study of bevacizumab in combination with definitive radiotherapy and cisplatin chemotherapy in untreated patients with locally advanced cervical carcinoma: Preliminary results of RTOG 0417. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Mizuno, M.; Aoki, Y.; Sakurai, M.; Nishikawa, T.; Ueda, E.; Tajima, K.; Takeshima, N. A single-arm study evaluating bevacizumab, cisplatin, and paclitaxel followed by single-agent bevacizumab in Japanese patients with advanced cervical cancer. Jpn. J. Clin. Oncol. 2017, 47, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Junker, P.; Puppe, J.; Thangarajah, F.; Domröse, C.; Cepic, A.; Morgenstern, B.; Ratiu, D.; Hellmich, M.; Mallmann, P.; Wirtz, M. Neoadjuvant Therapy of Cervical Carcinoma with the Angiogenesis Inhibitor Bevacizumab: A Single-Centre Analysis. Geburtshilfe Frauenheilkd. 2018, 78, 768–774. [Google Scholar] [CrossRef]
- Chase, D.; Huang, H.Q.; Monk, B.J.; Ramondetta, L.M.; Penson, R.T.; Gil, K.; Landrum, L.M.; Leitao, M.; Oaknin, A.; Huh, W.K.; et al. Patient-reported outcomes at discontinuation of anti-angiogenesis therapy in the randomized trial of chemotherapy with bevacizumab for advanced cervical cancer: An NRG Oncology Group study. Int. J. Gynecol. Cancer 2020, 30, 596–601. [Google Scholar] [CrossRef]
- Mabuchi, S.; Yamamoto, M.; Murata, H.; Yokoe, T.; Hamanishi, J.; Terai, Y.; Imatake, H.; Mabuchi, Y.; Mori, T.; Kitada, F.; et al. Bevacizumab-associated events in Japanese women with cervical cancer: A multi-institutional survey of Obstetrical Gynecological Society of Kinki district, Japan. Int. J. Clin. Oncol. 2021, 26, 598–605. [Google Scholar] [CrossRef]
- Kim, N.; Choi, S.H.; Chang, J.S.; Kim, Y.T.; Kim, S.W.; Kim, G.M.; Kim, Y.B. Use of bevacizumab before or after radiotherapy increases the risk of fistula formation in patients with cervical cancer. Int. J. Gynecol. Cancer 2021, 31, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Shibata, T.; Iwata, T.; Nishio, S.; Takada, T.; Suzuki, S.; Horie, K.; Kudaka, W.; Kagabu, M.; Tanikawa, M.; et al. A randomized phase II/III trial of conventional paclitaxel and carboplatin with or without bevacizumab versus dose-dense paclitaxel and carboplatin with or without bevacizumab, in stage IVB, recurrent, or persistent cervical carcinoma (JCOG1311): Primary analysis. Gynecol. Oncol. 2021, 162, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Birrer, M.J.; Penson, R.T.; Huang, H.; Moore, D.H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; et al. Final survival analysis of topotecan and paclitaxel for first-line treatment of advanced cervical cancer: An NRG oncology randomized study. Gynecol. Oncol. 2023, 171, 141–150. [Google Scholar] [CrossRef]
- Fabri, V.A.; Queiroz, A.C.M.; Mantoan, H.; Sanches, S.M.; Guimarães, A.P.G.; Ribeiro, A.R.G.; Souza, R.P.; Maya, J.M.L.; Santos, E.S.; Castro, F.S.; et al. The Impact of Addition of Consolidation Chemotherapy to Standard Cisplatin-Based Chemoradiotherapy in Uterine Cervical Cancer: Matter of Distant Relapse. J. Oncol. 2019, 2019, 1217838. [Google Scholar] [CrossRef]
- Monk, B.J.; Huh, W.K.; Rosenberg, J.A.; Jacobs, I. Will bevacizumab biosimilars impact the value of systemic therapy in gynecologic cancers? Gynecol. Oncol. Res. Pract. 2017, 4, 7. [Google Scholar] [CrossRef]
- Tewari, K.S.; Sill, M.W.; Monk, B.J.; Penson, R.T.; Long, H.J., 3rd; Poveda, A.; Landrum, L.M.; Leitao, M.M.; Brown, J.; Reid, T.J.; et al. Prospective Validation of Pooled Prognostic Factors in Women with Advanced Cervical Cancer Treated with Chemotherapy with/without Bevacizumab: NRG Oncology/GOG Study. Clin. Cancer Res. 2015, 21, 5480–5487. [Google Scholar] [CrossRef]
- Seamon, L.G.; Java, J.J.; Monk, B.J.; Penson, R.T.; Brown, J.; Mannel, R.S.; Oaknin, A.; Leitao, M.M.; Eisenhauer, E.L.; Long, H.J.; et al. Impact of tumour histology on survival in advanced cervical carcinoma: An NRG Oncology/Gynaecologic Oncology Group Study. Br. J. Cancer 2018, 118, 162–170. [Google Scholar] [CrossRef]
- McLachlan, J.; Boussios, S.; Okines, A.; Glaessgen, D.; Bodlar, S.; Kalaitzaki, R.; Taylor, A.; Lalondrelle, S.; Gore, M.; Kaye, S.; et al. The Impact of Systemic Therapy Beyond First-line Treatment for Advanced Cervical Cancer. Clin. Oncol. 2017, 29, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D.; Viviano, D.; Powell, M.A.; Gibb, R.K.; Mutch, D.G.; Grigsby, P.W.; Rader, J.S. Bevacizumab combination therapy in heavily pretreated, recurrent cervical cancer. Gynecol. Oncol. 2006, 103, 489–493. [Google Scholar] [CrossRef]
- Monk, B.J.; Sill, M.W.; Burger, R.A.; Gray, H.J.; Buekers, T.E.; Roman, L.D. Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: A gynecologic oncology group study. J. Clin. Oncol. 2009, 27, 1069–1074. [Google Scholar] [CrossRef]
- Zighelboim, I.; Wright, J.D.; Gao, F.; Case, A.S.; Massad, L.S.; Mutch, D.G.; Powell, M.A.; Thaker, P.H.; Eisenhauer, E.L.; Cohn, D.E.; et al. Multicenter phase II trial of topotecan, cisplatin and bevacizumab for recurrent or persistent cervical cancer. Gynecol. Oncol. 2013, 130, 64–68. [Google Scholar] [CrossRef]
- Schefter, T.; Winter, K.; Kwon, J.S.; Stuhr, K.; Balaraj, K.; Yaremko, B.P.; Small, W., Jr.; Sause, W.; Gaffney, D. RTOG 0417: Efficacy of bevacizumab in combination with definitive radiation therapy and cisplatin chemotherapy in untreated patients with locally advanced cervical carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Cheng, H.J.; Wang, L.; Luo, S.X. Short-term curative effect and safety of bevacizumab combined with chemotherapy for treating recurrent and metastatic cervical cancer. Eur. J. Gynaecol. Oncol. 2017, 38, 76–79. [Google Scholar]
- Frumovitz, M.; Munsell, M.F.; Burzawa, J.K.; Byers, L.A.; Ramalingam, P.; Brown, J.; Coleman, R.L. Combination therapy with topotecan, paclitaxel, and bevacizumab improves progression-free survival in recurrent small cell neuroendocrine carcinoma of the cervix. Gynecol. Oncol. 2017, 144, 46–50. [Google Scholar] [CrossRef]
- Tinker, A.V.; Fiorino, L.; O’Dwyer, H.; Kumar, A. Bevacizumab in Metastatic, Recurrent, or Persistent Cervical Cancer: The BC Cancer Experience. Int. J. Gynecol. Cancer 2018, 28, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Fagotti, A.; Conte, C.; Stollagli, F.; Gallotta, V.; Salutari, V.; Bottoni, C.; Bruno, M.; Zannoni, G.F.; Scambia, G. Radical Surgery in Advanced Cervical Cancer Patients Receiving Bevacizumab-Containing Chemotherapy: A "Real Life Experience". Int. J. Gynecol. Cancer 2018, 28, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Nagao, S.; Shibutani, T.; Yamamoto, K.; Jimi, T.; Yano, H.; Kitai, M.; Shiozaki, T.; Matsuoka, K.; Yamaguchi, S. Phase II trial of paclitaxel, carboplatin, and bevacizumab for advanced or recurrent cervical cancer. Gynecol. Oncol. 2019, 154, 554–557. [Google Scholar] [CrossRef]
- Tao, W.; Yang, J.; Jiang, Y.; Chen, W.; Wang, Y. Paclitaxel, Carboplatin, and Bevacizumab in Advanced Cervical Cancer: A Treatment Response and Safety Analysis. Dose Response 2020, 18, 1559325820941351. [Google Scholar] [CrossRef]
- He, X.; Liu, J.; Xiao, L.; Zhao, M.; Su, T.; Liu, T.; Han, G.; Wang, Y. Cisplatin-based chemotherapy with or without bevacizumab for Chinese postmenopausal women with advanced cervical cancer: A retrospective observational study. BMC Cancer 2020, 20, 381. [Google Scholar] [CrossRef]
- Ercelep, Ö.; Tataroğlu, D.; Özçelik, M.; Sürmeli, H.; Değirmenci, M.; İnanç, M.; Aliustaoğlu, M.; Gümüş, M. Efficacy and safety of bevacizumab in Turkish patients with metastatic and recurrent cervical cancer. Turk. J. Obstet. Gynecol. 2020, 17, 123–127. [Google Scholar] [CrossRef]
- Choi, H.J.; Lee, Y.Y.; Choi, C.H.; Kim, T.J.; Lee, J.W.; Bae, J.H.; Bae, D.S.; Kim, B.G. Triplet chemotherapy vs doublet chemotherapy plus bevacizumab in metastatic, recurrent, and persistent cervical cancer. Curr. Probl. Cancer 2020, 44, 100557. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, M.; Shimada, M.; Sasaki, S.; Ishibashi, M.; Shigeta, S.; Tsuji, K.; Nagai, T.; Tokunaga, H.; Niikura, H.; Yaegashi, N. A Single Arm Prospective Pilot Study Examining the Efficacy and Safety of Bevacizumab Single Maintenance Therapy Following Platinum-Based Chemotherapy in Patients with Advanced or Recurrent Cervical Cancer. Tohoku J. Exp. Med. 2021, 254, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Liu, X.; Yu, W.; Chen, M.; Dong, L. Cisplatin plus paclitaxel chemotherapy with or without bevacizumab in postmenopausal women with previously untreated advanced cervical cancer: A retrospective study. BMC Cancer 2021, 21, 133. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, Y.; Liu, C.; Feng, B.; Zhang, J.; Zhou, Y.; Yin, Y.; Li, J.; Li, W.; Balaya, V.; et al. The integration of bevacizumab improves tumor response and survival in patients with refractory cervical cancer treated with radical chemoradiotherapy. Ann. Transl. Med. 2021, 9, 1184. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, J.; Xie, S.; Xue, Q. Efficacy of Bevacizumab Combined with Pemetrexed in the Treatment of Recurrent and Metastatic Cervical Cancer. Front. Surg. 2022, 9, 908101. [Google Scholar] [CrossRef]
- Tanigawa, T.; Takeshima, N.; Ishikawa, H.; Nishio, S.; Usami, T.; Yamawaki, T.; Oishi, T.; Ihira, K.; Kato, H.; Goto, M.; et al. Paclitaxel-carboplatin and bevacizumab combination with maintenance bevacizumab therapy for metastatic, recurrent, and persistent uterine cervical cancer: An open-label multicenter phase II trial (JGOG1079). Gynecol. Oncol. 2022, 165, 413–419. [Google Scholar] [CrossRef]
- Yasunaga, M.; Yahata, H.; Okugawa, K.; Shimokawa, M.; Maeda, Y.; Hori, E.; Kodama, K.; Yagi, H.; Ohgami, T.; Onoyama, I.; et al. Prognostic impact of adding bevacizumab to carboplatin and paclitaxel for recurrent, persistent, or metastatic cervical cancer. Taiwan. J. Obstet. Gynecol. 2022, 61, 818–822. [Google Scholar] [CrossRef]
- Naz, T.; Rehman, A.U.; Shahzad, A.; Rasool, M.F.; Saleem, Z.; Hussain, R. Impact of bevacizumab on clinical outcomes and its comparison with standard chemotherapy in metastatic colorectal cancer patients: A systematic review and meta-analysis. J. Pharm. Policy Pract. 2024, 17, 2354300. [Google Scholar] [CrossRef]
Author | Study Design | Stage of Cervical Cancer | No. of Patients | Therapy Protocol | Outcomes | PFS (Median, Months) | OS (Median, Months) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | E | C | E | Primary | Secondary | C | E | p-Value | C | E | p-Value | |||
Wright et al., 2006 [39] | Retrospective | IB2, IIB, IIIB | - | 6 | - | 5-Fluorouracil + Bev and oral capecitabine + Bev | OS, PFS | - | - | 4.3 | - | - | 5.1 | - |
Monk et al., 2009 [40] | Phase II trial | I–IV | - | 46 | - | One or two cytotoxic regimens + Bev | PFS | OS | - | 3.40 | - | - | 7.29 | - |
Zighelboim et al., 2013 [41] | Phase II trial | I–IV | - | 27 | - | Cisplatin + topotecan + Bev | PFS | OS | - | 7.1 | - | - | 13.2 | - |
Tewari et al., 2014 [14] | Phase III RCT | I–IVB | 225 | 227 | Cisplatin + paclitaxel and topotecan + paclitaxel | Cisplatin + paclitaxel + Bev and + topotecan + paclitaxel + Bev | OS | PFS | 5.9 | 8.2 | - | 13.3 | 17.0 | 0.004 |
Schefter et al., 2014 [42] | Phase II trial | IB–IIIB | - | 49 | - | Cisplatin + Bev + pelvic RT and BT | - | OS | - | - | - | - | 81.3% | - |
Xiao et al., 2017 [43] | Retrospective | IVB | 15 | 15 | Cisplatin + paclitaxel | Cisplatin + paclitaxel + Bev and docetaxel + nedaplatin + Bev | PFS | - | 7 | 10 | 0.023 | - | - | - |
Frumovitz et al., 2017 [44] | Retrospective | IB1–IV | 21 | 13 | Available chemotherapy regimens | Topotecan + paclitaxel + Bev | OS, PFS | - | 4 | 7.8 | 0.001 | 9.4 | 9.7 | 0.13 |
Godoy-Ortiz et al., 2017 [13] | Retrospective | I–IVB | - | 27 | - | Cisplatin/carboplatin + paclitaxel + Bev | OS, PFS | - | - | 9, 6 | - | - | 21, 5 | - |
Tewari et al., 2017 [5] | Phase III RCT | IVB | 225 | 227 | Cisplatin + paclitaxel and topotecan + paclitaxel | Cisplatin + paclitaxel + Bev and topotecan + paclitaxel + Bev | OS | PFS | 6 | 8.2 | 0.0002 | 13.3 | 16.8 | 0.007 |
Tinker et al., 2018 [45] | Retrospective | IB1/2–IVB | - | 27 | - | Carboplatin + paclitaxel + Bev | OS, PFS | - | - | 5.3 | - | - | 11 | - |
Fagotti et al., 2018 [46] | Retrospective | IVB | - | 15 | - | Cisplatin/carboplatin + paclitaxel + Bev | OS | - | - | - | - | - | 13 | - |
Suzuki et al., 2019 [47] | Phase II trial | IVB | - | 34 | - | Carboplatin + paclitaxel + Bev | - | OS, PFS | - | 9 | - | - | 26 | - |
Lee et al., 2019 [11] | Retrospective | I–IVB | - | 57 | - | Cisplatin + paclitaxel + Bev | OS, PFS | - | - | 9.8 | - | - | 15.3 | - |
Tao et al., 2020 [48] | Retrospective | IVB | 161 | 127 | Carboplatin + paclitaxel | Carboplatin + paclitaxel + Bev | OS | - | - | - | - | 2–29 | 2–31 | 0.038 |
Redondo et al., 2020 [17] | Single-arm phase II trial | I–IVB | - | 150 | - | Carboplatin + paclitaxel + Bev | - | OS, PFS | - | 10.9 | - | - | 25 | - |
Youn et al., 2020 [18] | Retrospective | IVB | 30 | 11 | Carboplatin + paclitaxel or cisplatin + topotecan + RT | Cisplatin + paclitaxel + Bev + RT | OS, PFS | - | 46.7% | 45.5% | 0.22 | 72.9% | 81.8% | 0.57 |
He et al., 2020 [49] | Retrospective | IVB | 134 | 130 | Cisplatin + paclitaxel | Cisplatin + paclitaxel + Bev | OS, PFS | - | 8.58 | 11.34 | 0.000 | 11.73 | 17.74 | 0.002 |
Ercelep et al., 2020 [50] | Retrospective | IB–IVB | - | 64 | - | Cisplatin/carboplatin + paclitaxel + Bev | OS, PFS | - | - | 8 | - | - | 23 | - |
Choi et al., 2020 [51] | Retrospective | I–IVB | 92 | 71 | Cisplatin + paclitaxel + ifosfamide followed by ifosfamide + mesna | Cisplatin + paclitaxel + Bev | OS, PFS | - | 12 | 13.1 | 0.353 | - | - | - |
Toyoshima et al., 2021 [52] | Prospective | I–IV | 4 | 15 | Cisplatin/ carboplatin + paclitaxel + Bev without Bev maintenance | Cisplatin/carboplatin + paclitaxel + Bev + Bev single maintenance | OS, PFS | - | 7 | 12 | 0.6805 | 21 | Not Reached | 0.0132 |
Chu et al., 2021 [53] | Retrospective | IVB | 122 | 124 | Cisplatin + paclitaxel | Cisplatin + paclitaxel + Bev | OS, PFS | - | 7.9 | 9.2 | <0.001 | 12.3 | 16.4 | 0.001 |
Yang et al., 2021 [54] | Retrospective | IIB to IIIC2, or IVB | - | 64 | - | Cisplatin (DDP) + Bev + RT and cisplatin + docetaxel + Bev | OS | - | - | - | - | - | 87.2% | - |
Cerina et al., 2021 [2] | Retrospective | IVB | 62 | 67 | Cisplatin + paclitaxel, cisplatin + 5-Fluorouracil, ifosfamide + cisplatin, topotecan + paclitaxel or cisplatin + gemcitabine | Cisplatin + paclitaxel + Bev | OS | PFS | 5.4 | 10.6 | 0.027 | 15.5 | 27.0 | 0.389 |
Liu et al., 2021 [12] | Retrospective | I–IV | 43 | 21 | Cisplatin + paclitaxel | Cisplatin + paclitaxel + Bev | OS, PFS | - | 17.7% | 51.0% | 0.003 | 23.2% | 55.5% | 0.005 |
He et al., 2022 [55] | Retrospective | IVB | - | 65 | - | Bev + pemetrexed | OS, PFS | - | - | 6.6 | - | - | 10.6 | - |
Tanigawa et al., 2022 [56] | Single-arm phase II trial | IVB | - | 69 | - | Carboplatin + paclitaxel + Bev | PFS | OS | - | 11.3 | - | - | Not Reached | - |
Yasunaga et al., 2022 [57] | Retrospective | I–IVB | 59 | 31 | Carboplatin + paclitaxel | Carboplatin + paclitaxel + Bev | OS | - | - | - | - | 12 | 31 | 0.069 |
Kotaka et al., 2023 [1] | Retrospective | I–IVB | 81 | 34 | Cisplatin/ carboplatin/ nedaplatin + paclitaxel + Bev without Bev maintenance | Cisplatin/ carboplatin/ nedaplatin + paclitaxel + Bev with Bev maintenance | PFS, OS | - | 9.0 | 16.0 | 0.041 | 29.0 | 34.4 | 0.374 |
Author | Recruitment Variables | Patient Characteristics | ||||
---|---|---|---|---|---|---|
Inclusion Criteria | Exclusion Criteria | Tumor Stage | Histopathology | Race | HPV Infection | |
Wright et al., 2006 [39] | Recurrent disease | - | IB2: 3 IIB: 2 IIIB: 1 | SCC: 4 ADC: 1 PDC: 1 | White: 3 Black: 3 | - |
Monk et al., 2009 [40] | GOG PS 0/1, normal body parameters, prior chemotherapy | Non-SCC tumors, bleeding, wounds, infection, CV or CNS disease | I–IV | ASC: 3 SCC: 43 | Asian: 3 African American: 4 Hispanic: 6 American Indian: 1 White: 32 | - |
Zighelboim et al., 2013 [41] | Age ≥ 18 years, no prior chemotherapy, GOG score 0/1, normal body parameters | Infection, bleeding or wounds, CNS or CV disease, history of surgery, or any malignancy in 5 years | I: 9 II: 8 III: 8 IV: 2 | SCC: 18 ADC: 9 | White: 23 African American: 4 | - |
Tewari et al., 2014 [14] | GOG score 0/1, adequate renal, hepatic, and bone marrow function | Curative pelvic exenteration candidates, bleeding, and non-healing wounds | I–IVB | ADC: 86 ASC: 44 SCC: 310 Other: 12 | Not Black: 392 Black: 60 | - |
Schefter et al., 2014 [42] | Pelvic node metastases and/or tumor size ≥ 5 cm, Zubrod PS of 0–2, normal body parameters | Surgery, bleeding, thromboembolic events | IB: 8 IIA: 1 IIB: 31 IIIA: 1 IIIB: 8 | SCC: 39 ADC: 8 ASC: 2 | Hispanic or Latino: 3 Not Hispanic or Latino: 41 Unknown: 5 | - |
Xiao et al., 2017 [43] | Karnofsky scores ≥ 70 points, normal ECGs | History of serious organ/system disease, bleeding or circulatory collapse | IVB | SCC: 25 ADC: 5 | - | - |
Frumovitz et al., 2017 [44] | Small cell cervix cancer, prior chemoradiotherapy for first recurrence | Large cell or carcinoid cervical tumors, first recurrence treated with radiation or surgery for oligometastatic disease | IB: 21 IIB: 2 IIIB: 5 IV: 4 | - | White: 21 Black: 3 Hispanic: 4 Asian: 1 Unknown: 5 | - |
Godoy-Ortiz et al., 2017 [13] | ECOG scores 0/1 | - | I–IVB | SCC: 21 ADC: 3 Others: 3 | - | - |
Tewari et al., 2017 [5] | GOG score 0/1, normal body functions, urine protein to creatinine ratio < 1 | Candidates for curative therapy via pelvic exenteration, non-healing wounds or active bleeding, receiving chemotherapy for recurrence | IVB | SCC: 310 ADC: 86 Other: 56 | White: 351 African American: 60 Asian: 19 Pacific Islander: 1 Others: 21 | - |
Tinker et al., 2018 [45] | Recurrent, persistent disease | ECOG scores > 3, uncontrolled hypertension, major surgery, pregnancy/ breastfeeding, bleeding, diathesis | Metastatic: 7 IIIA/B: 6 IIA/B: 10 IB1/2: 4 | SCC: 24 ADC: 2 Unknown: 1 | - | - |
Fagotti et al., 2018 [46] | Age 70 years or less, normal functions, no prior non-basal cell carcinoma | Disease progression during treatment, previous or concurrent malignancies, any severe infection | IVB | SCC: 11 ADC: 2 Clear cells: 2 | - | - |
Suzuki et al., 2019 [47] | GOG score 0/1, normal body parameters and functions | Evident malignancies, wounds and bleeding, infections, prior therapy and surgery, pregnancy | IVB: 9 | SCC: 21 ASC: 2 ADC: 7 Others: 4 | - | - |
Lee et al., 2019 [11] | Persistent, recurrent, or metastatic disease | Previous treatment with Bev | I–IVB | SCC: 37 ADC: 12 ASC: 1 Others: 2 | - | - |
Tao et al., 2020 [48] | Age > 18 years, not suitable for surgery/radiation, normal body parameters and functions | - | IVB: 77 | SCC: 198 ADC: 68 ASC: 22 | Han Chinese: 262 Mongolian: 21 Tibetan: 3 Uighur: 2 | - |
Redondo et al., 2020 [17] | Non-measurable disease, age ≥ 18 years, life expectancy ≥ 3 years, ECOG score 0/1 | Ongoing bladder/rectal involvement, prior chemotherapy, history of fistula/GI perforation, known HIV infection | I: 19 II: 44 III: 47 IVA: 6 IVB: 34 | - | Hispanic or Latino: 50 Not Hispanic or Latino: 91 Not reported/unknown: 9 | - |
Youn et al., 2020 [18] | Initial diagnosis of stage IVB cervical cancer, distant metastases | Dual primary cancers, non-radiotherapy group, no follow-up data | IVB | SCC: 38 ADC: 3 | - | Negative: 10 Positive: 31 |
He et al., 2020 [49] | Postmenopausal females with advanced disease, age 55–75 years, history of HPV infections, GOG score 0/1, normal body functions | Severe organ failure, non-healing wounds, risk of bleeding, coma | IVB: 144 | SCC: 150 ADC: 91 Other: 23 | - | - |
Ercelep et al., 2020 [50] | Persistent, recurrent, or metastatic disease | - | IB: 14 II: 13 III: 9 IVA: 11 IVB: 18 | SCC: 57 ADC: 5 ASC: 2 | - | - |
Choi et al., 2020 [51] | Measurable disease progression, ECOG score 0–2, normal body functions | Prior pelvic exenteration, non-cervical malignancy within 5 years | CIS–II: 127 III–IV: 28 Unknown: 8 | SCC: 109 Other: 54 | - | - |
Toyoshima et al., 2021 [52] | Age 20–75 years, ECOG score 0–2, normal functions | Prior anti-VEGF therapy, intestinal obstruction, non-healing wounds, history of cerebrovascular accident, risk of bleeding, pregnancy, other malignancies | I: 2 II: 5 III: 5 IV: 3 | SCC: 9 ADC: 4 ASC: 1 SCC+ ADC: 1 | - | - |
Chu et al., 2021 [53] | Postmenopausal Chinese females with previously untreated advanced disease, GOG PS 0/1 | Prior use of targeted drugs, chemotherapy/RT, organ failure, malignancies, active bleeding | IVB | SCC: 151 ADC: 71 ASC: 24 | - | - |
Yang et al., 2021 [54] | Pelvic relapse after surgery, Zubrod PS 0–2 | Thromboembolic events/bleeding within the previous 6 months | IIB–IIIC: 48 IVB-Ln only: 10 6 | SCC: 58 Non-SCC: 6 | - | - |
Cerina et al., 2021 [2] | Treatment with TCB as a first-line setting | - | IVB | SCC: 97 ADC: 23 Other: 9 | - | - |
Liu et al., 2021 [12] | Confirmed recurrence, normal body functions | - | I: 16 II: 13 III: 11 IV: 24 | SCC: 38 ADC: 17 ASC: 9 | - | - |
He et al., 2022 [55] | Disease progression or relapse after first-line therapy, normal body functions, ECOG score 0–2, life expectancy ≥ 3 months | Allergy to pemetrexed or Bev, organ function impairment, malignancies | IVB | SCC: 49 ADC: 16 | - | - |
Tanigawa et al., 2022 [56] | Age ≥ 20 years, ECOG score ≤ 1, normal organ functions | - | IVB: 23 | SCC: 46 ADC: 20 ASC: 3 | - | - |
Yasunaga et al., 2022 [57] | ECOG status 0–2, normal body parameters For Bev: controlled BP, proteinuria | For Bev: peritoneal dissemination with colonic invasion, deep venous thrombosis, and complication of active inflammatory bowel disease | I–IVB | SCC: 61 ADC: 23 Other: 6 | - | - |
Kotaka et al., 2023 [1] | No prior Bev combination therapy | Platinum-paclitaxel Chemotherapy + Bev for the third or subsequent relapse | I: 11 II: 15 III: 57 IV: 32 | SCC: 77 ADC: 21 Other: 17 | - | - |
Author | Study Design | Selection | Comparability | Outcome/ Exposure | NOS Score | Quality | Risk of Bias |
---|---|---|---|---|---|---|---|
Wright et al., 2006 [39] | Retrospective | *** | ** | * | 6 | Moderate | Moderate |
Monk et al., 2009 [40] | Phase II trial | *** | ** | * | 6 | Moderate | Moderate |
Zighelboim et al., 2013 [41] | Phase II trial | *** | ** | * | 6 | Moderate | Moderate |
Tewari et al., 2014 [14] | Phase III RCT | **** | ** | ** | 8 | High | Low |
Schefter et al., 2014 [42] | Phase II trial | *** | ** | * | 6 | Moderate | Moderate |
Xiao et al., 2017 [43] | Retrospective | **** | ** | * | 7 | High | Low |
Frumovitz et al., 2017 [44] | Retrospective | **** | * | *** | 8 | High | Low |
Godoy-Ortiz et al., 2017 [13] | Retrospective | *** | ** | *** | 8 | High | Low |
Tewari et al., 2017 [5] | Phase III RCT | **** | ** | ** | 8 | High | Low |
Tinker et al., 2018 [45] | Retrospective | *** | ** | *** | 8 | High | Low |
Fagotti et al., 2018 [46] | Retrospective | *** | ** | *** | 8 | High | Low |
Suzuki et al., 2019 [47] | Phase II trial | *** | ** | * | 6 | Moderate | Moderate |
Lee et al., 2019 [11] | Retrospective | *** | ** | *** | 8 | High | Low |
Tao et al., 2020 [48] | Retrospective | **** | ** | * | 7 | High | Low |
Redondo et al., 2020 [17] | Single arm phase II trial | *** | ** | * | 6 | Moderate | Moderate |
Youn et al., 2020 [18] | Retrospective | **** | ** | ** | 8 | High | Low |
He et al., 2020 [49] | Retrospective | **** | ** | ** | 8 | High | Low |
Ercelep et al., 2020 [50] | Retrospective | *** | * | ** | 6 | Moderate | Moderate |
Choi et al., 2020 [51] | Retrospective | **** | ** | ** | 8 | High | Low |
Toyoshima et al., 2021 [52] | Prospective | **** | ** | * | 7 | High | Low |
Chu et al., 2021 [53] | Retrospective | **** | ** | *** | 9 | High | Low |
Yang et al., 2021 [54] | Retrospective | *** | * | ** | 6 | Moderate | Moderate |
Cerina et al., 2021 [2] | Retrospective | **** | ** | ** | 8 | High | Low |
Liu et al., 2021 [12] | Retrospective | **** | ** | ** | 8 | High | Low |
He et al., 2022 [55] | Retrospective | *** | ** | ** | 7 | High | Low |
Tanigawa et al., 2022 [56] | Single arm phase II trial | *** | ** | * | 6 | Moderate | Moderate |
Yasunaga et al., 2022 [57] | Retrospective | **** | ** | ** | 8 | High | Low |
Kotaka et al., 2023 [1] | Retrospective | *** | * | *** | 7 | High | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, A.; ur Rehman, A.; Naz, T.; Rasool, M.F.; Saeed, A.; Rasheed, S.; Shakeel, S.; Al-Tamimi, S.K.; Hussain, R. Addition of Bevacizumab to Chemotherapy and Its Impact on Clinical Efficacy in Cervical Cancer: A Systematic Review and Meta-Analysis. Pharmacy 2024, 12, 180. https://doi.org/10.3390/pharmacy12060180
Shahzad A, ur Rehman A, Naz T, Rasool MF, Saeed A, Rasheed S, Shakeel S, Al-Tamimi SK, Hussain R. Addition of Bevacizumab to Chemotherapy and Its Impact on Clinical Efficacy in Cervical Cancer: A Systematic Review and Meta-Analysis. Pharmacy. 2024; 12(6):180. https://doi.org/10.3390/pharmacy12060180
Chicago/Turabian StyleShahzad, Aleena, Anees ur Rehman, Tehnia Naz, Muhammad Fawad Rasool, Alisha Saeed, Saba Rasheed, Sadia Shakeel, Saleh Karamah Al-Tamimi, and Rabia Hussain. 2024. "Addition of Bevacizumab to Chemotherapy and Its Impact on Clinical Efficacy in Cervical Cancer: A Systematic Review and Meta-Analysis" Pharmacy 12, no. 6: 180. https://doi.org/10.3390/pharmacy12060180
APA StyleShahzad, A., ur Rehman, A., Naz, T., Rasool, M. F., Saeed, A., Rasheed, S., Shakeel, S., Al-Tamimi, S. K., & Hussain, R. (2024). Addition of Bevacizumab to Chemotherapy and Its Impact on Clinical Efficacy in Cervical Cancer: A Systematic Review and Meta-Analysis. Pharmacy, 12(6), 180. https://doi.org/10.3390/pharmacy12060180