Investigating the Central Nervous System Disposition of Actinomycin D: Implementation and Evaluation of Cerebral Microdialysis and Brain Tissue Measurements Supported by UPLC-MS/MS Quantification
<p>Positive product spectrum (MS/MS) of the [M+H]<sup>+</sup> signal (m/z 1255.6) of actinomycin D in collision-induced decomposition using a collision energy of 62 V. The structures of actinomycin D, actinomycin C, and their monitored common product ion (<span class="html-italic">m/z</span> 459.1) are additionally depicted. For details on the product ions and fragmentation scheme of actinomycin D, the reader is referred to the work of Thomas and co-workers [<a href="#B29-pharmaceutics-13-01498" class="html-bibr">29</a>].</p> "> Figure 2
<p>Selected UPLC-MS/MS chromatograms of the processed brain tissue homogenate samples, with the analyte transition in black and internal standard (IS) transition in grey: (A) blank sample, (B) sample with added IS, (C) sample at a lower limit of quantification (LLOQ) level (representing 0.050 ng/mL), (D) sample at a mid QC concentration (representing 3.00 ng/mL), and (E) brain tissue sample 2 h after intravenous administration of 0.5 mg/kg actinomycin D to mouse #1 (calculated actinomycin D concentration 0.409 ng/mL corresponding to 4.09 ng/g due to tissue homogenization at 0.1 g/mL). The intensity of the blanks was normalized to the value of the analyte peak in the LLOQ chromatogram while the intensity in the remaining chromatograms was normalized to the analyte peak with the IS and analyte transition processed independently.</p> "> Figure 3
<p>Plasma concentration–time profiles of intravenous actinomycin D (0.5 mg/kg) in three mice.</p> "> Figure 4
<p>(<b>A</b>) Actinomycin D showed nonspecific binding to the microdialysate equipment, which can be reduced by adding bovine serum albumin to the Ringer solution. (<b>B</b>) Actinomycin D concentration detected in in vivo cerebral microdialysis samples of a non-dosed mouse after prior in vitro calibration of the microdialysis probe with actinomycin D.</p> "> Figure 5
<p>Schematic workflow of the methodology for determining the central nervous system (CNS) drug disposition of actinomycin D (Act D). Despite the use of actinomycin C (Act C) for probe calibration and avoiding nonspecific binding of actinomycin D to the microdialysis equipment, only whole brain tissue measurements were suitable for measurement of the drug´s brain disposition. Created with BioRender (Biorender AG, Münchwilen, Switzerland).</p> "> Figure 6
<p>(<b>A</b>) Concentration-dependent effect of actinomycin D on the proliferation of the P-gp over-expressing cell line L-MDR1 and the corresponding parental cell line LLC-PK1. Each curve depicts the results of four experiments with each concentration tested in octuplet. Data are expressed as the mean ± SD for n = 32 wells. The IC<sub>50</sub> in L-MDR1 cells was 2.4 ± 0.6 µM and in LLC-PK1 cells 0.021 ± 0.006 µM (>100-fold difference). (<b>B</b>) Time-dependent uptake of 0.01 µM actinomycin D in the P-gp over-expressing cell line L-MDR1 in comparison to the parental cell line LLC-PK1. Each data point depicts the mean of a duplicate determination.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Clinical Mouse Studies
2.2. Drugs, Chemicals, Solvents, and Materials
2.3. Standard Solutions
2.4. Calibration and QC Samples
2.5. Sample Preparation
2.6. Determination of Protein-Bound Fraction
2.7. Instrumental Analysis Parameters
2.8. Validation of the Analytical Methods
2.9. Verification of Actinomycin D as a Substrate of P-gp
2.10. Calculations and Statistical Methods
3. Results and Discussion
3.1. Performance of the UPLC-MS/MS Assay
3.1.1. Mass Spectrometric and Chromatographic Characteristics
3.1.2. Choice of Internal Standard
3.1.3. Sample Preparation and Extraction Characteristics
3.1.4. Validation Results
3.1.5. Matrix Effect
3.2. Plasma Concentrations of Actinomycin D in Mice after Intravenous Injection
3.3. Setup of the Microdialysis Experiments
3.4. Cerebral Microdialysis Measurements in Healthy Mice
3.5. Determination of Actinomycin D CNS Concentrations after Intravenous Bolus Injection to Mice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US National Cancer Institute, Dactinomycin. 2019. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/dactinomycin (accessed on 1 July 2021).
- Falini, B.; Brunetti, L.; Martelli, M.P. Dactinomycin in NPM1-Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1180–1182. [Google Scholar] [CrossRef] [PubMed]
- Reich, E.; Franklin, R.M.; Shatkin, A.J.; Tatum, E.L. Effect of Actinomycin D on Cellular Nucleic Acid Synthesis and Virus Production. Science 1961, 134, 556–557. [Google Scholar] [CrossRef] [PubMed]
- Reich, E.; Franklin, R.; Shatkin, A.; Tatum, E. Action of Actinomycin D on Animal Cells and Viruse. Proc. Natl. Acad. Sci. USA 1962, 48, 1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobell, H.M. Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. USA 1985, 82, 5328–5331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trask, D.K.; Muller, M.T. Stabilization of type I topoisomerase-DNA covalent complexes by actinomycin D. Proc. Natl. Acad. Sci. USA 1988, 85, 1417–1421. [Google Scholar] [CrossRef] [Green Version]
- Wassermann, K.; Markovits, J.; Jaxel, C.; Capranico, G.; Kohn, K.W.; Pommier, Y. Effects of morpholinyl doxorubicins, doxorubicin, and actinomycin D on mammalian DNA topoisomerases I and II. Mol. Pharmacol. 1990, 38, 38–45. [Google Scholar]
- Hill, C.R.; Cole, M.; Errington, J.; Malik, G.; Boddy, A.V.; Veal, G.J. Characterisation of the clinical pharmacokinetics of actinomycin D and the influence of ABCB1 pharmacogenetic variation on actinomycin D disposition in children with cancer. Clin. Pharmacokinet. 2014, 53, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Mondick, J.T.; Gibiansky, L.; Gastonguay, M.R.; Skolnik, J.M.; Cole, M.; Veal, G.J.; Boddy, A.V.; Adamson, P.C.; Barrett, J.S. Population Pharmacokinetic Investigation of Actinomycin-D in Children and Young Adults. J. Clin. Pharmacol. 2008, 48, 35–42. [Google Scholar] [CrossRef]
- Tattersall, M.; Sodergren, J.; Sengupta, S.; Trites, D.; Modest, E.; Frei, E., III. Pharmacokinetics of actinomycin D in patients with ma-lignant melanoma. Clin. Pharmacol. Ther. 1975, 17, 701–708. [Google Scholar] [CrossRef]
- Veal, G.J.; Cole, M.; Errington, J.; Parry, A.; Hale, J.; Pearson, A.D. Pharmacokinetics of dactinomycin in a pediatric patient population: A United Kingdom Children’s Cancer Study Group Study. Clin. Cancer Res. 2005, 11, 5893–5899. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.; Bonner, J.J.; Johnson, T.N.; Neuhoff, S.; Ghazaly, E.A.; Gribben, J.G. Development of a physiologically based phar-macokinetic model of actinomycin D in children with cancer. Br. J. Clin. Pharmacol. 2016, 81, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.R.; Jamieson, D.; Thomas, H.D.; Brown, C.D.; Boddy, A.V.; Veal, G.J. Characterisation of the roles of ABCB1, ABCC1, ABCC2 and ABCG2 in the transport and pharmacokinetics of actinomycin D in vitro and in vivo. Biochem. Pharmacol. 2013, 85, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schinkel, A.H. P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv. Drug Deliv. Rev. 1999, 36, 179–194. [Google Scholar] [CrossRef]
- Tzaridis, T.; Milde, T.; Pajtler, K.W.; Bender, S.; Jones, D.T.W.; Muller, S.; Wittmann, A.; Schlotter, M.; Kulozik, A.E.; Lichter, P.; et al. Low-dose Actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in RELA-positive ependymoma. Oncotarget 2016, 7, 61860–61873. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.T.; Ellison, S.; Pandele, A.; Wood, S.; Nathan, E.; Forte, G.; Parker, H.; Zindy, E.; Elvin, M.; Dickson, A.; et al. Actinomycin D downregulates Sox2 and improves survival in preclinical models of recurrent glioblastoma. Neuro-Oncol. 2020, 22, 1289–1301. [Google Scholar] [CrossRef]
- Rusert, J.M.; Juarez, E.F.; Brabetz, S.; Jensen, J.; Garancher, A.; Chau, L.Q.; Tacheva-Grigorova, S.K.; Wahab, S.; Udaka, Y.T.; Finlay, D.; et al. Functional Precision Medicine Identifies New Therapeutic Candidates for Medulloblastoma. Cancer Res. 2020, 80, 5393–5407. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.A.; Schubert, N.; Brabetz, S.; Mack, N.; Schwalm, B.A.; Chan, J.; Selt, F.; Herold-Mende, C.; Witt, O.; Milde, T.; et al. Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro-Oncol. 2017, 19, 1607–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damen, C.W.N.; Israels, T.; Caron, H.N.; Schellens, J.H.; Rosing, H.; Beijnen, J.H. Validated assay for the simultaneous quantification of total vincristine and actinomycin-D concentrations in human EDTA plasma and of vincristine concentrations in human plasma ultrafiltrate by high-performance liquid chromatography coupled with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 763–774. [Google Scholar] [CrossRef]
- Veal, G.J.; Errington, J.; Sludden, J.; Griffin, M.J.; Price, L.; Parry, A.; Hale, J.; Pearson, A.D.; Boddy, A.V. Determination of anti-cancer drug actinomycin D in human plasma by liquid chromatography–mass spectrometry. J. Chromatogr. B 2003, 795, 237–243. [Google Scholar] [CrossRef]
- Lee, J.I.; Skolnik, J.M.; Barrett, J.S.; Adamson, P.C. A sensitive and selective liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of actinomycin-D and vincristine in children with cancer. J. Mass Spectrom. 2007, 42, 761–770. [Google Scholar] [CrossRef]
- Damen, C.W.N.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H. Application of dried blood spots combined with high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry for simultaneous quantification of vincristine and actinomycin-D. Anal. Bioanal. Chem. 2009, 394, 1171–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boxenbaum, H. Interspecies Pharmacokinetic Scaling and the Evolutionary-Comparative Paradigm. Drug Metab. Rev. 1984, 15, 1071–1121. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for Industry, Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. 2005. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/estimating-maximum-safe-starting-dose-initial-clinical-trials-therapeutics-adult-healthy-volunteers (accessed on 1 July 2021).
- Committee for Medicinal Products for Human Use, European Medicines Agency, Guideline on Bioanalytical Method Valida-tion. 2011. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 1 July 2021).
- US Food and Drug Administration (FDA). Guidance for Industry: Bioanalytical Method Validation. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 1 July 2021).
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Peters, T.; Lindenmaier, H.; Haefeli, W.E.; Weiss, J. Interaction of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2005, 372, 291–299. [Google Scholar] [CrossRef]
- Thomas, D.; Morris, M.; Curtis, J.M.; Boyd, R.K. Fragmentation mechanisms of protonated actinomycins and their use in structural determination of unknown analogues. J. Mass Spectrom. 1995, 30, 1111–1125. [Google Scholar] [CrossRef]
- Chugh, B.P.; Lerch, J.P.; Yu, L.X.; Pienkowski, M.; Harrison, R.V.; Henkelman, R.M.; Sled, J.G. Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography. NeuroImage 2009, 47, 1312–1318. [Google Scholar] [CrossRef]
- Schinkel, A.H.; Wagenaar, E.; Van Deemter, L.A.; Mol, C.; Borst, P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Investig. 1995, 96, 1698–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mouse | Cmax (ng/mL) | AUC (ng/mL × h) | Vss (L) | Cl (mL/min) | t1/2 (h) |
---|---|---|---|---|---|
1 | 22.6 | 171 | 0.53 | 1.22 | 5.07 |
2 | 14.6 | 111 | 0.98 | 1.87 | 6.14 |
3 | 10.3 | 101 | 1.23 | 2.06 | 6.90 |
Mean | 15.8 ± 5.1 | 128 ± 31 | 1.10 ± 0.35 | 2.06 ± 0.43 | 6.04 ± 0.75 |
Time (h) after Administration | Mouse | Plasma Actinomycin D (ng/mL) | Brain Actinomycin D (ng/g) | Brain-to-Plasma Ratio |
---|---|---|---|---|
2 | 1 | 19.2 | 4.09 | 0.21 |
2 | 26.8 | 4.77 | 0.18 | |
3 | 22.0 | 3.55 | 0.16 | |
Mean | 22.7 ± 3.9 | 4.14 ± 0.50 | 0.18 ± 0.03 | |
22 | 4 | 1.95 | 1.56 | 0.80 |
5 | 5.79 | 2.15 | 0.37 | |
6 | 2.61 | 0.46 | 0.18 | |
7 | 3.24 | 2.49 | 0.77 | |
Mean | 3.40 ± 1.45 | 1.67 ± 0.77 | 0.53 ± 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benzel, J.; Bajraktari-Sylejmani, G.; Uhl, P.; Davis, A.; Nair, S.; Pfister, S.M.; Haefeli, W.E.; Weiss, J.; Burhenne, J.; Pajtler, K.W.; et al. Investigating the Central Nervous System Disposition of Actinomycin D: Implementation and Evaluation of Cerebral Microdialysis and Brain Tissue Measurements Supported by UPLC-MS/MS Quantification. Pharmaceutics 2021, 13, 1498. https://doi.org/10.3390/pharmaceutics13091498
Benzel J, Bajraktari-Sylejmani G, Uhl P, Davis A, Nair S, Pfister SM, Haefeli WE, Weiss J, Burhenne J, Pajtler KW, et al. Investigating the Central Nervous System Disposition of Actinomycin D: Implementation and Evaluation of Cerebral Microdialysis and Brain Tissue Measurements Supported by UPLC-MS/MS Quantification. Pharmaceutics. 2021; 13(9):1498. https://doi.org/10.3390/pharmaceutics13091498
Chicago/Turabian StyleBenzel, Julia, Gzona Bajraktari-Sylejmani, Philipp Uhl, Abigail Davis, Sreenath Nair, Stefan M. Pfister, Walter E. Haefeli, Johanna Weiss, Jürgen Burhenne, Kristian W. Pajtler, and et al. 2021. "Investigating the Central Nervous System Disposition of Actinomycin D: Implementation and Evaluation of Cerebral Microdialysis and Brain Tissue Measurements Supported by UPLC-MS/MS Quantification" Pharmaceutics 13, no. 9: 1498. https://doi.org/10.3390/pharmaceutics13091498
APA StyleBenzel, J., Bajraktari-Sylejmani, G., Uhl, P., Davis, A., Nair, S., Pfister, S. M., Haefeli, W. E., Weiss, J., Burhenne, J., Pajtler, K. W., & Sauter, M. (2021). Investigating the Central Nervous System Disposition of Actinomycin D: Implementation and Evaluation of Cerebral Microdialysis and Brain Tissue Measurements Supported by UPLC-MS/MS Quantification. Pharmaceutics, 13(9), 1498. https://doi.org/10.3390/pharmaceutics13091498