In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery
<p>Anatomy of the human nasal cavity. Squamous mucosa (<b>green</b>) is located at the frontal parts of the nasal vestibules. The three turbinates (inferior, middle, and superior) humidify and warm the inhaled air. The area covered predominantly with respiratory mucosa is labeled in blue. The olfactory mucosa (<b>yellow</b>) is located next to the cribriform plate at the skull base down to the superior turbinate. Nasally transmitted substances can cross the cribriform plate via different pathways to enter the brain. Nasopharynx-associated lymphatic tissue (NALT) is located in close proximity to the tonsils at the nasopharynx. Reproduced from [<a href="#B13-pharmaceutics-13-01079" class="html-bibr">13</a>], MDPI, 2018.</p> "> Figure 2
<p>EDS mechanism. The EDS has a flexible mouthpiece and a nosepiece. The sealing nosepiece is shaped to transfer pressure from the mouth, to avoid compression of soft tissue in a way that could obstruct air flow, and to “stent” the nasal valve, particularly superiorly. Exhalation through the EDS (1) creates an airtight seal of the soft palate, isolating the nose from the mouth and lungs; (2) transfers proportional air pressure into the nose; and (3) helps “float” medication around obstructions to high/deep sites in the nasal labyrinth, such as the OMC. The transferred intranasal pressure is proportional, across various exhalation forces, to oral pressure, counterbalancing pressure on the soft palate. This assures a patient communication behind the nasal septum and allows air to escape through the opposite nostril. “Positive-pressure” expands passages narrowed by inflammation (vs. negative pressure delivery, “sniffing”). Use is simple and quick. A patient inserts the nosepiece into one nostril and starts blowing through the mouthpiece. This elevates and seals the soft palate, as with inflating a balloon, separating the oral and nasal cavities. The patient completes use by pressing the bottle to actuate. This causes a coordination-reducing valve to release the exhaled breath concurrently with aerosol spray in a “burst” of naturally humidified air. Reproduced with permission from [<a href="#B84-pharmaceutics-13-01079" class="html-bibr">84</a>], John Wiley & Sons, Inc., 2018.</p> "> Figure 3
<p>Spray cone angles of in situ gelling fluticasone (0.05%, <span class="html-italic">w/w</span>) suspensions prepared with (<b>left</b>) pectin (0.5%, <span class="html-italic">w/w</span>) and (<b>right</b>) pectin and gellan gum (0.5% and 0.2%, <span class="html-italic">w/w</span>, respectively). Reproduced with permission from [<a href="#B74-pharmaceutics-13-01079" class="html-bibr">74</a>], Elsevier, 2019.</p> "> Figure 4
<p>Experimental layout for use of the Plume Induction Port Evaluator (PIPE) with nasal sprays. The illustration represents in colors the effective angles used to calculate mass median plume angles (MMPA). Reproduced with permission from [<a href="#B75-pharmaceutics-13-01079" class="html-bibr">75</a>], Elsevier, 2018.</p> "> Figure 5
<p>Deposition pattern of Afrin nasal spray at different administration angles (insertion depth = 5 mm). Reproduced with permission from [<a href="#B54-pharmaceutics-13-01079" class="html-bibr">54</a>], Springer Nature, 2011.</p> "> Figure 6
<p>Proposed mechanisms of drug penetration during the simultaneous air inspiration: (<b>a</b>)—droplet entrainment by air during spray application (probably less important for large droplets), (<b>b</b>)—spreading of already deposited drug along the nasal surface due to the interactions with the air stream. Reproduced with permission from [<a href="#B62-pharmaceutics-13-01079" class="html-bibr">62</a>], Elsevier, 2020.</p> "> Figure 7
<p>The Mucosal Atomizer Device (MAD) used to deliver medications via a fine spray in the nasal cavity. Reproduced from [<a href="#B111-pharmaceutics-13-01079" class="html-bibr">111</a>], Springer Nature, 2014.</p> ">
Abstract
:1. Introduction
2. Nasal-Formulation-Related Factors
2.1. Aerosol Droplet Size Distribution
2.2. Formulation Viscosity
2.3. Dry Powder Aerosolization Properties
3. Device-Related Factors
3.1. Device System
3.2. Droplet Velocities
3.3. Spray Geometry
4. Patient-Related Factors
5. Other Factors
5.1. Airflow Rate
5.2. Cast-Related Factors
5.3. Airway Expansion
6. Nasal Deposition Studies in Pediatrics
7. Deposition Assessment Methods
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Khan, A.R.; Yang, X.; Fu, M.; Zhai, G. Recent progress of drug nanoformulations targeting to brain. J. Control. Release 2018, 291, 37–64. [Google Scholar] [CrossRef]
- Khan, A.R.; Liu, M.; Khan, M.W.; Zhai, G. Progress in brain targeting drug delivery system by nasal route. J. Control. Release 2017, 268, 364–389. [Google Scholar] [CrossRef]
- Zhi, K.; Raji, B.; Nookala, A.R.; Khan, M.M.; Nguyen, X.H.; Sakshi, S.; Pourmotabbed, T.; Yallapu, M.M.; Kochat, H.; Tadrous, E.; et al. PLGA nanoparticle-based formulations to cross the blood–brain barrier for drug delivery: From R&D to cGMP. Pharmaceutics 2021, 13, 500. [Google Scholar] [CrossRef] [PubMed]
- Noymer, P.; Biondi, S.; Myers, D.; Cassella, J. Pulmonary delivery of therapeutic compounds for treating CNS disorders. Ther. Deliv. 2011, 2, 1125–1140. [Google Scholar] [CrossRef]
- Grosset, K.A.; Malek, N.; Morgan, F.; Grosset, D.G. Inhaled dry powder apomorphine (VR040) for ‘off’ periods in Parkinson’s disease: An in-clinic double-blind dose ranging study. Acta Neurol. Scand. 2013, 128, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, J.D.; Lloyd, P.M.; Munzar, P.; Myers, D.J.; Cross, S.; Damani, R.; Quintana, R.; Spyker, D.A.; Soni, P.; Cassella, J.V. Ultra-fast absorption of amorphous pure drug aerosols via deep lung inhalation. J. Pharm. Sci. 2006, 95, 2438–2451. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.P.; Thompson, D.F. Nebulized fentanyl in acute pain. Ann. Pharmacother. 2016, 50, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Abdou, E.M.; Kandil, S.M.; Morsi, A.; Sleem, M.W. In-vitro and in-vivo respiratory deposition of a developed metered dose inhaler formulation of an anti-migraine drug. Drug Deliv. 2019, 26, 689–699. [Google Scholar] [CrossRef]
- Giunchedi, P.; Gavini, E.; Bonferoni, M.C. Nose-to-brain delivery. Pharmaceutics 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Frey, W.H., II. Method for Administering Neurologic Agents to the Brain. U.S. Patent 5,624,898, 29 April 1997. [Google Scholar]
- Hanson, L.R.; Frey, W.H., II. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008, 9, S5. [Google Scholar] [CrossRef] [Green Version]
- Frey, W.H., II. Neuorologic Agents for Nasal Administration to the Brain. WO1991007947A1, 13 June 1991. [Google Scholar]
- Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018, 10, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illum, L. Nasal drug delivery—Possibilities, problems and solutions. J. Control. Release 2003, 87, 187–198. [Google Scholar] [CrossRef]
- Pandey, V.; Gadeval, A.; Asati, S.; Jain, P.; Jain, N.; Roy, R.K.; Tekade, M.; Soni, V.; Tekade, R.K. Formulation strategies for nose-to-brain delivery of therapeutic molecules. In Drug Delivery Systems; Tekade, R.K., Ed.; Elsevier Academic Press: London, UK, 2019; pp. 291–332. ISBN 978-0-12-814487-9. [Google Scholar]
- Kim, Y.S.; Sung, D.K.; Kim, H.; Kong, W.H.; Kim, Y.E.; Hahn, S.K. Nose-to-brain delivery of hyaluronate—FG loop peptide conjugate for non-invasive hypoxic-ischemic encephalopathy therapy. J. Control. Release 2019, 307, 76–89. [Google Scholar] [CrossRef]
- Elsenosy, F.M.; Abdelbary, G.A.; Elshafeey, A.H.; Elsayed, I.; Fares, A.R. Brain targeting of duloxetine HCL via intranasal delivery of loaded cubosomal gel: In vitro characterization, ex vivo permeation, and in vivo biodistribution studies. Int. J. Nanomed. 2020, 15, 9517–9537. [Google Scholar] [CrossRef]
- Al Harthi, S.; Alavi, S.E.; Radwan, M.A.; El Khatib, M.M.; Alsarra, I.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.P.; Cotter, J.D.; Prakapenka, A.V.; Cook, R.L.; Diperna, D.M.; Sirianni, R.W. Targeting small molecule delivery to the brain and spinal cord via intranasal administration of rabies virus glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics 2020, 12, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, I.; Chung, K.; Bae, S.; Li, Y.; Kim, C.; Choi, B.; Nam, H.Y.; Kim, S.H.; Yun, C.-O.; Lee, K.Y.; et al. Nose-to-brain delivery of cancer-targeting paclitaxel-loaded nanoparticles potentiates antitumor effects in malignant glioblastoma. Mol. Pharm. 2020, 17, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Zada, M.H.; Kubek, M.; Khan, W.; Kumar, A.; Domb, A. Dispersible hydrolytically sensitive nanoparticles for nasal delivery of thyrotropin releasing hormone (TRH). J. Control. Release 2019, 295, 278–289. [Google Scholar] [CrossRef]
- Giuliani, A.; Balducci, A.G.; Zironi, E.; Colombo, G.; Bortolotti, F.; Lorenzini, L.; Galligioni, V.; Pagliuca, G.; Scagliarini, A.; Calza, L.; et al. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Deliv. 2018, 25, 376–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adnet, T.; Groo, A.C.; Picard, C.; Davis, A.; Corvaisier, S.; Since, M.; Bounoure, F.; Rochais, C.; Pluart, L.L.; Dallemagne, P.; et al. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for Alzheimer’s disease treatment. Pharmaceutics 2020, 12, 251. [Google Scholar] [CrossRef] [Green Version]
- Fatouh, A.; Elshafeey, A.; Abdelbary, A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des. Devel. Ther. 2017, 11, 1815–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.Z.; Kiaee, M.; Martin, A.R.; Finlay, W.H. In vitro assessment of an idealized nose for nasal spray testing: Comparison with regional deposition in realistic nasal replicas. Int. J. Pharm. 2020, 582, 119341. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Shang, Y.; Inthavong, K.; Chan, H.-K.; Tu, J. Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery. Int. J. Pharm. 2018, 543, 83–95. [Google Scholar] [CrossRef]
- Hazeri, M.; Faramarzi, M.; Sadrizadeh, S.; Ahmadi, G.; Abouali, O. Regional deposition of the allergens and micro-aerosols in the healthy human nasal airways. J. Aerosol Sci. 2021, 152, 105700. [Google Scholar] [CrossRef] [PubMed]
- Forbes, B.; Bommer, R.; Goole, J.; Hellfritzsch, M.; De Kruijf, W.; Lambert, P.; Caivano, G.; Regard, A.; Schiaretti, F.; Trenkel, M.; et al. A consensus research agenda for optimising nasal drug delivery. Expert Opin. Drug Deliv. 2020, 17, 127–132. [Google Scholar] [CrossRef]
- Gao, M.; Shen, X.; Mao, S. Factors influencing drug deposition in the nasal cavity upon delivery via nasal sprays. J. Pharm. Investig. 2020, 50, 251–259. [Google Scholar] [CrossRef]
- Ugwoke, M.I.; Verbeke, N.; Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol. 2010, 53, 3–21. [Google Scholar] [CrossRef]
- Trenkel, M.; Scherließ, R. Nasal powder formulations: In-vitro characterisation of the impact of powders on nasal residence time and sensory effects. Pharmaceutics 2021, 13, 385. [Google Scholar] [CrossRef]
- Illum, L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 2000, 11, 1–18. [Google Scholar] [CrossRef]
- Suman, D.J.; Laube, L.B.; Dalby, R. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response. J. Aerosol Med. 2006, 19, 510–521. [Google Scholar] [CrossRef]
- Li, X.T.; Su, J.; Kamal, Z.; Guo, P.; Wu, X.; Lu, L.; Wu, H.; Qiu, M. Odorranalectin modified PEG–PLGA/PEG–PBLG curcumin-loaded nanoparticle for intranasal administration. Drug Dev. Ind. Pharm. 2020, 46, 899–909. [Google Scholar] [CrossRef] [PubMed]
- FDA. Guidance for Industry: Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products—Chemistry, Manufacturing, and Controls Documentation. 2002. Available online: https://www.fda.gov/files/drugs/published/Nasal-Spray-and-Inhalation-Solution--Suspension--and-Drug-Products.pdf (accessed on 3 April 2021).
- Bors, L.A.; Bajza, Á.; Mándoki, M.; Tasi, B.J.; Cserey, G.; Imre, T.; Szabó, P.; Erdő, F. Modulation of nose-to-brain delivery of a P-glycoprotein (MDR1) substrate model drug (quinidine) in rats. Brain Res. Bull. 2020, 160, 65–73. [Google Scholar] [CrossRef]
- Corley, R.A.; Kabilan, S.; Kuprat, A.P.; Carson, J.P.; Minard, K.R.; Jacob, R.E.; Timchalk, C.; Glenny, R.; Pipavath, S.; Cox, T.; et al. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol. Sci. 2012, 128, 500–516. [Google Scholar] [CrossRef] [Green Version]
- Djupesland, P.G.; Messina, J.C.; Mahmoud, R.A. The nasal approach to delivering treatment for brain diseases: An anatomic, physiologic, and delivery technology overview. Ther. Deliv. 2014, 5, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Sakane, T.; Okabayashi, S.; Kimura, S.; Inoue, D.; Tanaka, A.; Furubayashi, T. Brain and nasal cavity anatomy of the cynomolgus monkey: Species differences from the viewpoint of direct delivery from the nose to the brain. Pharmaceutics 2020, 12, 1227. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Lee, M.; Shin, H.W.; Chung, S. In vitro nasal mucosa gland-like structure formation on a chip. Lab Chip 2017, 17, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Mercier, C.; Jacqueroux, E.; He, Z.; Hodin, S.; Constant, S.; Perek, N.; Boudard, D.; Delavenne, X. Pharmacological characterization of the 3D MucilAirTM nasal model. Eur. J. Pharm. Biopharm. 2019, 139, 186–196. [Google Scholar] [CrossRef]
- Ladel, S.; Schlossbauer, P.; Flamm, J.; Luksch, H.; Mizaikoff, B.; Schindowski, K. Improved in vitro model for intranasal mucosal drug delivery: Primary olfactory and respiratory epithelial cells compared with the permanent nasal cell line RPMI 2650. Pharmaceutics 2019, 11, 367. [Google Scholar] [CrossRef] [Green Version]
- Kürti, L.; Veszelka, S.; Bocsik, A.; Ózsvári, B.; Puskás, L.G.; Kittel, Á.; Szabó-Révész, P.; Deli, M.A. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability. Cytotechnology 2013, 65, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Pozzoli, M.; Ong, H.X.; Morgan, L.; Sukkar, M.; Traini, D.; Young, P.M.; Sonvico, F. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur. J. Pharm. Biopharm. 2016, 107, 223–233. [Google Scholar] [CrossRef]
- Inoue, D.; Furubayashi, T.; Tanaka, A.; Sakane, T.; Sugano, K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur. J. Pharm. Biopharm. 2020, 149, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Borgmann-Winter, K.; Willard, S.L.; Sinclair, D.; Mirza, N.; Turetsky, B.; Berretta, S.; Hahn, C.G. Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl. Psychiatry 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, A.; Stolnik, S.; Illum, L. Nose-to-brain delivery: Investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol. Pharm. 2015, 12, 2755–2766. [Google Scholar] [CrossRef]
- Shah, V.; Sharma, M.; Pandya, R.; Parikh, R.K.; Bharatiya, B.; Shukla, A.; Tsai, H.-C. Quality by Design approach for an in situ gelling microemulsion of Lorazepam via intranasal route. Mater. Sci. Eng. C 2017, 75, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Al Khafaji, A.S.; Donovan, M.D. Endocytic uptake of solid lipid nanoparticles by the nasal mucosa. Pharmaceutics 2021, 13, 761. [Google Scholar] [CrossRef]
- Ladel, S.; Flamm, J.; Zadeh, A.S.; Filzwieser, D.; Walter, J.-C.; Schlossbauer, P.; Kinscherf, R.; Lischka, K.; Luksch, H.; Schindowski, K. Allogenic Fc domain-facilitated uptake of IgG in nasal lamina propria: Friend or foe for intranasal CNS delivery? Pharmaceutics 2018, 10, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiaee, M.; Wachtel, H.; Noga, M.L.; Martin, A.R.; Finlay, W.H. An idealized geometry that mimics average nasal spray deposition in adults: A computational study. Comput. Biol. Med. 2019, 107, 206–217. [Google Scholar] [CrossRef]
- Vachhani, S.; Kleinstreuer, C. Comparison of micron- and nano-particle transport in the human nasal cavity with a focus on the olfactory region. Comput. Biol. Med. 2021, 128, 104103. [Google Scholar] [CrossRef]
- Trenfield, S.J.; Awad, A.; Madla, C.M.; Hatton, G.B.; Firth, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin. Drug Deliv. 2019, 16, 1081–1094. [Google Scholar] [CrossRef]
- Kundoor, V.; Dalby, R.N. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast. Pharm. Res. 2011, 28, 1895–1904. [Google Scholar] [CrossRef]
- Mygind, N.; Vesterhauge, S. Aerosol distribution in the nose. Rhinology 1978, 16, 79–88. [Google Scholar] [PubMed]
- Swift, D.L. Inspiratory inertial deposition of aerosols in human nasal airway replicate casts: Implication for the proposed NCRP lung model. Radiat. Prot. Dosim. 1991, 38, 29–34. [Google Scholar] [CrossRef]
- Samoliński, B.A.K.; Grzanka, A.; Gotlib, T. Changes in nasal cavity dimensions in children and adults by gender and age. Laryngoscope 2007, 117, 1429–1433. [Google Scholar] [CrossRef]
- Hsu, D.-J.; Chuang, M.-H. In-vivo measurements of micrometer-sized particle deposition in the nasal cavities of taiwanese adults. Aerosol Sci. Technol. 2012, 46, 631–638. [Google Scholar] [CrossRef]
- Warnken, Z.N.; Smyth, H.D.C.; Davis, D.A.; Weitman, S.; Kuhn, J.G.; Williams, R.O. Personalized medicine in nasal delivery: The use of patient-specific administration parameters to improve nasal drug targeting using 3D-printed nasal replica casts. Mol. Pharm. 2018, 15, 1392–1402. [Google Scholar] [CrossRef]
- Nižić, L.; Potaś, J.; Winnicka, K.; Szekalska, M.; Erak, I.; Gretić, M.; Jug, M.; Hafner, A. Development, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres. Eur. J. Pharm. Sci. 2020, 141, 105115. [Google Scholar] [CrossRef] [PubMed]
- Kundoor, V.; Dalby, R.N. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method. Pharm. Res. 2010, 27, 30–36. [Google Scholar] [CrossRef]
- Sosnowski, T.R.; Rapiejko, P.; Sova, J.; Dobrowolska, K. Impact of physicochemical properties of nasal spray products on drug deposition and transport in the pediatric nasal cavity model. Int. J. Pharm. 2020, 574, 118911. [Google Scholar] [CrossRef]
- Nižić, L.; Ugrina, I.; Spoljaric, D.; Sarson, V.; Kucuk, M.S.; Pepic, I.; Hafner, A. Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition. Int. J. Pharm. 2019, 563, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Foo, M.Y.; Cheng, Y.S.; Su, W.C.; Donovan, M.D. The influence of spray properties on intranasal deposition. J. Aerosol Med. 2007, 20, 495–508. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Holmes, T.F.; Gao, J.; Guilmette, R.A.; Li, S.; Surakitbanharn, Y.; Rowlings, C. Characterization of nasal spray pumps and deposition pattern in replica of the human nasal airway. J. Aerosol Med. 2001, 14, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Inthavong, K.; Tian, Z.F.; Li, H.F.; Tu, J.Y.; Yang, W.; Xue, C.L.; Li, C.G. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci. Technol. 2006, 40, 1034–1045. [Google Scholar] [CrossRef]
- Kaye, R.S.; Purewal, T.S.; Alpar, O.H. Development and testing of particulate formulations for the nasal delivery of antibodies. J. Control. Release 2009, 135, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Wingrove, J.; Swedrowska, M.; Scherliess, R.; Parry, M.; Ramjeeawon, M.; Taylor, D.; Gauthier, G.; Brown, L.; Amiel, S.; Zelaya, F.; et al. Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging. J. Control. Release 2019, 302, 140–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeter, J.D.; Tewksbury, E.W.; Wong, B.A.; Kimbell, J.S. Experimental measurements and computational predictions of regional particle deposition in a sectional nasal model. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Shanley, K.T.; Zamankhan, P.; Ahmadi, G.; Hopke, P.K.; Cheng, Y.S. Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. Inhal. Toxicol. 2008, 20, 1093–1100. [Google Scholar] [CrossRef]
- Ghalati, P.F.; Keshavarzian, E.; Abouali, O.; Faramarzi, A.; Tu, J.; Shakibafard, A. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway. Comput. Biol. Med. 2012, 42, 39–49. [Google Scholar] [CrossRef]
- Liu, Y.; Matida, E.A.; Johnson, M.R. Experimental measurements and computational modeling of aerosol deposition in the Carleton-Civic standardized human nasal cavity. J. Aerosol Sci. 2010, 41, 569–586. [Google Scholar] [CrossRef]
- Swift, D.L.; Montassier, N.; Hopke, P.K.; Karpen-Hayes, K.; Cheng, Y.S.; Yin Fong, S.; Hsu Chi, Y.; Strong, J.C. Inspiratory deposition of ultrafine particles in human nasal replicate cast. J. Aerosol Sci. 1992, 23, 65–72. [Google Scholar] [CrossRef]
- Xu, H.; Alzhrani, R.F.; Warnken, Z.N.; Thakkar, S.G.; Zeng, M.; Smyth, H.D.C.; Williams, R.O.; Cui, Z. Immunogenicity of antigen adjuvanted with AS04 and its deposition in the upper respiratory tract after intranasal administration. Mol. Pharm. 2020, 17, 3259–3269. [Google Scholar] [CrossRef]
- Moraga-Espinoza, D.; Warnken, Z.; Moore, A.; Williams, R.O.I.; Smyth, H.D.C. A modified USP induction port to characterize nasal spray plume geometry and predict turbinate deposition under flow. Int. J. Pharm. 2018, 548, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Laube, B.L.; Dalby, R. The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharm. Res. 2005, 22, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Goodey, A.P.; Fang, X.; Jacob, K. A Comparison of the deposition patterns of different nasal spray formulations using a nasal cast. Aerosol Sci. Technol. 2014, 48, 930–938. [Google Scholar] [CrossRef] [Green Version]
- Fasiolo, L.T.; Manniello, M.D.; Tratta, E.; Buttini, F.; Rossi, A.; Sonvico, F.; Bortolotti, F.; Russo, P.; Colombo, G. Opportunity and challenges of nasal powders: Drug formulation and delivery. Eur. J. Pharm. Sci. 2018, 113, 2–17. [Google Scholar] [CrossRef]
- Bosquillon, C.; Lombry, C.; Préat, V.; Vanbever, R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J. Control. Release 2001, 70, 329–339. [Google Scholar] [CrossRef]
- Wong, L.R.; Ho, P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: Implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2017, 70, 59–69. [Google Scholar] [CrossRef]
- Katona, G.; Sipos, B.; Budai-Szucs, M.; Balogh, G.T.; Veszelka, S.; Grof, I.; Deli, M.A.; Volk, B.; Szabo-Revesz, P.; Csoka, I. Development of in situ gelling meloxicam-human serum albumin nanoparticle formulation for nose-to-brain application. Pharmaceutics 2021, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Katona, G.; Balogh, G.T.; Dargó, G.; Gáspár, R.; Márki, Á.; Ducza, E.; Sztojkov-Ivanov, A.; Tömösi, F.; Kecskeméti, G.; Janáky, T.; et al. Development of meloxicam-human serum albumin nanoparticles for nose-to-brain delivery via application of a quality by design approach. Pharmaceutics 2020, 12, 97. [Google Scholar] [CrossRef] [Green Version]
- Djupesland, P.G.; Messina, J.C.; Palmer, J.N. Deposition of drugs in the nose and sinuses with an exhalation delivery system vs conventional nasal spray or high-volume irrigation in Draf II/III post-surgical anatomy. Rhinology 2020, 58, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.N.; Jacobson, K.W.; Messina, J.C.; Kosik-Gonzalez, C.; Djupesland, P.G.; Mahmoud, R.A. EXHANCE-12: 1-year study of the exhalation delivery system with fluticasone (EDS-FLU) in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2018, 8, 869–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, J.; Wang, Z.; Nevorski, D.; White, T.; Zhou, Y. Nasal and olfactory deposition with normal and bidirectional intranasal delivery techniques: In vitro tests and numerical simulations. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Djupesland, P.G.; Skretting, A.; Winderen, M.; Holand, T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J. Aerosol Med. 2004, 17, 249–259. [Google Scholar] [CrossRef]
- Xi, J.; Yuan, J.E.; Zhang, Y.; Nevorski, D.; Wang, Z.; Zhou, Y. Visualization and quantification of nasal and olfactory deposition in a sectional adult nasal airway cast. Pharm. Res. 2016, 33, 1527–1541. [Google Scholar] [CrossRef] [PubMed]
- Djupesland, P.G.; Skretting, A. Nasal deposition and clearance in man: Comparison of a bidirectional powder device and a traditional liquid spray pump. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 280–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suman, J.D.; Laube, B.L.; Dalby, R. Comparison of nasal deposition and clearance generated by a nebulizer and an aqueous spray pump. Pharm. Res. 1999, 16, 1648–1652. [Google Scholar] [CrossRef]
- Hosseini, S.; Golshahi, L. An in vitro evaluation of importance of airway anatomy in sub-regional nasal and paranasal drug delivery with nebulizers using three different anatomical nasal airway replicas of 2-, 5- and 50-Year old human subjects. Int. J. Pharm. 2019, 563, 426–436. [Google Scholar] [CrossRef]
- Dong, D.; Cai, F.; Huang, S.; Zhu, X.; Geng, J.; Liu, J.; Lv, L.; Zhang, Y.; Zhao, Y. Assessment of three types of intranasal nebulization devices in three-dimensional printed models and volunteers: A pilot study. Int. Forum Allergy Rhinol. 2020, 10, 1300–1308. [Google Scholar] [CrossRef]
- Djupesland, P.G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res. 2013, 3, 42–62. [Google Scholar] [CrossRef] [Green Version]
- Newman, S.P.; Morén, F.; Clarke, S.W. The nasal distribution of metered does inhalers. J. Laryngol. Otol. 1987, 101, 127–132. [Google Scholar] [CrossRef]
- Newman, S.P.; Pitcairn, G.R.; Dalby, R.N. Drug delivery to the nasal cavity: In vitro and in vivo assessment. Critl. Rev. Ther. Drug Carrier Syst. 2004, 21, 21–66. [Google Scholar] [CrossRef]
- Chen, Y.; Young, P.M.; Murphy, S.; Fletcher, D.F.; Long, E.; Lewis, D.; Church, T.; Traini, D. High-speed lser image analysis of plume angles for pressurised metered dose inhalers: The effect of nozzle geometry. AAPS PharmSciTech 2017, 18, 782–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, S.; Wei, X.; Wilkins, J.V., Jr.; Fergusson, C.P.; Mohammadi, R.; Vorona, G.; Golshahi, L. In vitro measurement of regional nasal drug delivery with Flonase, Flonase Sensimist,TM and MAD NasalTM in anatomically correct nasal airway replicas of pediatric and adult human subjects. J. Aerosol Med. Pulm. Drug Deliv. 2019, 32, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Moraga-Espinoza, D.; Eshaghian, E.; Smyth, H.D.C. Mass median plume angle: A novel approach to characterize plume geometry in solution based pMDIs. Int. J. Pharm. 2018, 543, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Sawant, N.; Donovan, M.D. In vitro assessment of spray deposition patterns in a pediatric (12 year-old) nasal cavity model. Pharm. Res. 2018, 35, 108. [Google Scholar] [CrossRef]
- Wilkins, J.V.; Golshahi, L.; Rahman, N.; Li, L. Evaluation of intranasal vaccine delivery using anatomical replicas of infant nasal airways. Pharm. Res. 2021, 38, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Manniello, M.D.; Hosseini, S.; Alfaifi, A.; Esmaeili, A.R.; Kolanjiyil, A.V.; Walenga, R.; Babiskin, A.; Sandell, D.; Mohammadi, R.; Schuman, T.; et al. In vitro evaluation of regional nasal drug delivery using multiple anatomical nasal replicas of adult human subjects and two nasal sprays. Int. J. Pharm. 2021, 593, 120103. [Google Scholar] [CrossRef]
- Doughty, D.V.; Hsu, W.; Dalby, R.N. Automated actuation of nasal spray products: Effect of hand-related variability on thein vitroperformance of Flonase nasal spray. Drug Dev. Ind. Pharm. 2014, 40, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Le Guellec, S.; Le Pennec, D.; Gatier, S.; Leclerc, L.; Cabrera, M.; Pourchez, J.; Diot, P.; Reychler, G.; Pitance, L.; Durand, M.; et al. Validation of anatomical models to study aerosol deposition in human nasal cavities. Pharm. Res. 2014, 31, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.T.; Asgharian, B.; Kimbell, J.S.; Wong, B.A. Particle deposition in human nasal airway replicas manufactured by different methods. Part II: Ultrafine particles. Aerosol Sci. Technol. 2004, 38, 1072–1079. [Google Scholar] [CrossRef]
- Kelly, J.T.; Asgharian, B.; Kimbell, J.S.; Wong, B.A. Particle deposition in human nasal airway replicas manufactured by different methods. part I: Inertial regime particles. Aerosol Sci. Technol. 2004, 38, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xi, J.; Simpson, J.; Irshad, H.; Cheng, Y.S. Aerosol deposition in a nasopharyngolaryngeal replica of a 5-year-old child. Aerosol Sci. Technol. 2013, 47, 275–282. [Google Scholar] [CrossRef]
- Djupesland, P.G.; Messina, J.C.; Mahmoud, A.R. Role of nasal casts for in vitro evaluation of nasal drug delivery and quantitative evaluation of various nasal casts. Ther. Deliv. 2020, 11, 485–495. [Google Scholar] [CrossRef]
- Xi, J.; Wang, Z.; Si, X.A.; Zhou, Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling. Eur. J. Pharm. Sci. 2018, 118, 113–123. [Google Scholar] [CrossRef]
- Laube, B.L.; Sharpless, G.; Shermer, C.; Sullivan, V.; Powell, K. Deposition of dry powder generated by solovent in sophia anatomical infant nose-throat (SAINT) model. Aerosol Sci. Technol. 2012, 46, 514–520. [Google Scholar] [CrossRef]
- Golshahi, L.; Noga, M.L.; Thompson, R.B.; Finlay, W.H. In vitro deposition measurement of inhaled micrometer-sized particles in extrathoracic airways of children and adolescents during nose breathing. J. Aerosol Sci. 2011, 42, 474–488. [Google Scholar] [CrossRef]
- Häußermann, S.; Bailey, A.G.; Bailey, M.R.; Etherington, G.; Youngman, M. The influence of breathing patterns on particle deposition in a nasal replicate cast. J. Aerosol Sci. 2002, 33, 923–933. [Google Scholar] [CrossRef]
- Buonsenso, D.; Barone, G.; Valentini, P.; Pierri, F.; Riccardi, R.; Chiaretti, A. Utility of intranasal Ketamine and Midazolam to perform gastric aspirates in children: A double-blind, placebo controlled, randomized study. BMC Pediatr. 2014, 14, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, I.; Scherer, P.W.; Mozell, M.M. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J. Appl. Physiol. 1993, 75, 2273–2287. [Google Scholar] [CrossRef] [PubMed]
- Grmaš, J.; Stare, K.; Božič, D.; Injac, R.; Dreu, R. Elucidation of formulation and delivery device-related effects on in vitro performance of nasal spray with implication to rational product specification identification. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 230–246. [Google Scholar] [CrossRef]
- Laube, B.L.; Sharpless, G.; Vikani, A.R.; Harrand, V.; Zinreich, S.J.; Sedberry, K.; Knaus, D.; Barry, J.; Papania, M. Intranasal deposition of Accuspray aerosol in anatomically correct models of 2-, 5-, and 12-year-old children. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 320–333. [Google Scholar] [CrossRef]
- Javaheri, E.; Golshahi, L.; Finlay, W.H. An idealized geometry that mimics average infant nasal airway deposition. J. Aerosol Sci. 2013, 55, 137–148. [Google Scholar] [CrossRef]
- Storey-Bishoff, J.; Noga, M.; Finlay, W.H. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. J. Aerosol Sci. 2008, 39, 1055–1065. [Google Scholar] [CrossRef]
- Leclerc, L.; Pourchez, J.; Prevot, N.; Vecellio, L.; Le Guellec, S.; Cottier, M.; Durand, M. Assessing sinus aerosol deposition: Benefits of SPECT–CT imaging. Int. J. Pharm. 2014, 462, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Perinel, S.; Leclerc, L.; Prévôt, N.; Deville, A.; Cottier, M.; Durand, M.; Vergnon, J.-M.; Pourchez, J. Micron-sized and submicron-sized aerosol deposition in a new ex vivo preclinical model. Respir. Res. 2016, 17, 78. [Google Scholar] [CrossRef] [Green Version]
- Sartoretti, T.; Mannil, M.; Biendl, S.; Froehlich, J.M.; Alkadhi, H.; Zadory, M. In vitro qualitative and quantitative CT assessment of iodinated aerosol nasal deposition using a 3D-printed nasal replica. Eur. Radiol. Exp. 2019, 3. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Yang, T.; Talaat, K.; Wen, T.; Zhang, Y.; Klozik, S.; Peters, S. Visualization of local deposition of nebulized aerosols in a human upper respiratory tract model. J. Vis. 2018, 21, 225–237. [Google Scholar] [CrossRef]
- Veronesi, M.C.; Graner, B.D.; Cheng, S.-H.; Zamora, M.; Zarrinmayeh, H.; Chen, C.-T.; Das, S.K.; Vannier, M.W. Aerosolized in vivo 3D localization of nose-to-brain nanocarrier delivery using multimodality neuroimaging in a rat model—Protocol development. Pharmaceutics 2021, 13, 391. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.; Berger, R.L.; McDermott, J.; Gupta, P.; Monteith, D.; Connor, A.; Lin, W. Regional deposition of mometasone furoate nasal spray suspension in humans. Allergy Asthma Proc. 2015, 36, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.B.; Finlay, W.H. Using MRI to measure aerosol deposition. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 55–62. [Google Scholar] [CrossRef] [PubMed]
Model | Type | Advantages | Limitations | Ref | ||
---|---|---|---|---|---|---|
Cell cultures | Primary cells, e.g., human nasal epithelium, porcine respiratory and olfactory cells | In vitro | Close simulation of nasal mucosa Miscellaneous cell composition and diseased cells could be obtained | Limited subculture numbers High risk of contamination Short lifespan | Lack of sufficient reproducibility for powder formulations due to concentrations’ heterogeneity at the cell layers. Deposition method could affect the cell layer integrity | [40,41,42,46] |
Immortalized cells e.g., RPMI 2650, Calu-3 | Excellent uniformity Easy to handle and culture | Undesired morphological changes Limited differentiation and the absence of some physiological functionalities | [21,43,44,45] | |||
3D-printed nasal replicas | In vitro | Useful tool to compare different nasal devices, formulations, and inhalation protocols Provides detailed deposition pattern of an aerosol in the nasal cavity Could be combined with other techniques, e.g., NGIs to collect data over the entire respiratory tract | Single-block casts are only qualitativeMonotonousness, where one cast represents one patient’s nasal anatomy, which cannot be generalized to the larger population Lack of important factors for nasal drug delivery, e.g., mucociliary clearance | [53,54,55,56,59,60,61,62] | ||
CPFD | In silico | Quality simulation of total and regional deposition over wide parameter scope, e.g., particle size, velocity, airway geometry, airflow Relatively rapid experiment in comparison to in vitro or in vivo models | Often depends on ideal assumptions, e.g., simplified airway geometries, monodispersed particles, and stable inhalation patterns, which otherwise make numerical simulation challenging Many inhalation devices and aerosol generation process cannot be fully simulated | [51,52] | ||
Excised nasal mucosa from animal or human donor | Ex vivo | Genuine nasal tissue with preserved integrity and permeation properties Same tissue could be utilized for other tests, e.g., histological analysis for formulation safety | Complicated model due to differences between species, e.g., tissue thickness and enzymatic activity Proficient tissue handling is requiredAnalytical interference could occur with other bio-composites | [47,48,49,50] | ||
Animal models, e.g., mice, rats, monkeys | In vivo | Surrogates for humans where extensive preclinical testing can be conducted Pharmacokinetic (Cmax, Tmax, AUC, %DTE *, %DTP **) and pharmacodynamic data are obtained | Inter-species anatomical and physiological variations as well as different inhalation profiles | [16,17,19,20,36] |
Particle/Droplet Sizes (µm) | Formulation | Device | Regional Deposition * | Ref. |
---|---|---|---|---|
48.3 | Suspension | Four nasal spray pumps VP-7 | 35.4% anterior, 64.4% turbinates | [64] |
60.7 | PF-35 | 37.5% anterior, 62.5% turbinates | ||
61.6 | PF-60 | 43.4% anterior, 56.5% turbinates | ||
58.1 | PF-80 (20 L/min flow rate) | 59.4% anterior | ||
5.4 for the particulate formulation ** 37.1 aerosol droplets following actuation | Dry Powder | Uni-dose DP™ (25 L/min flow rate) | 50–65% was deposited in the nasal vestibule and 30–40% in deeper compartments all together: olfactory, turbinates, and nasopharynx | [66] |
37 ** | Aqueous Solution | Nasal spray pump SP270+ with 3959-actuator (15 L/min flow rate) | ~50% at the nasal vestibule ~18% middle/upper turbinates (including the olfactory) | [67] |
1–2 | Aqueous Solution | Vibrating orifice aerosol generator (15 L/min flow rate) | 4% total and <1% each section | [68] |
5.1 | 16% total and 1–4% each section | |||
10.3 | 40% anterior, 12% turbinates, 5% in the olfactory | |||
14.3 | 65% anterior, 10% turbinates, 2% in the olfactory | |||
5–7 | Oily Solution | Vibrating orifice aerosol generator (30 L/min flow rate) | 25–40% anterior, 8% middle, 0–1% posterior | [71] |
8–10 | 55–70% anterior, 5% middle, 0–1% posterior | |||
15.7 for the particulate formulation ** 266 aerosol droplets following actuation | Suspension | MAD NasalTM atomization device | 25% vestibule, 42% posterior, 33% nasopharynx | [73] |
47.3 for the particulate formulation ** 132.4 aerosol droplets following actuation | 22% vestibule, 25% posterior, 52% nasopharynx |
Device | Specifications | Regional Deposition Reported | Ref. |
---|---|---|---|
Squeeze bottle | Liquid formulations, distributing relatively large volume, e.g., 80 mL, not recommended for children | Wide and deep distribution in the nasal cavity but poor delivery to the superior and posterior regions | [83] |
Spray pumps (metered-dose, single/duo-dose) | Most dominated, liquid, and powder formulations and different systems of pumps were introduced to avoid the use of preservatives | Smaller coverage area than nebulizers with high anterior and lower deposition, not suitable for olfactory delivery | [61,64,83,87,88] |
Powered nebulizers/atomizers | Liquid formulations, need compressed gasses/mechanical power/ultrasonics to produce small and low-speed aerosol droplets | Middle and superior meatuses. Mesh-type nebulizers achieved greater dorsal deposition than Jet-type when normal or bidirectional nasal delivery is applied. Deeper deposition could be achieved when using a narrow-tip adaptor. A nitrogen-driven nasal atomizer is under development for N2BDD | [61,85,90,91] |
Breath-powered bidirectional technique combined with any nasal devices, e.g., nasal sprays, nebulizers | Liquid and powder formulations, exhalation delivery mechanism that causes velum closure preventing formulation run off into the oral cavity, minimize lung deposition | Throughout the nasal cavity with an improved superior and posterior deposition where the olfactory region is located | [83,85,87,88,90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maaz, A.; Blagbrough, I.S.; De Bank, P.A. In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021, 13, 1079. https://doi.org/10.3390/pharmaceutics13071079
Maaz A, Blagbrough IS, De Bank PA. In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics. 2021; 13(7):1079. https://doi.org/10.3390/pharmaceutics13071079
Chicago/Turabian StyleMaaz, Aida, Ian S. Blagbrough, and Paul A. De Bank. 2021. "In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery" Pharmaceutics 13, no. 7: 1079. https://doi.org/10.3390/pharmaceutics13071079
APA StyleMaaz, A., Blagbrough, I. S., & De Bank, P. A. (2021). In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics, 13(7), 1079. https://doi.org/10.3390/pharmaceutics13071079