Locally Applied Slow-Release of Minocycline Microspheres in the Treatment of Peri-Implant Mucositis: An Experimental In Vivo Study
<p>Study outline.</p> "> Figure 2
<p>Clinical photographs and radiographs—Clinical photographs taken at (<b>a</b>) the surgery (S0), (<b>b</b>) the first drug administration (baseline, T1) and (<b>c</b>) 8 weeks after the baseline (T3). Peri-apical radiographs taken at (<b>d</b>) the surgery, (<b>e</b>) the baseline and (<b>f</b>) 8 weeks after the baseline.</p> "> Figure 3
<p>Macroscopic evaluation of carrier sustainability. (<b>a</b>) No residue and (<b>b</b>) residual agent visible at the subgingival part of healing abutment.</p> "> Figure 4
<p>Immunohistochemical (IHC) stained histological slides of different types of primary antibody—(<b>a</b>) CD3, (<b>b</b>) CD20, (<b>c</b>) IgG antibody. A/F—abutment-fixture junction; upper (blue) and lower (maroon) region of interest (ROI) selected for cell marker intensity analysis.</p> "> Figure 5
<p>Evaluation of carrier and bacteriostatic effect sustainability—number of implants detected with residual agents at (<b>a</b>) the first administration and (<b>b</b>) the second administration. Number of implants exhibiting a bacteriostatic effect from broth dilution assay at (<b>c</b>) the first administration and (<b>d</b>) the second administration.</p> "> Figure 6
<p>Interval changes of clinical parameters. (<b>a</b>) Probing pocket depth (mm); (<b>b</b>) bleeding on probing (%); (<b>c</b>) gingival index; (<b>d</b>) plaque index. * Statistical difference within each group (CA: <span class="html-italic">p</span> = 0.026, placebo: <span class="html-italic">p</span> = 0.027, PG: <span class="html-italic">p</span> = 0.028, control: <span class="html-italic">p</span> = 0.027).</p> "> Figure 7
<p>Mean marginal bone level change (mm).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals, Housing and Husbandry
2.2. Study Design
2.3. Experimental Procedures
2.3.1. Tooth Extraction and Implant Installation
2.3.2. Experimental Peri-Implant Mucositis
2.3.3. Antimicrobial Interventions
- 0.5 g of minocycline hydrochloride with CA microsphere carrier (CA; Minocline®, Dongkook Pharmaceutical, Seoul, South Korea),
- CA microsphere carrier without the antimicrobial agent (placebo; prepared by the Dongkook Pharmaceutical company),
- 0.5 g of minocycline hydrochloride with PG microsphere carrier (PG; Periocline®, Sunstar, Osaka, Japan),
- mechanical debridement only (negative control).
2.3.4. Drug Sustainability Evaluation
2.3.5. Clinical and Radiographical Outcomes
2.3.6. Histological Preparation and Outcomes
2.3.7. Data Analysis
3. Results
3.1. Drug Sustainability Evaluation
3.1.1. Carrier Sustainability
3.1.2. Bacteriostatic Effect Sustainability
3.2. Clinical Findings
3.3. Radiographical Findings
3.4. IHC Cell Marker Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Antibody | Specificity | Dilutions | Source |
---|---|---|---|
CD3 | T cells | 1:200 | Abcam |
CD20 | B cells | 1:800 | Thermo Fisher scientific |
IgG | Plasma/B Cells | 1:800 | Cloud-Clone corp. |
ΔS0–T1 | ΔT1–T2 | ΔT2–T3 | ΔT1–T3 | |
---|---|---|---|---|
CA | −0.38 ± 0.26 | −0.01 ± 0.20 | −0.36 ± 0.29 | −0.37 ± 0.26 |
Placebo | −0.47 ± 0.30 | 0.01 ± 0.02 | −0.35 ± 0.24 | −0.34 ± 0.23 |
PG | −0.39 ± 0.38 | −0.14 ± 0.17 | −0.11 ± 0.15 | −0.25 ± 0.23 |
Control | −0.44 ± 0.30 | −0.09 ± 0.18 | −0.35 ± 0.26 | −0.44 ± 0.29 |
p-value | 0.813 | 0.439 | 0.181 | 0.590 |
References
- Moraschini, V.; Poubel, L.A.; Ferreira, V.F.; Barboza Edos, S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int. J. Oral Maxillofac. Surg. 2015, 44, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S313–S318. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Lindahl, C.; Persson, G.R. Occurrence of cases with peri-implant mucositis or peri-implantitis in a 21-26 years follow-up study. J. Clin. Periodontol. 2018, 45, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Persson, G.R.; Pirih, F.Q.; Camargo, P.M. Peri-implant health, peri-implant mucositis, and peri-implantitis: Case definitions and diagnostic considerations. J. Clin. Periodontol. 2018, 45, S278–S285. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.; Chapple, I.L.; Working Group 4 of the VIII European Workshop on Periodontology. Clinical research on peri-implant diseases: Consensus report of W orking G roup 4. J. Clin. Periodontol. 2012, 39, 202–206. [Google Scholar] [CrossRef]
- Costa, F.O.; Takenaka-Martinez, S.; Cota, L.O.; Ferreira, S.D.; Silva, G.L.; Costa, J.E. Peri-implant disease in subjects with and without preventive maintenance: A 5-year follow-up. J. Clin. Periodontol. 2012, 39, 173–181. [Google Scholar] [CrossRef]
- Jepsen, S.; Berglundh, T.; Genco, R.; Aass, A.M.; Demirel, K.; Derks, J.; Figuero, E.; Giovannoli, J.L.; Goldstein, M.; Lambert, F.; et al. Primary prevention of peri-implantitis: Managing peri-implant mucositis. J. Clin. Periodontol. 2015, 42 (Suppl. 16), S152–S157. [Google Scholar] [CrossRef] [Green Version]
- Figuero, E.; Graziani, F.; Sanz, I.; Herrera, D.; Sanz, M. Management of peri-implant mucositis and peri-implantitis. Periodontol. 2000 2014, 66, 255–273. [Google Scholar] [CrossRef]
- Herrera, D.; Sanz, M.; Jepsen, S.; Needleman, I.; Roldan, S. A systematic review on the effect of systemic antimicrobials as an adjunct to scaling and root planing in periodontitis patients. J. Clin. Periodontol. 2002, 29, 136–159. [Google Scholar] [CrossRef]
- Van Winkelhoff, A.J.; Rams, T.E.; Slots, J. Systemic antibiotic therapy in periodontics. Periodontol. 2000 1996, 10, 45–78. [Google Scholar] [CrossRef]
- Oosterwaal, P.J.; Mikx, F.H.; Renggli, H.H. Clearance of a topically applied fluorescein gel from periodontal pockets. J. Clin. Periodontol. 1990, 17, 613–615. [Google Scholar] [CrossRef]
- Cha, J.K.; Lee, J.S.; Kim, C.S. Surgical Therapy of Peri-Implantitis with Local Minocycline: A 6-Month Randomized Controlled Clinical Trial. J. Dent. Res. 2019, 98, 288–295. [Google Scholar] [CrossRef]
- Park, Y.J.; Lee, J.Y.; Yeom, H.R.; Kim, K.H.; Lee, S.C.; Shim, I.K.; Chung, C.P.; Lee, S.J. Injectable polysaccharide microcapsules for prolonged release of minocycline for the treatment of periodontitis. Biotechnol. Lett. 2005, 27, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Yeom, H.R.; Park, Y.J.; Lee, S.J.; Rhyu, I.C.; Chung, C.P.; Nisengard, R.J. Clinical and microbiological effects of minocycline-loaded microcapsules in adult periodontitis. J. Periodontol. 1997, 68, 1102–1109. [Google Scholar] [CrossRef]
- Lee, D.W.; Lim, C.; Israelachvili, J.N.; Hwang, D.S. Strong adhesion and cohesion of chitosan in aqueous solutions. Langmuir 2013, 29, 14222–14229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderkerckhove, B.N.A.; Quirynen, M.; Van Steenberghe, D. The use of locally-delivered minocycline in the treatment of chronic periodontitis. A review of the literature. J. Clin. Periodontol. 1998, 25, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 2010, 160, 1577–1579. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Lindhe, J.; Marinell, C.; Ericsson, I.; Liljenberg, B. Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin. Oral Implant. Res. 1992, 3, 1–8. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Loe, H.; Silness, J. Periodontal Disease in Pregnancy. I. Prevalence and Severity. Acta Odontol. Scand. 1963, 21, 533–551. [Google Scholar] [CrossRef]
- Carcuac, O.; Abrahamsson, I.; Albouy, J.P.; Linder, E.; Larsson, L.; Berglundh, T. Experimental periodontitis and peri-implantitis in dogs. Clin. Oral Implant. Res. 2013, 24, 363–371. [Google Scholar] [CrossRef]
- Berglundh, T.; Lindhe, J.; Jonsson, K.; Ericsson, I. The topography of the vascular systems in the periodontal and peri-implant tissues in the dog. J. Clin. Periodontol. 1994, 21, 189–193. [Google Scholar] [CrossRef]
- Sanz-Martín, I.; Rojo, E.; Maldonado, E.; Stroppa, G.; Nart, J.; Sanz, M. Structural and histological differences between connective tissue grafts harvested from the lateral palatal mucosa or from the tuberosity area. Clin. Oral Investig. 2019, 23, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Guarino, V.; Caputo, T.; Altobelli, R.; Ambrosio, L. Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. Aims Mater. Sci. 2015, 2, 497–502. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Espinar, F.O.; Méndez, J.B. The application of microencapsulation techniques in the treatment of endodontic and periodontal diseases. Pharmaceutics 2011, 3, 538–571. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-B.; Kweon, H.H.-I.; Cho, H.-J.; Kim, C.-S.; Kim, Y.-T. Characteristics of Local Delivery Agents for Treating Peri-implantitis on Dental Implant Surfaces: A Preclinical Study. J. Oral Implantol. 2019, 45, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Xu, P.; Pang, Z.; Zhao, J.; Chai, Z.; Li, X.; Li, H.; Jiang, M.; Cheng, H.; Zhang, B.; et al. Local delivery of minocycline-loaded PEG-PLA nanoparticles for the enhanced treatment of periodontitis in dogs. Int. J. Nanomed. 2014, 9, 3963–3970. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, S.; Nakayama, A.; Oda, M.; Takada, M.; Attwood, D. Drug release from oral mucosal adhesive tablets of chitosan and sodium alginate. Int. J. Pharm. 1995, 118, 257–263. [Google Scholar] [CrossRef]
- Thaya, R.; Vaseeharan, B.; Sivakamavalli, J.; Iswarya, A.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Al-anbr, M.N.; Khaled, J.M.; Benelli, G. Synthesis of chitosan-alginate microspheres with high antimicrobial and antibiofilm activity against multi-drug resistant microbial pathogens. Microb. Pathog. 2018, 114, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Zitzmann, N.U.; Donati, M. Are peri-implantitis lesions different from periodontitis lesions? J. Clin. Periodontol. 2011, 38, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Roos-Jansåker, A.M.; Claffey, N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: A literature review. J. Clin. Periodontol. 2008, 35, 305–315. [Google Scholar] [CrossRef]
- Bassetti, M.; Schär, D.; Wicki, B.; Eick, S.; Ramseier, C.A.; Arweiler, N.B.; Sculean, A.; Salvi, G.E. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clin. Oral Implant. Res. 2014, 25, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Lessem, J.; Dahlén, G.; Renvert, H.; Lindahl, C. Mechanical and repeated antimicrobial therapy using a local drug delivery system in the treatment of peri-implantitis: A randomized clinical trial. J. Periodontol. 2008, 79, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Trejo, P.M.; Bonaventura, G.; Weng, D.; Caffesse, R.G.; Bragger, U.; Lang, N.P. Effect of mechanical and antiseptic therapy on peri-implant mucositis: An experimental study in monkeys. Clin. Oral Implant. Res. 2006, 17, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Schenk, R.K.; Buser, D.; Hardwick, W.R.; Dahlin, C. Healing pattern of bone regeneration in membrane-protected defects: A histologic study in the canine mandible. Int. J. Oral Maxillofac. Implant. 1994, 9, 13–29. [Google Scholar]
Clinical Parameter | Group | Baseline (T1) | 4 Weeks (T2) | 8 Weeks (T3) |
---|---|---|---|---|
Mean PPD (mm) | CA | 2.56 ± 0.46 | 2.64 ± 0.49 | 2.25 ± 0.27 |
Placebo | 2.39 ± 0.31 | 2.44 ± 0.54 | 2.33 ± 0.36 | |
PG | 2.41 ± 0.22 | 2.47 ± 0.20 | 2.56 ± 0.60 | |
Control | 2.47 ± 0.30 | 2.50 ± 0.17 | 2.50 ± 0.44 | |
p-value | 0.975 | 0.847 | 0.585 | |
Mean GI | CA | 1.44 ± 0.23 | 1.53 ± 0.11 | 1.56 ± 0.33 |
Placebo | 1.56 ± 0.25 | 1.58 ± 0.13 | 1.64 ± 0.15 | |
PG | 1.44 ± 0.21 | 1.44 ± 0.18 | 1.47 ± 0.31 | |
Control | 1.42 ± 0.08 | 1.44 ± 0.08 | 1.44 ± 0.23 | |
p-value | 0.680 | 0.267 | 0.501 | |
Mean BOP (%) | CA | 44.3 ± 22.9 | 52.8 ± 11.7 | 47.2 ± 26.2 |
Placebo | 55.5 ± 24.7 | 58.5 ± 13.0 | 63.8 ± 14.8 | |
PG | 47.3 ± 22.5 | 44.5 ± 18.5 | 47.2 ± 31.1 | |
Control | 41.5 ± 8.5 | 44.3 ± 8.0 | 44.3 ± 22.9 | |
p-value | 0.646 | 0.267 | 0.449 | |
Mean PLI | CA | 2.75 ± 0.23 | 2.67 ± 0.22 | 1.47 ± 0.40 ‡ |
Placebo | 2.64 ± 0.22 | 2.78 ± 0.18 | 1.45 ± 0.41 ‡ | |
PG | 2.78 ± 0.25 | 2.69 ± 0.32 | 1.42 ± 0.37 ‡ | |
Control | 2.72 ± 0.25 | 2.70 ± 0.20 | 1.47 ± 0.37 ‡ | |
p-value | 0.760 | 0.811 | 0.972 |
CA | Placebo | PG | Control | p-Value | ||
---|---|---|---|---|---|---|
CD3 (%) | Upper | 8.60 ± 4.27 | 8.66 ± 4.05 | 8.70 ± 5.35 | 6.60 ± 4.41 | 0.615 |
Lower | 8.30 ± 3.90 | 7.49 ± 4.50 | 7.59 ± 4.57 | 5.94 ± 5.43 | 0.340 | |
Total mean | 8.60 ± 4.27 | 8.02 ± 4.34 | 8.26 ± 5.08 | 6.31 ± 4.90 | ||
CD20 (%) | Upper | 6.35 ± 3.38 | 6.70 ± 3.89 | 4.34 ± 2.51 | 6.26 ± 3.54 | 0.572 |
Lower | 6.76 ± 7.71 | 7.57 ± 5.16 | 5.46 ± 2.20 | 7.36 ± 4.01 | 0.539 | |
Total mean | 6.55 ± 5.86 | 7.10 ± 4.54 | 4.90 ± 2.43 | 6.84 ± 3.83 | ||
IgG (%) | Upper | 6.33 ± 3.52 | 15.18 ± 10.95 | 8.34 ± 7.16 | 11.20 ± 9.33 | 0.226 |
Lower | 6.14 ± 5.49 | 10.16 ± 7.95 | 8.82 ± 6.56 | 6.14 ± 3.73 | 0.369 | |
Total mean | 6.23 ± 4.61 | 12.78 ± 9.95 | 8.61 ± 6.83 | 8.67 ± 7.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.-W.; Kim, M.-J.; Paeng, K.-W.; Yu, K.A.; Lee, C.-K.; Song, Y.W.; Cha, J.-K.; Sanz, M.; Jung, U.-W. Locally Applied Slow-Release of Minocycline Microspheres in the Treatment of Peri-Implant Mucositis: An Experimental In Vivo Study. Pharmaceutics 2020, 12, 668. https://doi.org/10.3390/pharmaceutics12070668
Yoon S-W, Kim M-J, Paeng K-W, Yu KA, Lee C-K, Song YW, Cha J-K, Sanz M, Jung U-W. Locally Applied Slow-Release of Minocycline Microspheres in the Treatment of Peri-Implant Mucositis: An Experimental In Vivo Study. Pharmaceutics. 2020; 12(7):668. https://doi.org/10.3390/pharmaceutics12070668
Chicago/Turabian StyleYoon, Sung-Wook, Myong-Ji Kim, Kyeong-Won Paeng, Kyeong Ae Yu, Chong-Kil Lee, Young Woo Song, Jae-Kook Cha, Mariano Sanz, and Ui-Won Jung. 2020. "Locally Applied Slow-Release of Minocycline Microspheres in the Treatment of Peri-Implant Mucositis: An Experimental In Vivo Study" Pharmaceutics 12, no. 7: 668. https://doi.org/10.3390/pharmaceutics12070668
APA StyleYoon, S. -W., Kim, M. -J., Paeng, K. -W., Yu, K. A., Lee, C. -K., Song, Y. W., Cha, J. -K., Sanz, M., & Jung, U. -W. (2020). Locally Applied Slow-Release of Minocycline Microspheres in the Treatment of Peri-Implant Mucositis: An Experimental In Vivo Study. Pharmaceutics, 12(7), 668. https://doi.org/10.3390/pharmaceutics12070668