A Novel Star Like Eight-Arm Polyethylene Glycol-Deferoxamine Conjugate for Iron Overload Therapy
"> Figure 1
<p>Synthetic route of the 8-arm-polyethylene glycol- deferoxamine (8-arm-PEG-DFO) conjugates.</p> "> Figure 2
<p>The synthesis and characterization of 8-arm-PEG-DFO conjugates. (<b>A</b>) The <sup>1</sup>H NMR spectrums of the products and the materials. Both of the newly-appeared conjugates peak at 7.75 ppm, which is attributed to the amido bonds and the disappearance of the methylene characteristic peaks at 2.80 ppm on succinimide (peak A), as indicated by the synthesis of the 8-arm-PEG-DFO conjugates. Characteristic peaks of 8-arm-PEG-DFO: (3.4 ppm: H-5, H-12, and H-19; 3.0 ppm: H-1, H-8 and H-15; 2.6 ppm: H-6, H-13; 2.3 ppm: H-7, H-14, H-22; 2.1 ppm: H-20; 1.9 ppm: -CH<sub>3</sub>; 1.7 ppm: H-21; 1.5 ppm: H-4, H-11, and H-18; 1.4 ppm: H-2, H-9, H-16; 1.2 ppm: H-3, H-10, and H-17); (<b>B</b>) The HPLC chromatograms for the free DFO and the 8-arm-PEG-DFO conjugates; (<b>C</b>) The optical images of DFO, 8-arm-PEG<sub>20k</sub>-DFO, and 8-arm-PEG<sub>40k</sub>-DFO solutions, and the ultrafiltration centrifugation of the DFO-Fe<sup>2+</sup> and 8-arm-PEG-DFO conjugates-Fe<sup>2+</sup> chelates; (<b>D</b>) UV-visible spectra of aqueous solution of DFO, 8-arm-PEG<sub>20k</sub>-DFO, and 8-arm-PEG<sub>40k</sub>-DFO with Fe (II). Spectra of 8-arm-PEG-DFO conjugates and DFO without Fe (II) were also given.</p> "> Figure 3
<p>The hemolysis test of the 8-arm-PEG-DFO conjugates. (<b>A</b>) The visual appearance of the 8-arm-PEG-DFO conjugates with different contents in red blood cell (RBC) suspension for hemolysis test; (<b>B</b>) The hemolysis (%) of the 8-arm-PEG-DFO conjugates with different contents in RBC suspension, even when the concentration reached 5 mg/mL, the conjugates did not show significant hemolysis.</p> "> Figure 4
<p>The stability of free DFO, 8-arm-PEG<sub>20k</sub>-DFO, and 8-arm-PEG<sub>40k</sub>-DFO conjugates in plasma.</p> "> Figure 5
<p>(<b>A</b>). In vitro cytotoxicity of DFO, 8-arm-PEG<sub>20k</sub>-DFO, and 8-arm-PEG<sub>40k</sub>-DFO upon the RAW 246.7 macrophage cells; (<b>B</b>). The ferritin reduction assay to monitor iron chelation efficacy of DFO, 8-arm-PEG<sub>20K</sub>-DFO, and 8-arm-PEG<sub>40K</sub>-DFO in iron-overloaded RAW 246.7 macrophage cells; cells were treated with DFO or equivalent 8-arm-PEG-DFO conjugates at 10 or 50 μM for 48 h. Cellular ferritin level was measured by the mouse ferritin ELISA assay. Results are normalized to total protein (ng/μg). * <span class="html-italic">P</span> < 0.05, ** <span class="html-italic">P</span> < 0.01, *** <span class="html-italic">P</span> < 0.001, **** <span class="html-italic">P</span> < 0.0001.</p> "> Figure 6
<p>The plasma concentration–time curves of DFO, 8-arm-PEG<sub>20k</sub>-DFO, and 8-arm-PEG<sub>40k</sub>-DFO after intravenous administration in rats. All the concentrations in the curves were normalized to the DFO concentration.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Synthesis of 8-Arm-PEG-DFO Conjugates
2.3. The Characterization of the 8-Arm-PEG-DFO Conjugates
2.4. Iron Binding Properties of the 8-Arm-PEG-DFO Conjugates
2.5. In Vitro Hemolysis Test
2.6. In Vitro Metabolism Studies
2.7. Cell Culture
2.8. Cell Viability Analysis
2.9. Iron Chelation Studies in Iron-Overload Macrophages
2.10. Pharmacokinetics Study
2.10.1. Animal Studies
2.10.2. Sample Preparation and Chromatography Analysis
2.11. Statistical Analysis
3. Result and Discussion
3.1. The Synthesis and Characterization of 8-Arm-PEG-DFO Conjugates
3.2. In Vitro Hemolysis Test
3.3. In Vitro Metabolism Test
3.4. In Vitro Cytotoxicity Test
3.5. Iron Chelation Efficacy Studies in Iron-Overload Macrophages
3.6. Pharmacokinetics Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Codd, R.; Richardson-Sanchez, T.; Telfer, T.J.; Gotsbacher, M.P. Advances in the Chemical Biology of Desferrioxamine B. Acs Chem. Biol. 2018, 13, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, K.; Sivaramakrishnan, G. Efficacy and safety of iron chelators in thalassemia and sickle cell disease: A multiple treatment comparison network meta-analysis and trial sequential analysis. Expert Rev. Clin. Pharmacol. 2018, 11, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Borgnapignatti, C.; Rugolotto, S.; De Stefano, P.; Zhao, H.; Cappellini, M.D.; Del Vecchio, G.C.; Romeo, M.A.; Forni, G.L.; Gamberini, M.R.; Ghilardi, R. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica 2004, 89, 1187–1193. [Google Scholar]
- You, L.; Wang, J.; Liu, T.; Zhang, Y.; Han, X.; Wang, T.; Guo, S.; Dong, T.; Xu, J.; Anderson, G.J.; et al. Targeted Brain Delivery of Rabies Virus Glycoprotein 29-Modified Deferoxamine-Loaded Nanoparticles Reverses Functional Deficits in Parkinsonian Mice. Acs Nano 2018, 12, 4123–4139. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Pattoneri, P. Oral Iron Chelators. Annu. Rev. Med. 2009, 60, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Merali, S.; Chin, K.; Angel, L.D.; Grady, R.W.; Armstrong, M.; Clarkson, A.B. Clinically achievable plasma deferoxamine concentrations are therapeutic in a rat model of Pneumocystis carinii pneumonia. Antimicrob. Agents Chemother. 1995, 39, 2023–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran Ul-Haq, M.; Hamilton, J.L.; Lai, B.F.L.; Shenoi, R.A.; Horte, S.; Constantinescu, I.; Leitch, H.A.; Kizhakkedathu, J.N. Design of Long Circulating Nontoxic Dendritic Polymers for the Removal of Iron in Vivo. Acs Nano 2013, 7, 10704–10716. [Google Scholar] [CrossRef]
- Hallaway, P.E.; Eaton, J.W.; Panter, S.S.; Hedlund, B.E. Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc. Natl. Acad. Sci. USA 1989, 86, 10108–10112. [Google Scholar] [CrossRef] [Green Version]
- Modell, B.; Khan, M.; Darlison, M. Survival in Beta-thalassaemia major in the UK: Data from the UK Thalassaemia Register. Lancet 2000, 355, 2051–2052. [Google Scholar] [CrossRef]
- Dubourg, L.; Laurain, C.; Ranchin, B.; Pondarré, C.; Hadj-Aïssa, A.; Sigaudo-Roussel, D.; Cochat, P. Deferasirox-induced renal impairment in children: An increasing concern for pediatricians. Pediatric Nephrol. 2012, 27, 2115–2122. [Google Scholar] [CrossRef]
- Lindsey, W.T.; Olin, B.R. Deferasirox for Transfusion-Related Iron Overload: A Clinical Review. Clin. Ther. 2007, 29, 2154–2166. [Google Scholar] [CrossRef] [PubMed]
- Calvaruso, G.; Vitrano, A.; Di Maggio, R.; Lai, E.; Colletta, G.; Quota, A.; Calogera, G.; Luciana, C.R.; Massimiliano, S.; Lorella, P.; et al. Deferiprone versus deferoxamine in thalassemia intermedia: Results from a 5-year long-term Italian multicenter randomized clinical trial. Am. J. Hematol. 2015, 90, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Sammaraiee, Y.; Banerjee, G.; Farmer, S.; Hylton, B.; Cowley, P.; Eleftheriou, P.; Porter, J.; Werring, D.J. Risks associated with oral deferiprone in the treatment of infratentorial superficial siderosis. J. Neurol. 2020, 267, 239–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tricta, F.; Uetrecht, J.; Galanello, R.; Connelly, J.; Rozova, A.; Spino, M.; Palmblad, J. Deferiprone-induced agranulocytosis: 20 years of clinical observations. Am. J. Hematol. 2016, 91, 1026–1031. [Google Scholar] [CrossRef]
- Hamilton, J.L.; Ul-Haq, M.I.; Abbina, S.; Kalathottukaren, M.T.; Kizhakkedathu, J.N. In vivo efficacy, toxicity and biodistribution of ultra-long circulating desferrioxamine based polymeric iron chelator. Biomaterials 2016, 102, 58–71. [Google Scholar] [CrossRef]
- Hamilton, J.L.; ul-haq, M.I.; Creagh, A.L.; Haynes, C.A.; Kizhakkedathu, J.N. Iron Binding and Iron Removal Efficiency of Desferrioxamine Based Polymeric Iron Chelators: Influence of Molecular Size and Chelator Density. Macromol. Biosci. 2017, 17, 1600244. [Google Scholar] [CrossRef]
- Panter, S.S.; Braughler, J.M.; Hall, E.D. Dextran-Coupled Deferoxamine Improves Outcome in a Murine Model of Head Injury. J. Neurotrauma 1992, 9, 47–53. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, T.M.; Purro, M.; Xiong, M.P. Enzymatically Biodegradable Polyrotaxane-Deferoxamine Conjugates for Iron Chelation. Acs Appl. Mater. Interfaces 2016, 8, 25788–25797. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Gao, D.; Al-Zubaydi, F.; Li, S.; Singh, Y.; Rivera, K.; Holloway, J.; Szekely, Z.; Love, S.; Sinko, P.J. The effect of size and polymer architecture of doxorubicin-poly(ethylene) glycol conjugate nanocarriers on breast duct retention, potency and toxicity. Eur. J. Pharm. Sci. 2018, 121, 118–125. [Google Scholar] [CrossRef]
- Pasut, G.; Canal, F.; Via, L.D.; Arpicco, S.; Veronese, F.M.; Schiavon, O. Antitumoral activity of PEG–gemcitabine prodrugs targeted by folic acid. J. Control. Release 2008, 127, 239–248. [Google Scholar] [CrossRef]
- Schiavon, O.; Pasut, G.; Moro, S.; Orsolini, P.; Guiotto, A.; Veronese, F.M. PEG–Ara-C conjugates for controlled release. Eur. J. Med. Chem. 2004, 39, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Rossi, N.A.; Mustafa, I.; Jackson, J.K.; Burt, H.M.; Horte, S.A.; Scott, M.D.; Kizhakkedathu, J.N. In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Biomaterials 2009, 30, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Wilks, M.Q.; Normandin, M.D.; Yuan, H.; Cho, H.; Guo, Y.; Herisson, F.; Ayata, C.; Wooten, D.W.; EI Fakhri, G.; Josephson, L. Imaging PEG-like nanoprobes in tumor, transient ischemia, and inflammatory disease models. Bioconjugate Chem. 2015, 26, 1061–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, L.; Wang, L.; Deng, L.; Liu, J.; Lei, J.; Li, D.; He, J. Novel Multiarm Polyethylene glycol-Dihydroartemisinin Conjugates Enhancing Therapeutic Efficacy in Non-Small-Cell Lung Cancer. Sci. Rep. 2014, 4, 5871. [Google Scholar] [CrossRef]
- Sapra, P.; Zhao, H.; Mehlig, M.; Malaby, J.; Kraft, P.; Longley, C.; Greenberger, L.M.; Horak, I.D. Novel delivery of SN38 markedly inhibits tumor growth in xenografts, including a camptothecin-11-refractory model. Clin. Cancer Res. 2008, 14, 1888–1896. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Rubio, B.; Sapra, P.; Wu, D.; Reddy, P.; Sai, P.; Martinez, A.; Gao, Y.; Lozanguiez, Y.; Longley, C. Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers. Bioconjugate Chem. 2008, 19, 849–859. [Google Scholar] [CrossRef]
- Tian, M.; Chen, X.; Gu, Z.; Li, H.; Ma, L.; Qi, X.; Tan, H.; You, C. Synthesis and evaluation of oxidation-responsive alginate-deferoxamine conjugates with increased stability and low toxicity. Carbohydr. Polym. 2016, 144, 522–530. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Purro, M.; Xiong, M.P. Oxidation-Induced Degradable Nanogels for Iron Chelation. Sci. Rep. 2016, 6, 20923. [Google Scholar] [CrossRef]
- Zhou, Z.; Mondjinou, Y.; Hyun, S.-H.; Kulkarni, A.; Lu, Z.-R.; Thompson, D.H. Gd3+ -1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic-2-hydroxypropyl-β-cyclodextrin/Pluronic Polyrotaxane as a Long Circulating High Relaxivity MRI Contrast Agent. Acs Appl. Mater. Interfaces 2015, 40, 22272–22276. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gao, H.; Zhou, S.; Kuang, X.; Wang, Z.; Liu, H.; Sun, J. Optimization and evaluation of lipid emulsions for intravenous co-delivery of artemether and lumefantrine in severe malaria treatment. Drug Deliv. Transl. Res. 2018. [Google Scholar] [CrossRef]
- Ma, W.-C.; Zhang, Q.; Li, H.; Larregieu, C.A.; Zhang, N.; Chu, T.; Jin, H.; Mao, S.-J. Development of intravenous lipid emulsion of α-asarone with significantly improved safety and enhanced efficacy. Int. J. Pharm. 2013, 450, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Hao, S.-J.; Liu, Y.-D.; Hu, T.; Zhang, G.-F.; Zhang, X.; Qi, Q.-S.; Ma, G.-H.; Su, Z.-G. PEGylation markedly enhances the in vivo potency of recombinant human non-glycosylated erythropoietin: A comparison with glycosylated erythropoietin. J. Control. Release 2010, 145, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; White, J.B.; Peterson, N.C.; Rickert, K.W.; Lloyd, C.O.; Allen, K.L.; Rosenthal, K.; Gao, X.; Wu, H.; Dall’Acqua, W.F.; et al. Tumor uptake of pegylated diabodies: Balancing systemic clearance and vascular transport. J. Control. Release 2018, 279, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Liu, Y.; Tao, J.; Baumgarten, K.M.; Sun, H. Hypoxia-Mimicking Nanofibrous Scaffolds Promote Endogenous Bone Regeneration. Acs Appl. Mater. Interfaces 2016, 8, 32450–32459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Q.; Liu, Y.; Selvaratnam, B.; Koodali, R.T.; Sun, H. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J. Control. Release 2018, 279, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Han, M.; Xue, J.; Baek, Y.; Chang, J.; Hu, S.; Nam, H.; Jo, M.J.; EIFakhri, G.; Hutchens, M.P.; et al. Renal clearable nanochelators for iron overload therapy. Nat. Commun. 2019, 10, 5134. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.; Mohammed, N.; Marshall, L.; Abeysinghe, R.D.; Hider, R.C.; Porter, J.B.; Singh, S. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemic patients. Drug Metab. Dispos. 1993, 21, 640–644. [Google Scholar]
- Peters, G.; Keberle, H.; Schmid, K.; Brunner, H. Distribution and renal excretion of desferrioxamine and ferrioxamine in the dog and in the rat. Biochem. Pharmacol. 1966, 15, 93–109. [Google Scholar] [CrossRef]
Conjugate | 8-Arm-PEG20k-DFO | 8-Arm-PEG40k-DFO |
---|---|---|
Eq. DFO AUC(0-t) (mg/L*h) | 102.07 ± 10.72 | 122.81 ± 28.22 |
Eq. DFO Cmax (mg/L) | 19.39 ± 5.03 | 33.93 ± 10.80 |
Eq. DFO t1/2α(h) | 0.18 ± 0.062 | 0.26 ± 0.14 |
Eg. DFO t1/2β(h) | 17.58 ± 8.11 | 10.13 ± 3.31 |
Eq. DFO V (L/kg) | 0.73 ± 0.60 | 0.50 ± 0.36 |
Eq. DFO CL (L/h/kg) | 0.21 ± 0.06 | 0.27 ± 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Yang, Y.; Liu, Q.; Zhan, A.; Yang, Y.; Liu, H. A Novel Star Like Eight-Arm Polyethylene Glycol-Deferoxamine Conjugate for Iron Overload Therapy. Pharmaceutics 2020, 12, 329. https://doi.org/10.3390/pharmaceutics12040329
Yu B, Yang Y, Liu Q, Zhan A, Yang Y, Liu H. A Novel Star Like Eight-Arm Polyethylene Glycol-Deferoxamine Conjugate for Iron Overload Therapy. Pharmaceutics. 2020; 12(4):329. https://doi.org/10.3390/pharmaceutics12040329
Chicago/Turabian StyleYu, Bohong, Yinxian Yang, Qi Liu, Aiyan Zhan, Yang Yang, and Hongzhuo Liu. 2020. "A Novel Star Like Eight-Arm Polyethylene Glycol-Deferoxamine Conjugate for Iron Overload Therapy" Pharmaceutics 12, no. 4: 329. https://doi.org/10.3390/pharmaceutics12040329
APA StyleYu, B., Yang, Y., Liu, Q., Zhan, A., Yang, Y., & Liu, H. (2020). A Novel Star Like Eight-Arm Polyethylene Glycol-Deferoxamine Conjugate for Iron Overload Therapy. Pharmaceutics, 12(4), 329. https://doi.org/10.3390/pharmaceutics12040329