Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme—An In Vivo Safety, Persistence, and Efficacy Study
<p>Schematic illustration of the injectable CS hydrogel under physiological conditions.</p> "> Figure 2
<p>Schematic illustration depicting the transdifferentiation (TD) process of primary fibroblast to induced neural stem cells for implantation.</p> "> Figure 3
<p>Surgical procedure for in vivo persistence studies. (<b>1</b>) In step 1, a surgical incision was created to expose the intact skull, and an intracranial window (craniotomy) was created in the right hemisphere of the parietal skull plate using a microsurgical drill. (<b>2</b>) In step 2, using a surgical scope, an aspiration device was used to remove brain tissue to create a mock surgical resection cavity. (<b>3</b>) In step 3, a 5 µL of CS hydrogel solution containing 25,000 iNSCs was implanted into the resection cavity. The iNSC-CS hydrogel was given 1–2 min to settle before closing the wound with Vetbond tissue adhesive (3M 1469SB).</p> "> Figure 4
<p>In vivo retention and persistence post-implantation of iNSCs via direct injection or seeded in CS hydrogels. (<b>A</b>) In vivo persistence study design. (<b>B</b>) Representative BLI images collected up until signal loss for each group. (<b>C</b>,<b>D</b>) Summary graphs demonstrating the FLuc signal from iNSCs directly injected or encapsulated in CS hydrogel following delivery into the resection cavity. iNSC survival was represented as total FLuc signal from day 1 (* indicates <span class="html-italic">p</span> < 0.05 by two-way ANOVA).</p> "> Figure 5
<p>Histology and safety of mice brain tissue following the resection and the CS hydrogel implantation. Histological images of brain tissue on days 3, 7, 30, 60, and 90 following the resection (n = 3/timepoint) and post-implantation of the CS hydrogel (n = 5/timepoint). (<b>A</b>,<b>B</b>) Resection control histological images at day 3 (<b>A</b>) and (<b>B</b>) a zoomed-in image of (<b>A</b>). (<b>C</b>,<b>D</b>) CS hydrogel histological images at day 3 (<b>C</b>) and (<b>D</b>) a zoomed-in image of (<b>C</b>). (<b>E</b>,<b>F</b>) Resection control histological images at day 7 (<b>E</b>) and (<b>F</b>) a zoomed-in image of (<b>E</b>). (<b>G,H</b>) CS hydrogel histological images at day 7 (<b>G</b>) and (<b>H</b>) a zoomed-in image of (<b>G</b>). (<b>I</b>,<b>J</b>) Resection control histological images at day 30 (<b>I</b>) and (<b>J</b>) a zoomed-in image of (<b>I</b>). (<b>K</b>,<b>L</b>) CS hydrogel histological images at day 30 (<b>K</b>) and (<b>L</b>) a zoomed-in image of (<b>K</b>). (<b>M</b>,<b>N</b>) Resection control histological images at day 60 (<b>M</b>) and (<b>N</b>) a zoomed-in image of (<b>M</b>). (<b>O</b>,<b>P</b>) CS hydrogel histological images at day 60 (<b>O</b>) and (<b>P</b>) a zoomed-in image of (<b>O</b>). (<b>Q</b>,<b>R</b>) Resection control histological images at day 90 (<b>Q</b>) and (<b>R</b>) a zoomed-in image of (<b>Q</b>). (<b>S</b>,<b>T</b>) CS hydrogel histological images at day 90 (<b>S</b>) and (<b>T</b>) a zoomed-in image of (<b>S</b>). R represents resection site, H represents hemorrhage (trauma-related), E represents edema (trauma-related), yellow circles represent swollen axons (trauma-related), and blue triangles represent pigment-laden macrophages. All scale bars represent 500 µm. All scale bars for zoomed-in images represent 50 µm.</p> "> Figure 6
<p>(<b>A</b>) Schematic illustration of tumor implantation, resection, and cell injection/implantation in vivo. (<b>B</b>) Fluorescent images of U87-MG mCh-FLuc tumors before and after resection and images of resection cavity using an Olympus MVX-10 microscope (1.6× magnification). White arrows represent positive tumor margins following resection.</p> "> Figure 7
<p>Delivery of tumoricidal iNSCs to inhibit progression of GBM in post-resection model. (<b>A</b>) Representative images of serial BLI showing tumor inhibition and regrowth in iNSC-sTR treated versus control-treated animals. (<b>B</b>) Summary graph depicting the tumor radiance of U87-MG FLuc overtime following post-resection treatment (* indicates <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.005; *** <span class="html-italic">p</span> < 0.001 by ANOVA). (<b>C</b>) Kaplan–Meier survival analysis demonstrating the survival of animals receiving iNSC-sTR therapy in comparison to control-treated animals (*** <span class="html-italic">p</span> < 0.001 by log-rank test).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Lines and Lentiviral Vectors
2.3. Generation of iNSCs for Survival and Therapy
2.4. Hydrogel Preparation and Cell Encapsulation
2.5. In Vivo Models
2.5.1. Stem Cell Retention and Persistence
2.5.2. Murine Safety Studies
2.5.3. Post-Surgical Anti-GBM Efficacy of iNSC-s-TR-Hydrogel Therapy
2.6. In Vivo Bioluminescence Imaging (BLI)
2.7. Tissue Processing
2.8. Histological Staining and Analysis
2.9. Statistical Analysis
3. Results
3.1. Preparation of Injectable CS Hydrogels Bearing iNSCs
3.2. Enhancing the Retention and Persistence of iNSCs Using an Injectable CS Hydrogel
3.3. Assessing the Safety of Injectable CS Hydrogels
3.4. Tumoricidal iNSC-sTR Therapy for Post-Surgical GBM Treatment in Human GBM Xenografts
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bleeker, F.E.; Molenaar, R.J.; Leenstra, S. Recent advances in the molecular understanding of glioblastoma. J. Neurooncol. 2012, 108, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Young, R.M.; Jamshidi, A.; Davis, G.; Sherman, J.H. Current trends in the surgical management and treatment of adult glioblastoma. Ann. Transl. Med. 2015, 3, 121. [Google Scholar] [PubMed]
- Minniti, G.; Muni, R.; Lanzetta, G.; Marchetti, P.; Enrici, R.M. Chemotherapy for glioblastoma: Current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 2009, 29, 5171–5184. [Google Scholar] [PubMed]
- Birzu, C.; French, P.; Caccese, M.; Cerretti, G.; Idbaih, A.; Zagonel, V.; Lombardi, G. Recurrent glioblastoma: From molecular landscape to new treatment perspectives. Cancers 2020, 13, 47. [Google Scholar] [CrossRef]
- Huang, R.; Wang, T.; Liao, Z.; Wang, Z.; Ye, M.; Zhou, D.; Xie, H.; Bai, Y.; Qiu, Y.; Liu, Y. A retrospective analysis of the risk factors affecting recurrence time in patients with recurrent glioblastoma. Ann. Palliat. Med. 2021, 10, 5391–5399. [Google Scholar] [CrossRef] [PubMed]
- Mooney, R.; Hammad, M.; Batalla-Covello, J.; Abdul Majid, A.; Aboody, K.S. Concise Review: Neural Stem Cell-Mediated Targeted Cancer Therapies. Stem Cells Transl. Med. 2018, 7, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, S.K.; Bardia, A.; Tiwari, S.K.; Paspala, S.A.B.; Khan, A.A. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. J. Adv. Res. 2014, 5, 277–294. [Google Scholar] [CrossRef]
- Bagó, J.R.; Alfonso-Pecchio, A.; Okolie, O.; Dumitru, R.; Rinkenbaugh, A.; Baldwin, A.S.; Miller, C.R.; Magness, S.T.; Hingtgen, S.D. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat. Commun. 2016, 7, 10593. [Google Scholar] [CrossRef]
- Bagó, J.R.; Okolie, O.; Dumitru, R.; Ewend, M.G.; Parker, J.S.; Werff, R.V.; Underhill, T.M.; Schmid, R.S.; Miller, C.R.; Hingtgen, S.D. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci. Transl. Med. 2017, 9, eaah6510. [Google Scholar] [CrossRef]
- Buckley, A.; Hagler, S.B.; Lettry, V.; Bagó, J.R.; Maingi, S.M.; Khagi, S.; Ewend, M.G.; Miller, C.R.; Hingtgen, S.D. Generation and Profiling of Tumor-Homing Induced Neural Stem Cells from the Skin of Cancer Patients. Mol. Ther. 2020, 28, 1614–1627. [Google Scholar] [CrossRef] [PubMed]
- Bagó, J.R.; Sheets, K.T.; Hingtgen, S.D. Neural stem cell therapy for cancer. Methods 2016, 99, 37–43. [Google Scholar] [CrossRef]
- Bagó, J.R.; Pegna, G.J.; Okolie, O.; Mohiti-Asli, M.; Loboa, E.G.; Hingtgen, S.D. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials 2016, 90, 116–125. [Google Scholar] [CrossRef]
- Bagó, J.R.; Pegna, G.J.; Okolie, O.; Hingtgen, S.D. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. Biomaterials 2016, 84, 42–53. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Cao, S.; Chen, X.; Wu, W.; Li, J. Thermoresponsive hydrogels from phosphorylated ABA triblock copolymers: A potential scaffold for bone tissue engineering. Biomacromolecules 2013, 14, 2206–2214. [Google Scholar] [CrossRef] [PubMed]
- Watson, B.M.; Kasper, F.K.; Engel, P.S.; Mikos, A.G. Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering. Biomacromolecules 2014, 15, 1788–1796. [Google Scholar] [CrossRef]
- Sala, R.L.; Kwon, M.Y.; Kim, M.; Gullbrand, S.E.; Henning, E.A.; Mauck, R.L.; Camargo, E.R.; Burdick, J.A. * Thermosensitive Poly(N-vinylcaprolactam) Injectable Hydrogels for Cartilage Tissue Engineering. Tissue Eng. Part A 2017, 23, 935–945. [Google Scholar] [CrossRef]
- Dong, Y.; Sigen, A.; Rodrigues, M.; Li, X.; Kwon, S.H.; Kosaric, N.; Khong, S.; Gao, Y.; Wang, W.; Gurtner, G.C. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv. Funct. Mater. 2017, 27, 1606619. [Google Scholar] [CrossRef]
- Moore, K.M.; Murthy, A.B.; Graham-Gurysh, E.G.; Hingtgen, S.D.; Bachelder, E.M.; Ainslie, K.M. Polymeric biomaterial scaffolds for tumoricidal stem cell glioblastoma therapy. ACS Biomater. Sci. Eng. 2020, 6, 3762–3777. [Google Scholar] [CrossRef] [PubMed]
- Bomba, H.N.; Carey-Ewend, A.; Sheets, K.T.; Valdivia, A.; Goetz, M.; Findlay, I.A.; Mercer-Smith, A.; Kass, L.E.; Khagi, S.; Hingtgen, S.D. Use of FLOSEAL® as a scaffold and its impact on induced neural stem cell phenotype, persistence, and efficacy. Bioeng. Transl. Med. 2022, 7, e10283. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015, 10, 1–16. [Google Scholar] [PubMed]
- Zhou, H.Y.; Jiang, L.J.; Cao, P.P.; Li, J.B.; Chen, X.G. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr. Polym. 2015, 117, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gao, Q.; Lu, X.; Zhou, H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J. Pharm. Sci. 2016, 11, 673–683. [Google Scholar] [CrossRef]
- Stanzione, A.; Polini, A.; La Pesa, V.; Romano, A.; Quattrini, A.; Gigli, G.; Moroni, L.; Gervaso, F. Development of Injectable Thermosensitive Chitosan-Based Hydrogels for Cell Encapsulation. Appl. Sci. 2020, 10, 6550. [Google Scholar] [CrossRef]
- Maturavongsadit, P.; Paravyan, G.; Shrivastava, R.; Benhabbour, S.R. Thermo-/pH-responsive chitosan-cellulose nanocrystals based hydrogel with tunable mechanical properties for tissue regeneration applications. Materialia 2020, 12, 100681. [Google Scholar] [CrossRef]
- Wang, L.; Stegemann, J.P. Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials 2010, 31, 3976–3985. [Google Scholar] [CrossRef] [PubMed]
- King, J.L.; Maturavongsadit, P.; Hingtgen, S.D.; Benhabbour, S.R. Injectable pH Thermo-Responsive Hydrogel Scaffold for Tumoricidal Neural Stem Cell Therapy for Glioblastoma Multiforme. Pharmaceutics 2022, 14, 2243. [Google Scholar] [CrossRef] [PubMed]
- King, J.L.; Shrivastava, R.; Shah, P.D.; Maturavongsadit, P.; Benhabbour, S.R. Injectable pH and Thermo-Responsive Hydrogel Scaffold with Enhanced Osteogenic Differentiation of Preosteoblasts for Bone Regeneration. Pharmaceutics 2023, 15, 2270. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, A.; Rajan, S.D.; Muthuswamy, J. Long-term changes in the material properties of brain tissue at the implant-tissue interface. J. Neural Eng. 2013, 10, 066001. [Google Scholar] [CrossRef] [PubMed]
- Sheets, K.T.; Ewend, M.G.; Mohiti-Asli, M.; Tuin, S.A.; Loboa, E.G.; Aboody, K.S.; Hingtgen, S.D. Developing Implantable Scaffolds to Enhance Neural Stem Cell Therapy for Post-Operative Glioblastoma. Mol. Ther. 2020, 28, 1056–1067. [Google Scholar] [CrossRef]
- Portnow, J.; Synold, T.W.; Badie, B.; Tirughana, R.; Lacey, S.F.; D’Apuzzo, M.; Metz, M.Z.; Najbauer, J.; Bedell, V.; Vo, T.; et al. Neural Stem Cell-Based Anticancer Gene Therapy: A First-in-Human Study in Recurrent High-Grade Glioma Patients. Clin. Cancer Res. 2017, 23, 2951–2960. [Google Scholar] [CrossRef]
- Hingtgen, S.; Figueiredo, J.-L.; Farrar, C.; Duebgen, M.; Martinez-Quintanilla, J.; Bhere, D.; Shah, K. Real-time multi-modality imaging of glioblastoma tumor resection and recurrence. J. Neurooncol. 2013, 111, 153–161. [Google Scholar] [CrossRef]
- Jovčevska, I. Genetic secrets of long-term glioblastoma survivors. Bosn. J. Basic. Med. Sci. 2019, 19, 116–124. [Google Scholar] [CrossRef]
- Supper, S.; Anton, N.; Seidel, N.; Riemenschnitter, M.; Curdy, C.; Vandamme, T. Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications. Expert. Opin. Drug Deliv. 2014, 11, 249–267. [Google Scholar] [CrossRef]
- De France, K.J.; Chan, K.J.W.; Cranston, E.D.; Hoare, T. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking. Biomacromolecules 2016, 17, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Kotzé, A.F.; Luessen, H.L.; de Leeuw, B.J.; de Boer, B.G.; Verhoef, J.C.; Junginger, H.E. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: In vitro evaluation in intestinal epithelial cells (Caco-2). Pharm. Res. 1997, 14, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Maturavongsadit, P.; Narayanan, L.K.; Chansoria, P.; Shirwaiker, R.; Benhabbour, S.R. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS Appl. Bio Mater. 2021, 4, 2342–2353. [Google Scholar] [CrossRef] [PubMed]
- Nehama, D.; Di Ianni, N.; Musio, S.; Du, H.; Patané, M.; Pollo, B.; Finocchiaro, G.; Park, J.J.H.; Dunn, D.E.; Edwards, D.S.; et al. B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine 2019, 47, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jing, W.; Chen, Y.; Wang, G.; Abdalla, M.; Gao, L.; Han, M.; Shi, C.; Li, A.; Sun, P.; et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci. Transl. Med. 2022, 14, eabn1128. [Google Scholar] [CrossRef]
- Ogunnaike, E.A.; Valdivia, A.; Yazdimamaghani, M.; Leon, E.; Nandi, S.; Hudson, H.; Du, H.; Khagi, S.; Gu, Z.; Savoldo, B.; et al. Fibrin gel enhances the antitumor effects of chimeric antigen receptor T cells in glioblastoma. Sci. Adv. 2021, 7, eabg5841. [Google Scholar] [CrossRef]
Formulation | CS (% w/v) | BGP (mM) | HEC (mg/mL) | iNSCs (Per mL Hydrogel) |
---|---|---|---|---|
1 | 2 | 100 | 0.5 | 0 |
2 | 2 | 100 | 0.5 | 5 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
King, J.L.; Valdivia, A.; Hingtgen, S.D.; Benhabbour, S.R. Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme—An In Vivo Safety, Persistence, and Efficacy Study. Pharmaceutics 2025, 17, 3. https://doi.org/10.3390/pharmaceutics17010003
King JL, Valdivia A, Hingtgen SD, Benhabbour SR. Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme—An In Vivo Safety, Persistence, and Efficacy Study. Pharmaceutics. 2025; 17(1):3. https://doi.org/10.3390/pharmaceutics17010003
Chicago/Turabian StyleKing, Jasmine L., Alain Valdivia, Shawn D. Hingtgen, and S. Rahima Benhabbour. 2025. "Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme—An In Vivo Safety, Persistence, and Efficacy Study" Pharmaceutics 17, no. 1: 3. https://doi.org/10.3390/pharmaceutics17010003
APA StyleKing, J. L., Valdivia, A., Hingtgen, S. D., & Benhabbour, S. R. (2025). Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme—An In Vivo Safety, Persistence, and Efficacy Study. Pharmaceutics, 17(1), 3. https://doi.org/10.3390/pharmaceutics17010003