Twin Screw Melt Granulation of Simvastatin: Drug Solubility and Dissolution Rate Enhancement Using Polymer Blends
<p>M-DSC analysis for SIM and the PMs.</p> "> Figure 2
<p>Equilibrium solubility of SIM in water and 1% polymer solutions.</p> "> Figure 3
<p>SIM dissolution from the SD extrudates after 10, 30, and 60 min.</p> "> Figure 4
<p>Developed granules with SOP/KIR blend using TSMG.</p> "> Figure 5
<p>DSC thermograms for SIM, polymers, selected SDGs, and PMs.</p> "> Figure 6
<p>PXRD for SIM, polymers, selected SDGs, and PMs.</p> "> Figure 7
<p>SEM images showing surface morphology of (<b>A</b>) simvastatin crystals (×1500), (<b>B</b>) SIM-K12/KIR PM (×500), and (<b>C</b>) (×100), (<b>D</b>) (×250) SIM-K12/KIR granules.</p> "> Figure 8
<p>FTIR for SIM, PMS, and selected SDGs.</p> "> Figure 9
<p>Dissolution profiles of crystalline SIM, PMS, and SDGs at 37 °C ± 0.5 °C in pH 7 phosphate buffer using 0.2% <span class="html-italic">w</span>/<span class="html-italic">v</span> SDS.</p> "> Figure 10
<p>In vitro release profiles of SOP/KIR granules and extrudates versus the marketed formulation at 37 °C ± 0.5 °C in pH 7 phosphate buffer using 0.2% <span class="html-italic">w</span>/<span class="html-italic">v</span> SDS.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Drug–Polymer Miscibility by Modulated Differential Scanning Calorimetry (M-DSC)
2.3. Equilibrium Solubility
2.4. Thermogravimetric Analysis (TGA)
2.5. Preparation of Physical Mixtures (PMs)
2.6. Hot-Melt Extrusion and Twin Screw Melt Granulation
2.7. Differential Scanning Calorimetry (DSC)
2.8. Powder X-Ray Diffraction Analysis (PXRD)
2.9. Scanning Electron Microscope (SEM)
2.10. Fourier Transform Infrared Spectroscopy (FTIR)
2.11. High Performance Liquid Chromatography (HPLC)
2.12. In Vitro Release Studies
2.13. Statistical Analysis
3. Results and Discussion
3.1. Drug–Polymer Combinations Miscibility
3.2. Drug–Polymer Combinations Aqueous Solubility
3.3. Thermogravimetric Analysis
3.4. Hot-Melt Extrusion
3.5. Twin Screw Melt Granulation (TSMG)
3.6. Thermal Analysis (DSC)
3.7. PXRD Analysis
3.8. SEM Analysis
3.9. FTIR Analysis
3.10. Release Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ZOCOR®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/019766s104lbl.pdf (accessed on 17 December 2024).
- Saoji, S.D.; Belgamwar, V.S.; Dharashivkar, S.S.; Rode, A.A.; Mack, C.; Dave, V.S. The Study of the Influence of Formulation and Process Variables on the Functional Attributes of Simvastatin–Phospholipid Complex. J. Pharm. Innov. 2016, 11, 264–278. [Google Scholar] [CrossRef]
- Bolla, N.; Chandra, S.; Raju, R.; Rao, K.; Devi, U. Improvement of Simvastatin Solubility Using Natural Polymers by solid dispersion technique. Int. J. Pharm. Res. Biomed. Anal. 2013, 2, 1–6. [Google Scholar]
- Nandi, U.; Ajiboye, A.L.; Patel, P.; Douroumis, D.; Trivedi, V. Preparation of solid dispersions of simvastatin and soluplus using a single-step organic solvent-free supercritical fluid process for the drug solubility and dissolution rate enhancement. Pharmaceuticals 2021, 14, 846. [Google Scholar] [CrossRef]
- Rahamathulla, M.; Gangadharappa, H.V.; Veerapu, G.; Hani, U.; Alhamhoom, Y.; Alqahtani, A.; Moin, A. Characterization, Optimization, In Vitro and In Vivo Evaluation of Simvastatin Proliposomes, as a Drug Delivery. AAPS PharmSciTech 2020, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Parmar, N.; Bagda, A.; Patel, M.; Patel, S. Formulation strategy for dissolution enhancement of simvastatin. Int. J. Pharm. Sci. Res. 2012, 3, 3817–3822. [Google Scholar]
- Sopyan, I.; Raihan Riyaldi, M.; Ratnawulan Mita, S.; Hariono, M. Increasing Solution in the Drug Simvastatin with Solid Dispersion Technique Using Polymer Soluplus. Int. J. Appl. Pharm. 2023, 15, 160–165. [Google Scholar] [CrossRef]
- Silva, T.D.; Arantes, V.T.; Resende, J.A.L.C.; Speziali, N.L.; De Oliveira, R.B.; Vianna-Soares, C.D. Preparation and characterization of solid dispersion of simvastatin. Drug Dev. Ind. Pharm. 2010, 36, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, M.K.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics 2006, 16, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Kumar Basniwal, P.; Jain, D. Simvastatin: Review of Updates on Recent Trends in Pharmacokinetics, Pharmacodynamics, Drug–drug Interaction, Impurities and Analytical Methods. Curr. Pharm. Anal. 2012, 8, 135–156. [Google Scholar] [CrossRef]
- Kaushik, R.; Budhwar, V.; Kaushik, D. An Overview on Recent Patents and Technologies on Solid Dispersion. Recent Pat. Drug Deliv. Formul. 2020, 14, 63–74. [Google Scholar] [CrossRef]
- Borawake, P.D.; Arumugam, K.; Shinde, J.V. Formulation of Solid Dispersions for Enhancement of Solubility and Dissolution Rate of Simvastatin. Int. J. Pharm. Pharm. Sci. 2021, 13, 94–100. [Google Scholar] [CrossRef]
- Singh, P.; Nanda, A. Preparation, characterization and dissolution study of spray dried solid dispersions of simvastatin with PVP k25 and Aerosil 200. J. Med. Pharm. Allied Sci. 2021, 10, 3806–3812. [Google Scholar] [CrossRef]
- Kapourani, A.; Chatzitheodoridou, M.; Kontogiannopoulos, K.N.; Barmpalexis, P. Experimental, Thermodynamic, and Molecular Modeling Evaluation of Amorphous Simvastatin-Poly(vinylpyrrolidone) Solid Dispersions. Mol. Pharm. 2020, 17, 2703–2720. [Google Scholar] [CrossRef]
- Savithri, S.; Reddy, B.; Sekhar, K.; Durga, G.; Srilekha, Y.; Ratnakumari, P. International Journal of Pharmaceutics and Drug Analysis. Int. J. Pharm. Drug Anal. 2021, 9, 236–240. [Google Scholar]
- Kumar, G.; Gupta, N.; Sharma, N.; Rajput, D.S.; Shukla, A. Formulation for Enhancement of Solubility and Dissolution Rate of Simvastatin using Solid Dispersion. Res. J. Pharm. Dos. Forms Technol. 2023, 15, 143–148. [Google Scholar] [CrossRef]
- Javeer, S.D.; Patole, R.; Amin, P. Enhanced solubility and dissolution of simvastatin by HPMC-based solid dispersions prepared by hot melt extrusion and spray-drying method. J. Pharm. Investig. 2013, 43, 471–480. [Google Scholar] [CrossRef]
- Jun, S.W.; Kim, M.S.; Kim, J.S.; Park, H.J.; Lee, S.; Woo, J.S.; Hwang, S.J. Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2007, 66, 413–421. [Google Scholar] [CrossRef]
- Awad, A.; Fina, F.; Trenfield, S.J.; Patel, P.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printed pellets (Miniprintlets): A novel, multi-drug, controlled release platform technology. Pharmaceutics 2019, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Jyothi, N.V.N.; Gubbiyappa, K.S.; Nagaraju, N. Enhancement of Dissolution and Bioavailability of Simvastatin by Solid Dispersion Technique Using Sugar-Based Carriers. Int. J. Appl. Pharm. 2024, 16, 239–245. [Google Scholar] [CrossRef]
- Elkanayati, R.M.; Chambliss, W.G.; Omari, S.; Almutairi, M.; Repka, M.A.; Ashour, E.A. Mucoadhesive buccal films for treatment of xerostomia prepared by coupling HME and 3D printing technologies. J. Drug Deliv. Sci. Technol. 2022, 75, 103660. [Google Scholar] [CrossRef]
- Muhindo, D.; Elkanayati, R.; Srinivasan, P.; Repka, M.A.; Ashour, E.A. Recent Advances in the Applications of Additive Manufacturing (3D Printing) in Drug Delivery: A Comprehensive Review. AAPS PharmSciTech 2023, 24, 1–22. [Google Scholar] [CrossRef]
- Uttreja, P.; Youssef, A.A.A.; Karnik, I.; Sanil, K.; Narala, N.; Wang, H.; Elkanayati, R.M.; Vemula, S.K.; Repka, M.A. Formulation Development of Solid Self-Nanoemulsifying Drug Delivery Systems of Quetiapine Fumarate via Hot-Melt Extrusion Technology: Optimization Using Central Composite Design. Pharmaceutics 2024, 16, 324. [Google Scholar] [CrossRef]
- Almutairi, M.; Hefnawy, A.; Almotairy, A.; Alobaida, A.; Alyahya, M.; Althobaiti, A.; Adel, A.; Youssef, A.; Elkanayati, R.M.; Ashour, E.A.; et al. Formulation and evaluation of inhaled Sildenafil-loaded PLGA microparticles for treatment of pulmonary arterial hypertension (PAH): A novel high drug loaded formulation and scalable process via hot melt extrusion technology (Part I). Int. J. Pharm. 2024, 655, 124044. [Google Scholar] [CrossRef] [PubMed]
- Elkanayati, R.M.; Darwesh, A.Y.; Taha, I.; Wang, H.; Uttreja, P.; Vemula, S.K.; Chambliss, W.G.; Repka, M.A. Quality by design approach for fabrication of extended-release buccal films for xerostomia employing hot-melt extrusion technology. Eur. J. Pharm. Biopharm. 2024, 200, 114335. [Google Scholar] [CrossRef]
- Karnik, I.; Youssef, A.A.A.; Joshi, P.; Munnangi, S.R.; Narala, S.; Varner, C.; Vemula, S.K.; Majumdar, S.; Repka, M. Formulation development and characterization of dual drug loaded hot-melt extruded inserts for better ocular therapeutic outcomes: Sulfacetamide/prednisolone. J. Drug Deliv. Sci. Technol. 2023, 84, 104558. [Google Scholar] [CrossRef]
- Omari, S.; Ashour, E.A.; Elkanayati, R.; Alyahya, M.; Almutairi, M.; Repka, M.A. Formulation development of loratadine immediate- release tablets using hot-melt extrusion and 3D printing technology. J. Drug Deliv. Sci. Technol. 2022, 74, 103505. [Google Scholar] [CrossRef]
- Elkanayati, R.M.; Omari, S.; Youssef, A.A.A.; Almutairi, M.; Almotairy, A.; Repka, M.; Ashour, E.A. Multilevel categoric factorial design for optimization of raloxifene hydrochloride solid dispersion in PVP K30 by hot-melt extrusion technology. J. Drug Deliv. Sci. Technol. 2024, 92, 105362. [Google Scholar] [CrossRef]
- Nyavanandi, D.; Narala, S.; Mandati, P.; Alzahrani, A.; Kolimi, P.; Almotairy, A.; Repka, M.A. Twin Screw Melt Granulation: Alternative Approach for Improving Solubility and Permeability of a Non-steroidal Anti-inflammatory Drug Ibuprofen. AAPS PharmSciTech 2023, 24, 47. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.R.; Pandey, A.; Hegde, A.R.; Kulkarni, V.I.; Chincholi, C.; Rao, V.; Bhushan, I.; Mutalik, S. Metamorphosis of Twin Screw Extruder-Based Granulation Technology: Applications Focusing on Its Impact on Conventional Granulation Technology. AAPS PharmSciTech 2022, 23, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Nandi, U.; Trivedi, V.; Ross, S.A.; Douroumis, D. Advances in twin-screw granulation processing. Pharmaceutics 2021, 13, 624. [Google Scholar] [CrossRef]
- Patil, H.; Vemula, S.K.; Narala, S.; Lakkala, P.; Munnangi, S.R.; Narala, N.; Jara, M.O.; Williams, R.O.; Terefe, H.; Repka, M.A. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation—Where Are We Now? AAPS PharmSciTech 2024, 25, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Bandari, S.; Nyavanandi, D.; Kallakunta, V.R.; Janga, K.Y.; Sarabu, S.; Butreddy, A.; Repka, M.A. Continuous twin screw granulation–An advanced alternative granulation technology for use in the pharmaceutical industry. Int. J. Pharm. 2020, 580, 119215. [Google Scholar] [CrossRef]
- Forster, S.P.; Dippold, E.; Chiang, T. Twin-screw melt granulation for oral solid pharmaceutical products. Pharmaceutics 2021, 13, 665. [Google Scholar] [CrossRef]
- Kramarczyk, D.; Knapik-Kowalczuk, J.; Kurek, M.; Jamróz, W.; Jachowicz, R.; Paluch, M. Hot Melt Extruded Posaconazole-Based Amorphous Solid Dispersions—The Effect of Different Types of Polymers. Pharmaceutics 2023, 15, 799. [Google Scholar] [CrossRef]
- Marsac, P.J.; Shamblin, S.L.; Taylor, L.S. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm. Res. 2006, 23, 2417–2426. [Google Scholar] [CrossRef]
- Thakore, S.D.; Akhtar, J.; Jain, R.; Paudel, A.; Bansal, A.K. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol. Pharm. 2021, 18, 2835–2866. [Google Scholar] [CrossRef] [PubMed]
- Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Molecular Nanomedicine Towards Cancer. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef]
- Ning, J.; Zheng, G.; Cai, Y.; Hu, Y.; Liu, Y.; Lai, E.; Chen, B.; Liu, Y.; Liang, Z.; Fu, J.; et al. The Self-Assembly Soluplus Nanomicelles of Nobiletin in Aqueous Medium Based on Solid Dispersion and Their Increased Hepatoprotective Effect on APAP-Induced Acute Liver Injury. Int. J. Nanomedicine 2023, 18, 5119–5140. [Google Scholar] [CrossRef] [PubMed]
- Munnangi, S.R.; Youssef, A.A.A.; Narala, N.; Lakkala, P.; Vemula, S.K.; Alluri, R.; Zhang, F.; Repka, M.A. Continuous Manufacturing of Solvent-Free Cyclodextrin Inclusion Complexes for Enhanced Drug Solubility via Hot-Melt Extrusion: A Quality by Design Approach. Pharmaceutics 2023, 15, 2203. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Srinivasan, P.; Zhang, P.; Bandari, S.; Repka, M.A. Development of ibuprofen tablet with polyethylene oxide using fused deposition modeling 3D-printing coupled with hot-melt extrusion. J. Drug Deliv. Sci. Technol. 2022, 76, 103716. [Google Scholar] [CrossRef]
- Rosch, M.; Gutowski, T.; Baehr, M.; Eggert, J.; Gottfried, K.; Gundler, C.; Nürnberg, S.; Langebrake, C.; Dadkhah, A. Development of an immediate release excipient composition for 3D printing via direct powder extrusion in a hospital. Int. J. Pharm. 2023, 643, 123218. [Google Scholar] [CrossRef] [PubMed]
- SIMVASTATIN. Available online: https://www.lupin.com/US/wp-content/uploads/2020/06/pi-mg-simvastatin-tabs-9-2023.pdf (accessed on 17 December 2024).
- SIMVASTATIN. Available online: https://online.uspnf.com/uspnf/document/1_GUID-3E762AB2-DDFE-4C39-B6D0-E7D8EEE289F0_5_en-US?source=Search%20Results&highlight=Simvastatin (accessed on 17 December 2024).
- Baghel, S.; Cathcart, H.; O’Reilly, N.J. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR. Int. J. Pharm. 2018, 536, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Zafar, N.; Mahmood, A.; Sarfraz, R.M.; Elaissari, A. Simvastatin Loaded Dissolvable Microneedle Patches with Improved Pharmacokinetic Performance. Micromachines 2022, 13, 1304. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Liu, Y.; Chen, S.; Zhang, C.; Chen, X.; Liu, Y.; Liu, P. Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications. Front. Bioeng. Biotechnol. 2023, 11, 1–11. [Google Scholar] [CrossRef]
- Twal, S.; Jaber, N.; Al-Remawi, M.; Hamad, I.; Al-Akayleh, F.; Alshaer, W. Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC Adv. 2024, 14, 3070–3084. [Google Scholar] [CrossRef] [PubMed]
- Školáková, T.; Slámová, M.; Školáková, A.; Kadeřábková, A.; Patera, J.; Zámostný, P. Investigation of dissolution mechanism and release kinetics of poorly water-soluble tadalafil from amorphous solid dispersions prepared by various methods. Pharmaceutics 2019, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Van den Mooter, G. The influence of hydrogen bonding between different crystallization tendency drugs and PVPVA on the stability of amorphous solid dispersions. Int. J. Pharm. 2023, 646, 123440. [Google Scholar] [CrossRef] [PubMed]
- Kayalar, C.; Helal, N.; Mohamed, E.M.; Dharani, S.; Khuroo, T.; Kuttolamadom, M.A.; Rahman, Z.; Khan, M.A. In Vitro and In Vivo testing of 3D-Printed Amorphous Lopinavir Printlets by Selective Laser Sinitering: Improved Bioavailability of a Poorly Soluble Drug. AAPS PharmSciTech 2024, 25, 20. [Google Scholar] [CrossRef] [PubMed]
- Kolter, K.; Karl, M.; Gryczke, A. Hot-Melt Extrusion with BASF Pharma Polymers-Extrusion Compendium; BASF: Ludwigshafen, Germany, 2012; ISBN 978-3-00039415-7. [Google Scholar]
- Alshetaili, A.; Alshahrani, S.M.; Almutairy, B.K.; Repka, M.A. Hot melt extrusion processing parameters optimization. Processes 2020, 8, 1516. [Google Scholar] [CrossRef]
- Srinivasan, P.; Almutairi, M.; Youssef, A.A.A.; Almotairy, A.; Bandari, S.; Repka, M.A. Numerical simulation of five different screw configurations used during the preparation of hot-melt extruded Kollidon® and Soluplus® based amorphous solid dispersions containing indomethacin. J. Drug Deliv. Sci. Technol. 2023, 85, 10. [Google Scholar] [CrossRef]
- Morott, J.T.; Pimparade, M.; Park, J.B.; Worley, C.P.; Majumdar, S.; Lian, Z.; Pinto, E.; Bi, Y.; Durig, T.; Repka, M.A. The effects of screw configuration and polymeric carriers on hot-melt extruded taste-masked formulations incorporated into orally disintegrating tablets. J. Pharm. Sci. 2015, 104, 124–134. [Google Scholar] [CrossRef]
- Almotairy, A.; Almutairi, M.; Althobaiti, A.; Alyahya, M.; Sarabu, S.; Zhang, F.; Bandari, S.; Ashour, E.; Repka, M.A. Investiga-tion of hot melt extrusion process parameters on solubility and tabletability of atorvastatin calcium in presence of Neusilin® US2. J. Drug Deliv. Sci. Technol. 2023, 79, 104075. [Google Scholar] [CrossRef] [PubMed]
- Pisay, M.; Navti, P.D.; Rao, V.; Koteshwara, K.B.; Mutalik, S. Investigation of drug-polymer miscibility and design of ternary solid dispersions for oral bioavailability enhancement by Hot Melt Extrusion. J. Drug Deliv. Sci. Technol. 2023, 90, 105107. [Google Scholar] [CrossRef]
- Rao, M.; Mandage, Y.; Thanki, K.; Bhise, S. Dissolution improvement of simvastatin by surface solid dispersion technology. Dissolution Technol. 2010, 17, 27–34. [Google Scholar] [CrossRef]
Technique | Polymers, Excipients | Reference |
---|---|---|
Kneading and solvent evaporation | PEG 6000 and PVP K30 | [12] |
Spray drying | PVP K25 and Aerosil 200 | [13] |
Supercritical carbon dioxide | Soluplus | [4] |
Quench cooling | PVP K12 | [14] |
Fusion and solvent evaporation | HPMC and gum acacia | [15] |
Physical trituration, kneading, and solvent evaporation | PEG 8000, PVP K30, and SLS | [16] |
HME and spray drying | HPMC E3 LV and HPMC E5 LV | [17] |
Supercritical antisolvent process | Hydroxy propyl β-cyclodextrin | [18] |
Solvent evaporation method | Ternary SD of PEG 12,000 and a surfactant (Pluronic F68, Pluronic F127, SLS, or Myrj 52) | [19] |
Fusion and solvent evaporation method | Xylitol, sorbitol, Soluplus, and lactulose | [20] |
Formulation | SIM | SOP | KVA | K12 | KIR |
---|---|---|---|---|---|
F1 | 30% | 35% | 35% | - | - |
F2 | 30% | 35% | - | 35% | - |
F3 | 30% | 35% | - | - | 35% |
F4 | 30% | - | 35% | 35% | - |
F5 | 30% | - | 35% | - | 35% |
F6 | 30% | - | 35% | 35% |
Formulations | 50% w/w SIM | 30% w/w SIM | |||||
---|---|---|---|---|---|---|---|
Sample | Peak Temp. | Onset Temp. | Enthalpy | Peak Temp. | Onset Temp. | Enthalpy | |
°C | J/g | °C | J/g | ||||
SIM | 139.50 | 137.27 | 19.5 | 139.50 | 137.28 | 19.5 | |
PM 1 | SIM-KVA/SOP | 136.99 | 131.90 | 11.31 | 117.49 | 135.68 | 3.39 |
PM 2 | SIM-SOP/K12 | 128.54 | 115.61 | 4.52 | 107.24 | 119.64 | 0.89 |
PM 3 | SIM-SOP/KIR | 138.48 | 135.3 | 9.21 | 135.80 | 130.50 | 2.48 |
PM 4 | SIM-KVA/K12 | 125.80 | 114.28 | 3.66 | 108.79 | 129.67 | 2.3 |
PM 5 | SIM-KVA/KIR | 135.94 | 126.8 | 8.02 | 117.99 | 129.89 | 2.15 |
PM 6 | SIM-K12/KIR | 122.92 | 111.84 | 3.22 | 111.78 | 123.89 | 2.05 |
Ingredient | Description | Wavenumber (cm−1) |
---|---|---|
Kollidon 12PF (K12) | O–H stretching of absorbed water | 3429 |
C=O–stretching vibration | 1654 | |
Soluplus (SOP) | aromatic C–H stretching | 2925 |
C=O stretching | 1733–1625 | |
C–O–C stretching | 1478 | |
Kollicoat IR (KIR) | aliphatic hydroxyl group | 3280 |
CO stretching band | 1084 | |
Polyvinylpyrrolidone (KVA) Vinyl acetate | vinyl acetate group | 1733 |
vinylpyrrolidone group | 1669 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkanayati, R.M.; Karnik, I.; Uttreja, P.; Narala, N.; Vemula, S.K.; Karry, K.; Repka, M.A. Twin Screw Melt Granulation of Simvastatin: Drug Solubility and Dissolution Rate Enhancement Using Polymer Blends. Pharmaceutics 2024, 16, 1630. https://doi.org/10.3390/pharmaceutics16121630
Elkanayati RM, Karnik I, Uttreja P, Narala N, Vemula SK, Karry K, Repka MA. Twin Screw Melt Granulation of Simvastatin: Drug Solubility and Dissolution Rate Enhancement Using Polymer Blends. Pharmaceutics. 2024; 16(12):1630. https://doi.org/10.3390/pharmaceutics16121630
Chicago/Turabian StyleElkanayati, Rasha M., Indrajeet Karnik, Prateek Uttreja, Nagarjuna Narala, Sateesh Kumar Vemula, Krizia Karry, and Michael A. Repka. 2024. "Twin Screw Melt Granulation of Simvastatin: Drug Solubility and Dissolution Rate Enhancement Using Polymer Blends" Pharmaceutics 16, no. 12: 1630. https://doi.org/10.3390/pharmaceutics16121630
APA StyleElkanayati, R. M., Karnik, I., Uttreja, P., Narala, N., Vemula, S. K., Karry, K., & Repka, M. A. (2024). Twin Screw Melt Granulation of Simvastatin: Drug Solubility and Dissolution Rate Enhancement Using Polymer Blends. Pharmaceutics, 16(12), 1630. https://doi.org/10.3390/pharmaceutics16121630