Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine
<p>TEM images of powdered Gd<sub>2</sub>O<sub>3</sub> NPs, obtained on a JEM-2100 microscope at accelerating voltage 200 kV: (<b>a</b>) overview image of agglomerate and (<b>b</b>) its electronogram; (<b>c</b>,<b>d</b>) enlarged image before visualization of separate nanoparticles with scale bar 100 nm–10 nm; (<b>e</b>) size distribution of Gd<sub>2</sub>O<sub>3</sub> NPs.</p> "> Figure 2
<p>Diffractogram of a sample of Gd<sub>2</sub>O<sub>3</sub> powder. The upper graph represents the experimental curve with indexing of peaks by the corresponding planes from which the diffraction occurred. The lower graph represents the difference between the experimental and theoretical diffractograms.</p> "> Figure 3
<p>Raman spectrum of Gd<sub>2</sub>O<sub>3</sub> powder with identification of the main Raman active modes. Inset photoluminescence spectrum of the sample near the wavelength of excitation radiation with marked energy transitions due to the presence of Eu<sup>3+</sup> ions in the crystal lattice of Gd<sub>2</sub>O<sub>3</sub>.</p> "> Figure 4
<p>Images of Gd<sub>2</sub>O<sub>3</sub> powder particles obtained by scanning electron microscopy (<b>a</b>) and elemental distribution maps: Gd (<b>b</b>), O (<b>c</b>), and Eu (<b>d</b>). The insets show the image of the agglomerate with increased Eu content.</p> "> Figure 5
<p>Dependence of the photodegradation rate constant of methylene blue and its variation on the concentration of Gd<sub>2</sub>O<sub>3</sub> NPs under red light irradiation. Dashed line shows (MB) methylene blue without addition of Gd<sub>2</sub>O<sub>3</sub> NPs. The arrows indicate that both the blue dashed line (MB) and the orange solid line (MB+Gd<sub>2</sub>O<sub>3</sub>) belong to the left axis (<span class="html-italic">k)</span>, and the gray solid line (Gd<sub>2</sub>O<sub>3</sub>) belongs to the right axis (<span class="html-italic">–Δk).</span></p> "> Figure 6
<p>Effect of different concentrations of Gd<sub>2</sub>O<sub>3</sub> NPs on metabolic activity of human fibroblasts in MTT test (* difference from control at <span class="html-italic">p</span> < 0.001, Dunnett post hoc tests).</p> "> Figure 7
<p>Effect of different concentrations of Gd<sub>2</sub>O<sub>3</sub> NPs on proliferative activity of fibroblasts by direct cell counting using an automated cell counter (<span class="html-italic">p</span> = 0.142).</p> "> Figure 8
<p>Human fibroblasts after 72 h incubation with different concentrations of Gd<sub>2</sub>O<sub>3</sub> NPs compared to control, magnification ×20.</p> "> Figure 9
<p>Effect of different concentrations of Gd<sub>2</sub>O<sub>3</sub> NPs on metabolic activity of human keratinocytes (BJTERT cells) in MTT test (* difference from control at <span class="html-italic">p</span> < 0.001, Dunnett post hoc tests).</p> "> Figure 10
<p>Effect of different concentrations of Gd<sub>2</sub>O<sub>3</sub> NPs on proliferative activity of fibroblasts (HaCaT cell line) by direct cell counting using an automated cell counter (* difference from control at <span class="html-italic">p</span> < 0.001, Dunnett post hoc tests).</p> "> Figure 11
<p>Human keratinocytes after 72 h incubation with different concentrations of Gd<sub>2</sub>O<sub>3</sub> NPs compared to control, magnification ×20.</p> "> Figure 12
<p>Effects of Gd<sub>2</sub>O<sub>3</sub> on migration of MSCs in scratch wound healing assay. (<b>a</b>) Representative images demonstrate the differences in migratory activity between MSCs under intact conditions and upon the Gd<sub>2</sub>O<sub>3</sub> treatment. Brightfield microscopy, magnification —40×. (<b>b</b>) Time-dependent quantification of % confluency in the scratch wound area (* reliability of differences at <span class="html-italic">p</span> < 0.05; <span class="html-italic">t</span>-test).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Gadolinium Oxide Nanoparticles
2.2. Physicochemical Methods of Research
2.3. Biomedical Methods of Research
2.3.1. Methods for Evaluating the Effect of Different Concentrations of Aqueous Suspensions of Gd2O3 NPs, on Cytotoxicity/Biocompatibility, Metabolic, and Proliferative Activity of Human Fibroblasts and Keratinocytes
Cell Lines of Fibroblasts and Keratinocytes and Their Cultivation
MTT-Test
Determination of Proliferative Activity and Dead/Living Cells Ratio with Trypan Blue Staining
2.3.2. Study of Migration Activity and Rate of Healing of a Model Wound In Vitro on Human Mesenchymal Stromal Cell Culture
Culture of Human Adipose-Derived Mesenchymal Stromal Cells
Methodology for Assessment of Migration Activity and Rate of In Vitro Model Wound Healing on Human MSCs
2.4. Statistical Data Processing
3. Results
3.1. Results of Evaluation of Physicochemical Characteristics of Gadolinium Oxide Nanoparticle Powder
3.1.1. Transmission Electron Microscopy
3.1.2. X-Ray Diffraction
3.1.3. Raman Spectroscopy
3.1.4. Scanning Electron Microscopy and Energy Dispersive Analysis of Secondary (Characteristic) X-Rays
3.1.5. Mass Spectrometry
3.2. Result of Evaluation of the Redox Activity of Gd2O3 Nps at Different Concentrations
3.3. Results of Biological Studies on Cell Lines
3.3.1. Results of Studies of the Effect of Different Concentrations of Aqueous Suspensions of Gd2O3 NPs on Cytotoxicity, Metabolic, and Proliferative Activity of Human Fibroblasts
3.3.2. Results of Studies of the Effect of Different Concentrations of Aqueous Suspensions of Gd2O3 NPs on the Cytotoxicity/Biocompatibility, Metabolic, and Proliferative Activity of Human Keratinocytes
3.3.3. Results of the Study of Migration Activity and Healing Rate of a Model Wound In Vitro on Human Mesenchymal Stem Cell Culture
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, R.; Chen, J.; Gao, X.; Zhang, Q. Neurodevelopmental Toxicity of Alumina Nanoparticles to Zebrafish Larvae: Toxic Effects of Particle Sizes and Ions. Food Chem. Toxicol. 2021, 157, 112587. [Google Scholar] [CrossRef] [PubMed]
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe Nanoparticles: Are We There Yet? Int. J. Mol. Sci. 2020, 22, 385. [Google Scholar] [CrossRef]
- Wen, J.; Moloney, E.B.; Canning, A.; Donohoe, E.; Ritter, T.; Wang, J.; Xiang, D.; Wu, J.; Li, Y. Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect. Pharmacol. Res. 2021, 172, 105833. [Google Scholar] [CrossRef]
- Ali, M. What function of nanoparticles is the primary factor for their hyper-toxicity? Adv. Colloid Interface Sci. 2023, 314, 102881. [Google Scholar] [CrossRef]
- Hendricks, A.R.; Guilliams, B.F.; Cohen, R.S.; Tien, T.; McEwen, G.A.; Borgognoni, K.M.; Ackerson, C.J. Cloneable inorganic nanoparticles. Chem. Commun. 2023, 59, 8626–8643. [Google Scholar] [CrossRef] [PubMed]
- Medical Advisory Secretariat. Nanotechnology: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2006, 6, 1–43. [Google Scholar] [PubMed] [PubMed Central]
- Dai, Y.; Wu, C.; Wang, S.; Li, Q.; Zhang, M.; Li, J.; Xu, K. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent. Nanomedicie 2018, 14, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Bendszus, M.; Laghi, A.; Munuera, J.; Tanenbaum, L.N.; Taouli, B.; Thoeny, H.C. MRI Gadolinium-Based Contrast Media: Meeting Radiological, Clinical, and Environmental Needs. J. Magn. Reson. Imaging 2024, 60, 1774–1785. [Google Scholar] [CrossRef]
- Wu, L.; Lu, X.; Lu, Y.; Shi, M.; Guo, S.; Feng, J.; Yang, S.; Xiong, W.; Xu, Y.; Yan, C.; et al. Kilogram-Scale Synthesis of Extremely Small Gadolinium Oxide Nanoparticles as a T1-Weighted Contrast Agent for Magnetic Resonance Imaging. Small 2024, 20, e2308547. [Google Scholar] [CrossRef]
- Liu, K.; Cai, Z.; Chi, X.; Kang, B.; Fu, S.; Luo, X.; Lin, Z.W.; Ai, H.; Gao, J.; Lin, H. Photoinduced Superhydrophilicity of Gd-Doped TiO2 Ellipsoidal Nanoparticles Boosts T1 Contrast Enhancement for Magnetic Resonance Imaging. Nano Lett. 2022, 22, 3219–3227. [Google Scholar] [CrossRef] [PubMed]
- Riyahi-Alam, N.; Behrouzkia, Z.; Seifalian, A.; HaghgooJahromi, S. Properties Evaluation of a New MRI Contrast Agent Based on Gd-Loaded Nanoparticles. Biol. Trace Elem. Res. 2010, 137, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–3235. [Google Scholar] [CrossRef]
- Helm, L. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med. Chem. 2010, 2, 385–396. [Google Scholar] [CrossRef]
- Fleming, C.L.; Wong, J.; Golzan, M.; Gunawan, C.; McGrath, K.C. Insights from a Bibliometrics-Based Analysis of Publishing and Research Trends on Cerium Oxide from 1990 to 2020. Int. J. Mol. Sci. 2023, 24, 2048. [Google Scholar] [CrossRef] [PubMed]
- Farias, I.A.P.; Dos Santos, C.C.L.; Sampaio, F.C. Antimicrobial Activity of Cerium Oxide Nanoparticles on Opportunistic Microorganisms: A Systematic Review. Biomed Res. Int. 2018, 2018, 1923606. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yang, F.; Wu, L.; Xia, D.; Liu, Y. CeO2 Nanoparticles to Promote Wound Healing: A Systematic Review. Adv. Healthc. Mater. 2024, 13, e2302858. [Google Scholar] [CrossRef]
- Silina, E.V.; Manturova, N.E.; Erokhina, A.G.; Shatokhina, E.A.; Stupin, V.A. Nanomaterials based on cerium oxide nanoparticles for wound regeneration: A literature review. Russ. J. Transplantology Artif. Organs. 2024, 26, 113–124. [Google Scholar] [CrossRef]
- Rajaee, A.; Wang, S.; Zhao, L.; Wang, D.; Liu, Y.; Wang, J.; Ying, K. Multifunction bismuth gadolinium oxide nanoparticles as radiosensitizer in radiation therapy and imaging. Phys. Med. Biol. 2019, 64, 195007. [Google Scholar] [CrossRef] [PubMed]
- Lux, F.; Sancey, L.; Bianchi, A.; Crémillieux, Y.; Roux, S.; Tillement, O. Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine 2015, 10, 1801–1815. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Deacon, J.; Yan, H.; Sun, B.; Liu, Y.; Hegan, D.; Li, Q.; Coman, D.; Parent, M.; Hyder, F.; et al. Tumor-targeted pH-low insertion peptide delivery of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy. Transl. Oncol. 2020, 13, 100839. [Google Scholar] [CrossRef] [PubMed]
- Khorasani, A.; Shahbazi-Gahrouei, D.; Safari, A. Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics 2023, 13, 833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Su, X.; Weng, L.; Tang, K.; Miao, Y.; Teng, Z.; Wang, L. Gadolinium-hybridized mesoporous organosilica nanoparticles with high magnetic resonance imaging performance for targeted drug delivery. J. Colloid Interface Sci. 2023, 633, 102–112. [Google Scholar] [CrossRef]
- Ho, S.L.; Choi, G.; Yue, H.; Kim, H.K.; Jung, K.H.; Park, J.A.; Kim, M.H.; Lee, Y.J.; Kim, J.Y.; Miao, X.; et al. In vivo neutron capture therapy of cancer using ultrasmall gadolinium oxide nanoparticles with cancer-targeting ability. RSC Adv. 2020, 10, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhang, S.; Zhang, L.; Jiang, T.; Wang, H.; Huang, L.; Wu, H.; Fan, Z.; Jing, S. Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy. Acta Biomater. 2023, 164, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhu, X.; Chen, X.; Zhao, Y.; Liu, J. Gd3+-Doped MoSe2 nanosheets used as a theranostic agent for bimodal imaging and highly efficient photothermal cancer therapy. Biomater. Sci. 2018, 6, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhou, L.; Gu, Z.; Tian, G.; Yan, L.; Ren, W.; Yin, W.; Liu, X.; Zhang, X.; Hu, Z.; et al. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Nanoscale 2013, 5, 11910–11918. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Xu, J.; Liu, L.; Lin, P.; Luo, X.; Gao, Y.; Shi, J.; Zhang, Y. X-ray activated near-infrared persistent luminescence nanoparticles for trimodality in vivo imaging. Biomater. Sci. 2024, 12, 3841–3850. [Google Scholar] [CrossRef]
- Chargari, C.; Maury, P.; Texier, M.; Genestie, C.; Morice, P.; Bockel, S.; Gouy, S.; Ba, M.; Achkar, S.; Lux, F.; et al. Theragnostic Gadolinium-Based Nanoparticles Safely Augment X-ray Radiation Effects in Patients with Cervical Cancer. ACS Nano 2024, 18, 16516–16529. [Google Scholar] [CrossRef]
- Yu, B.; Lu, X.; Feng, X.; Zhao, T.; Li, J.; Lu, Y.; Ye, F.; Liu, X.; Zheng, X.; Shen, Z.; et al. Gadolinium Oxide Nanoparticles Reinforce the Fractionated Radiotherapy-Induced Immune Response in Tri-Negative Breast Cancer via cGAS-STING Pathway. Int. J. Nanomed. 2023, 18, 7713–7728. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Fu, Z.; Liu, G.; Tan, H.; Xiao, J.; Shi, H.; Cheng, D. Gadolinium-Based Nanoparticles for Theranostic MRI-Guided Radiosensitization in Hepatocellular Carcinoma. Front. Bioeng. Biotechnol. 2019, 7, 368. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, H.; Salehiabar, M.; Charmi, J.; Yaray, K.; Ghaffarlou, M.; Balcioglu, E.; Ertas, Y.N. Enhanced In Vivo Radiotherapy of Breast Cancer Using Gadolinium Oxide and Gold Hybrid Nanoparticles. ACS Appl. Bio. Mater. 2023, 6, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Korolev, D.V.; Shulmeyster, G.A.; Istomina, M.S.; Evreinova, N.V.; Aleksandrov, I.V.; Krasichkov, A.S.; Postnov, V.N.; Galagudza, M.M. Fluorescently Labeled Gadolinium Ferrate/Trigadolinium Pentairon(III) Oxide Nanoparticles: Synthesis, Characterization, In Vivo Biodistribution, and Application for Visualization of Myocardial Ischemia-Reperfusion Injury. Materials 2022, 15, 3832. [Google Scholar] [CrossRef] [PubMed]
- Almas, T.; Haider, R.; Malik, J.; Mehmood, A.; Alvi, A.; Naz, H.; Satti, D.I.; Zaidi, S.M.J.; AlSubai, A.K.; AlNajdi, S.; et al. Nanotechnology in interventional cardiology: A state-of-the-art review. Int. J. Cardiol. Heart Vasc. 2022, 43, 101149. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S.H.; Anzai, Y. Glymphatic MRI techniques in sleep and neurodegenerative diseases. Curr. Opin. Pulm. Med. 2022, 28, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Lilius, T.O.; Mortensen, K.N.; Deville, C.; Lohela, T.J.; Stæger, F.F.; Sigurdsson, B.; Fiordaliso, E.M.; Rosenholm, M.; Kamphuis, C.; Beekman, F.J.; et al. Glymphatic-assisted perivascular brain delivery of intrathecal small gold nanoparticles. J. Control. Release 2023, 355, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhang, Y.; Tao, H.; Zhou, L.; Li, H.; Chen, T.; Zhang, P.; Lu, Y.; Chen, S. Gadolinium-hyaluronic acid nanoparticles as an efficient and safe magnetic resonance imaging contrast agent for articular cartilage injury detection. Bioact. Mater. 2020, 5, 758–767. [Google Scholar] [CrossRef]
- Wu, S.; Xu, T.; Gao, J.; Zhang, Q.; Huang, Y.; Liu, Z.; Hao, X.; Yao, Z.; Hao, X.; Wu, P.Y.; et al. Non-invasive diagnosis of liver fibrosis via MRI using targeted gadolinium-based nanoparticles. Eur. J. Nucl. Med. Mol. Imaging 2024, 52, 48–61. [Google Scholar] [CrossRef]
- Brune, N.; Mues, B.; Buhl, E.M.; Hintzen, K.W.; Jockenhoevel, S.; Cornelissen, C.G.; Slabu, I.; Thiebes, A.L. Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles. Nanomaterials 2023, 13, 1869. [Google Scholar] [CrossRef]
- Mehta, K.J. Iron Oxide Nanoparticles in Mesenchymal Stem Cell Detection and Therapy. Stem Cell Rev. Rep. 2022, 18, 2234–2261. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhen, M.; Li, J.; Zhou, Y.; Ma, H.; Jia, W.; Wang, C. Anti-apoptosis effect of amino acid modified gadofullerene via a mitochondria mediated pathway. Dalton Trans. 2019, 48, 7884–7890. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Li, B.; Yu, H.; Zhao, Y.; Sun, J.; Li, Y.; Xing, G.; Yuan, H.; Tang, J.; et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem. Pharmacol. 2006, 71, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Qu, Y.; Zhou, G.; Liu, Y.; Li, W.; Ge, C.; Li, Y.; Hu, W.; Li, B.; Gao, Y.; et al. Modulation of oxidative stress by functionalized fullerene materials in the lung tissues of female C57/BL mice with a metastatic Lewis lung carcinoma. J. Nanosci. Nanotechnol. 2010, 10, 8632–8637. [Google Scholar] [CrossRef]
- Maksimchuk, P.O.; Hubenko, K.O.; Seminko, V.V.; Karbivskii, V.L.; Tkachenko, A.S.; Onishchenko, A.I.; Prokopyuk, V.Y.; Yefimova, S.L. High antioxidant activity of gadolinium-yttrium orthovanadate nanoparticles in cell-free and biological milieu. Nanotechnology 2021, 33, 055701. [Google Scholar] [CrossRef]
- Sushko, E.S.; Vnukova, N.G.; Churilov, G.N.; Kudryasheva, N.S. Endohedral Gd-Containing Fullerenol: Toxicity, Antioxidant Activity, and Regulation of Reactive Oxygen Species in Cellular and Enzymatic Systems. Int. J. Mol. Sci. 2022, 23, 5152. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Ma, D.; Wei, R.; Yao, W.; Pang, X.; Wang, Y.; Xu, X.; Wei, X.; Guo, Y.; Jiang, X.; et al. A tumor microenvironment responsive nanoplatform with oxidative stress amplification for effective MRI-based visual tumor ferroptosis. Acta Biomater. 2022, 138, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Torres, A.; Shorr, A.F.; Martin-Loeches, I.; Micek, S.T. Nosocomial Infection. Crit. Care Med. 2021, 49, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Ye, W. Prevention and control of hospital-acquired infections with multidrug-resistant organism: A review. Medicine 2024, 103, e37018. [Google Scholar] [CrossRef] [PubMed]
- Flynn, C.E.; Guarner, J. Emerging Antimicrobial Resistance. Mod. Pathol. 2023, 36, 100249. [Google Scholar] [CrossRef] [PubMed]
- Lemiech-Mirowska, E.; Kiersnowska, Z.M.; Michałkiewicz, M.; Depta, A.; Marczak, M. Nosocomial infections as one of the most important problems of healthcare system. Ann. Agric. Environ. Med. 2021, 28, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Aashima Pandey, S.K.; Singh, S.; Mehta, S.K. Biocompatible gadolinium oxide nanoparticles as efficient agent against pathogenic bacteria. J. Colloid Interface Sci. 2018, 529, 496–504. [Google Scholar] [CrossRef]
- Mohsin, M.H.; Khashan, K.S.; Sulaiman, G.M.; Mohammed, H.A.; Qureshi, K.A.; Aspatwar, A. A novel facile synthesis of metal nitride@metal oxide (BN/Gd2O3) nanocomposite and their antibacterial and anticancer activities. Sci. Rep. 2023, 13, 22749. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chaudhary, S.; Ganga Ram Chaudhary, G.R. Effect of fabrication strategies on the in-vitro antimicrobial and antifungal activities of Pr3+ doped Gb2O3 nanoparticles. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100518. [Google Scholar] [CrossRef]
- Jin, J.; Zhao, Q. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: Recent advances and future challenges. J. Nanobiotechnology 2020, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.Y.; Ahmad, M.W.; Yue, H.; Ho, S.L.; Cha, H.; Marasini, S.; Tegafaw, T.; Liu, S.; Ghazanfari, A.; Chae, K.S.; et al. Chitosan Oligosaccharide Lactate-Coated Ultrasmall Gadolinium Oxide Nanoparticles: Synthesis, In Vitro Cytotoxicity, and Relaxometric Properties. J. Nanosci. Nanotechnol. 2021, 21, 4145–4150. [Google Scholar] [CrossRef]
- Liu, S.; Yue, H.; Ho, S.L.; Kim, S.; Park, J.A.; Tegafaw, T.; Ahmad, M.Y.; Kim, S.; Saidi, A.K.A.A.; Zhao, D.; et al. Enhanced Tumor Imaging Using Glucosamine-Conjugated Polyacrylic Acid-Coated Ultrasmall Gadolinium Oxide Nanoparticles in Magnetic Resonance Imaging. Int. J. Mol. Sci. 2022, 23, 1792. [Google Scholar] [CrossRef]
- Tamanoi, F.; Yoshikawa, K. Inhibition of DNA synthesis and cancer therapies. Enzymes 2022, 52, 11–21. [Google Scholar] [CrossRef]
- Wallnöfer, E.A.; Thurner, G.C.; Kremser, C.; Talasz, H.; Stollenwerk, M.M.; Helbok, A.; Klammsteiner, N.; Albrecht-Schgoer, K.; Dietrich, H.; Jaschke, W.; et al. Albumin-based nanoparticles as contrast medium for MRI: Vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochem. Cell Biol. 2021, 155, 19–73. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.; Nolze, G. Powder cell—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Artini, C.; Costa, G.A.; Pani, M.; Lausi, A.; Plaisier, J. Structural characterization of the CeO2/Gd2O3 mixed system by synchrotron X-ray diffraction. J. Solid State Chem. 2012, 190, 24–28. [Google Scholar] [CrossRef]
- Wilson, V.G. Growth and differentiation of HaCaT keratinocytes. Methods Mol. Biol. 2014, 1195, 33–41. [Google Scholar] [CrossRef]
- Colombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P.A.; Scaccabarozzi, D.; et al. HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediat. Inflamm. 2017, 2017, 7435621. [Google Scholar] [CrossRef] [PubMed]
- Suzdaltseva, Y.; Goryunov, K.; Silina, E.; Manturova, N.; Stupin, V.; Kiselev, S.L. Equilibrium among Inflammatory Factors Determines Human MSC-Mediated Immunosuppressive Effect. Cells 2022, 11, 1210. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop Dj Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.M.; Davolos, M.R.; Paiva-Santos, C.O.; Stucchi, E.B.; Flor, J. New X-Ray Powder Diffraction Data and Rietveld Refinement for Gd 2 O 3 Monodispersed Fine Spherical Particles. J. Solid State Chem. 2003, 171, 420–423. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Kislov, A.N.; Zatsepin, A.F. Defect Structure and Vibrational States in Eu-Doped Cubic Gadolinium Oxide. Phys. Chem. Chem. Phys. 2020, 22, 24498–24505. [Google Scholar] [CrossRef]
- Vairapperumal, T.; Pattnaik, S.; Rai, V.K.; Subramanian, B. Structural and Lattice Dynamics Investigation of Double Luminescent Nanosized Hybrid Gd2O3. Mater. Today Commun. 2023, 36, 106500. [Google Scholar] [CrossRef]
- Jegadeesan, P.; Sen, S.; Padmaprabu, C.; Srivastava, S.K.; Das, A.; Amirthapandian, S. Morphological and Optical Investigations on Gd2O3 Nanostructures. Inorg. Chem. Commun. 2023, 150, 110493. [Google Scholar] [CrossRef]
- Le Luyer, C.; García-Murillo, A.; Bernstein, E.; Mugnier, J. Waveguide Raman Spectroscopy of Sol–Gel Gd2O3 Thin Films. J. Raman Spectrosc. 2003, 34, 234–239. [Google Scholar] [CrossRef]
- Dhananjaya, N.; Nagabhushana, H.; Nagabhushana, B.M.; Rudraswamy, B.; Sharma, S.C.; Sunitha, D.V.; Shivakumara, C.; Chakradhar, R.P.S. Effect of Different Fuels on Structural, Thermo and Photoluminescent Properties of Gd2O3 Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 532–540. [Google Scholar] [CrossRef] [PubMed]
- GarcíaRamírez, V.M.; García Murillo, A.; Carrillo Romo, F.d.J.; Alvarez González, R.I.; Madrigal Bujaidar, E. A New Ultrafine Luminescent La2O3: Eu3+ Aerogel. Gels 2023, 9, 615. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, G.; Holland, E.; Dobson, P.J.; Hutchison, J.L. Luminescence Properties of Nanocrystalline Y2O3:Eu. Adv. Mater. 2001, 13, 1557. [Google Scholar] [CrossRef]
- Guo, H.; Dong, N.; Yin, M.; Zhang, W.; Lou, L.; Xia, S. Visible Upconversion in Rare Earth Ion-Doped Gd2O3 Nanocrystals. J. Phys. Chem. B 2004, 108, 19205–19209. [Google Scholar] [CrossRef]
- Maalej, N.M.; Qurashi, A.; Assadi, A.A.; Maalej, R.; Shaikh, M.N.; Ilyas, M.; Gondal, M.A. Synthesis of Gd2O3:EuNanoplatelets for MRI and Fluorescence Imaging. Nanoscale Res. Lett. 2015, 10, 215. [Google Scholar] [CrossRef]
- Kostova, I.; Traykova, M.; Rastogi, V. New Lanthanide Complexes with Antioxidant Activity. Med. Chem. 2008, 4, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Pugachevskii, M.A.; Rasseko, D.S.; Stupin, V.A.; Manturova, N.E.; Artyushkova, E.B.; Silina, E.V. Effect of CeO2 Nanoparticles on Hydroxyl Radicals in EPR Studies of the Photodegradation of Methylene Blue under Influence of Red Light. J. Mol. Liq. 2024, 404, 124946. [Google Scholar] [CrossRef]
- Islam, M.T.; Tsnobiladze, V. The Application, Safety, and Recent Developments of Commonly Used Gadolinium-Based Contrast Agents in MRI: A Scoping Review. EMJ 2024, 9, 63–73. [Google Scholar] [CrossRef]
- Coimbra, S.; Rocha, S.; Sousa, N.R.; Catarino, C.; Belo, L.; Bronze-da-Rocha, E.; Valente, M.J.; Santos-Silva, A. Toxicity Mechanisms of Gadolinium and Gadolinium-Based Contrast Agents—A Review. Int. J. Mol. Sci. 2024, 25, 4071. [Google Scholar] [CrossRef] [PubMed]
- Arino, T.; Faulkner, D.; Bustillo, K.C.; An, D.D.; Jorgens, D.; Hébert, S.; McKinley, C.; Proctor, M.; Loguinov, A.; Vulpe, C.; et al. Electron microscopy evidence of gadolinium toxicity being mediated through cytoplasmic membrane dysregulation. Metallomics 2024, 16, mfae042. [Google Scholar] [CrossRef]
- Wang, W.; Song, S.; Liu, W.; Xia, T.; Du, G.; Zhai, X.; Jin, B. Two-photon excited luminescence of structural light enhancement in subwavelength SiO2 coating europium ion-doped paramagnetic gadolinium oxide nanoparticle and application for magnetic resonance imaging. Discover. Nano 2023, 18, 85. [Google Scholar] [CrossRef]
- Whba, F.; Mohamed, F.; Idris, M. Evaluation of physicochemical and biocompatibility characteristics of gadolinium oxide nanoparticles as magnetic resonance imaging contrast agents. Radiat. Phys. Chem. 2023, 2013, 111189. [Google Scholar] [CrossRef]
- Verma, V.K.; Srivastava, P.; Sabbarwal, S.; Singh, M.; Koch, B.; Kumar, M. White Light Emitting Gadolinium Oxide Nanoclusters for In-vitro Bio-imaging. ChemistrySelect 2022, 47, e202202335. [Google Scholar] [CrossRef]
- Zheng, C.; Tian, X.; Cai, J.; Huang, L.; Wang, S.; Yang, F.; Ma, Y.; Xie, F.; Li, L. In vivo immunotoxicity of Gd2O3: Eu3+ nanoparticles and the associated molecular mechanism. J. Biochem. Mol. Toxicol. 2020, 34, e22562. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, F.; Di Serafino, M.; Russo, C.; Ronza, R.; Caruso, M.; Dell’Aversano Orabona, G.; Camillo, C.; Sabatino, V.; Grimaldi, D.; Rinaldo, C.; et al. Safe and Informed Use of Gadolinium-Based Contrast Agent in Body Magnetic Resonance Imaging: Where We Were and Where We Are. J. Clin. Med. 2024, 13, 2193. [Google Scholar] [CrossRef]
- Mahmood, F.; Nielsen, U.G.; Jørgensen, C.B.; Brink, C.; Thomsen, H.S.; Hansen, R.H. Safety of gadolinium based contrast agents in magnetic resonance imaging-guided radiotherapy—An investigation of chelate stability using relaxometry. Phys. Imaging Radiat. Oncol. 2022, 21, 96–100. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther. 2022, 7, 92. [Google Scholar] [CrossRef]
- Hemmer, E.; Yamano, T.; Kishimoto, H.; Venkatachalam, N.; Hyodo, H.; Soga, K. Cytotoxic Aspects of Gadolinium Oxide Nanostructures for Up-Conversion and NIR Bioimaging. Acta Biomater. 2013, 9, 4734–4743. [Google Scholar] [CrossRef]
- Dhanalakshmi, S.; Senthil Kumar, P.; Karuthapandian, S.; Muthuraj, V.; Prithivikumaran, N. Design of Gd2O3 Nanorods: A Challenging Photocatalyst for the Degradation of Neurotoxicity Chloramphenicol Drug. J. Mater. Sci. Mater. Electron. 2019, 30, 3744–3752. [Google Scholar] [CrossRef]
Element | Gd2O3 | Element | Gd2O3 |
---|---|---|---|
Na | <0.5 | La | 6 |
Mg | 1 | Ce | <0.1 |
Al | 5 | Pr | 0.6 |
Si | <10 | Nd | <0.1 |
K | 0.6 | Sm | 1 |
Ca | 0.8 | Eu | 5 |
Ti | <0.01 | Tb | 3 |
V | <0.01 | Dy | <0.1 |
Cr | <0.01 | Ho | 20 |
Mn | 1 | Er | <0.1 |
Fe | 1 | Tm | 2 |
Co | <0.02 | Yb | <0.1 |
Ni | <0.02 | Pb | <0.2 |
Cu | 1 | Bi | <0.2 |
Zn | 2 | Th | <0.2 |
Y | 0.6 | U | <0.1 |
Group | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
MTT, optical density value (OD) | |||||||
Control_0 | 0.432 | 0.011 | 0.005 | 0.425 | 0.438 | 0.423 | 0.453 |
Control (H2O) | 0.441 | 0.014 | 0.006 | 0.433 | 0.448 | 0.420 | 0.462 |
Control (average) | 0.437 | 0.013 | 0.004 | 0.428 | 0.445 | 0.420 | 0.462 |
Gd2O3 (10−3 M) | 0.556 | 0.012 | 0.003 | 0.548 | 0.563 | 0.540 | 0.575 |
Gd2O3 (10−4 M) | 0.479 | 0.009 | 0.003 | 0.473 | 0.485 | 0.468 | 0.493 |
Gd2O3 (10−5 M) | 0.467 | 0.017 | 0.005 | 0.456 | 0.478 | 0.435 | 0.501 |
Number of fibroblasts, ×100,000 cells | |||||||
Control | 4.40 | 0.453 | 0.171 | 3.98 | 4.82 | 3.69 | 4.99 |
Gd2O3 (10−3 M) | 4.71 | 0.452 | 0.171 | 4.29 | 5.12 | 4.05 | 5.34 |
Gd2O3 (10−4 M) | 4.02 | 0.287 | 0.108 | 3.75 | 4.29 | 3.76 | 4.52 |
Gd2O3 (10−5 M) | 4.10 | 0.930 | 0.352 | 3.24 | 4.96 | 2.40 | 5.10 |
Group | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
MTT, optical density value (OD) | |||||||
Control | 0.322 | 0.007 | 0.002 | 0.316 | 0.329 | 0.315 | 0.334 |
Gd2O3 (10−3 M) | 0.335 | 0.011 | 0.004 | 0.324 | 0.345 | 0.322 | 0.351 |
Gd2O3 (10−4 M) | 0.339 | 0.010 | 0.003 | 0.329 | 0.348 | 0.321 | 0.353 |
Gd2O3 (10−5 M) | 0.341 | 0.007 | 0.003 | 0.334 | 0.348 | 0.333 | 0.355 |
Total | 0.334 | 0.011 | 0.002 | 0.330 | 0.339 | 0.315 | 0.355 |
Number of keratinocytes, ×100,000 cells | |||||||
Control | 1.47 | 0.268 | 0.101 | 1.21 | 1.71 | 1.11 | 1.88 |
Gd2O3 (10−3 M) | 1.33 | 0.157 | 0.059 | 1.18 | 1.47 | 1.17 | 1.64 |
Gd2O3 (10−4 M) | 2.02 | 0.515 | 0.194 | 1.53 | 2.49 | 1.47 | 2.87 |
Gd2O3 (10−5 M) | 1.71 | 0.192 | 0.072 | 1.53 | 1.89 | 1.41 | 1.99 |
Total | 1.63 | 0.399 | 0.075 | 1.47 | 1.78 | 1.11 | 2.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silina, E.V.; Manturova, N.E.; Chuvilina, E.L.; Gasanov, A.A.; Andreeva, O.I.; Pugachevskii, M.A.; Kochura, A.V.; Kryukov, A.A.; Suzdaltseva, Y.G.; Stupin, V.A. Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine. Pharmaceutics 2024, 16, 1627. https://doi.org/10.3390/pharmaceutics16121627
Silina EV, Manturova NE, Chuvilina EL, Gasanov AA, Andreeva OI, Pugachevskii MA, Kochura AV, Kryukov AA, Suzdaltseva YG, Stupin VA. Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine. Pharmaceutics. 2024; 16(12):1627. https://doi.org/10.3390/pharmaceutics16121627
Chicago/Turabian StyleSilina, Ekaterina V., Natalia E. Manturova, Elena L. Chuvilina, Akhmedali A. Gasanov, Olga I. Andreeva, Maksim A. Pugachevskii, Aleksey V. Kochura, Alexey A. Kryukov, Yulia G. Suzdaltseva, and Victor A. Stupin. 2024. "Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine" Pharmaceutics 16, no. 12: 1627. https://doi.org/10.3390/pharmaceutics16121627
APA StyleSilina, E. V., Manturova, N. E., Chuvilina, E. L., Gasanov, A. A., Andreeva, O. I., Pugachevskii, M. A., Kochura, A. V., Kryukov, A. A., Suzdaltseva, Y. G., & Stupin, V. A. (2024). Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine. Pharmaceutics, 16(12), 1627. https://doi.org/10.3390/pharmaceutics16121627