High Carbonyl Graphene Oxide Suppresses Colorectal Cancer Cell Proliferation and Migration by Inducing Ferroptosis via the System Xc−/GSH/GPX4 Axis
<p>Characterization of HC-GO. (<b>A</b>) Scanning electron microscope images of HC-GO, scale bar: 2 μm, 10 μm; (<b>B</b>) AFM topography image and the corresponding height distribution graph of HC-GO, scale bar: 2 μm; (<b>C</b>) Raman spectra results of HC-GO; (<b>D</b>) XPS results comparing regular GO and HC-GO.</p> "> Figure 2
<p>HC-GO significantly inhibited the in vitro proliferation and migration of HCT116 and HCT15 cells. (<b>A</b>,<b>B</b>) Colony formation assays were used to analyze cell proliferation. (<b>C</b>,<b>D</b>) CCK-8 assays were conducted to assess cell proliferation. (<b>E</b>,<b>F</b>) Scratch wound healing assays were employed to analyze cell migration. (<b>G</b>,<b>H</b>) Transwell assays were performed to measure cell migration capacity. Scale bar: 100 μm. (<b>I</b>,<b>J</b>) Western blot (WB) analysis was used to assess the expression levels of stemness proteins. Data are presented as mean ± SD. ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001 compared with the control group. All experiments were independently repeated at least three times.</p> "> Figure 3
<p>HC-GO induced ferroptosis in HCT116 and HCT15 cells in vitro. (<b>A</b>) Analysis of Fe<sup>2+</sup> levels. (<b>B</b>,<b>C</b>) Analysis of intracellular ROS levels. (<b>D</b>,<b>E</b>) Analysis of lipid ROS levels. (<b>F</b>) Analysis of GSH levels. (<b>G</b>,<b>H</b>) Western blot analysis of ferroptosis-related protein expression levels. (<b>I</b>) Transmission electron microscopy images of HCT116 cells: blue arrows indicate damaged mitochondria, red arrows indicate mitochondria with vacuolization, and yellow circles highlight structural damage in mitochondria (increased membrane density, reduced cristae, and mitochondrial shrinkage). Scale bars: 1 μm, 2 μm, 500 nm. Data are presented as mean ± SD. ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001 compared with the control group. All experiments were independently repeated at least three times.</p> "> Figure 4
<p>HC-GO inhibited CRC cells in vivo. (<b>A</b>,<b>B</b>) Tumor appearance; (<b>C</b>,<b>D</b>) Tumor volume and weight. Data are presented as mean ± SD. ** <span class="html-italic">p</span> < 0.01 compared with the control group.</p> "> Figure 5
<p>HC-GO induced ferroptosis in vivo. (<b>A</b>) HE staining used to assess morphological differences in tumor tissues. Scale bar: 200 μm. (<b>B</b>,<b>C</b>) Immunohistochemical staining for GPX4 and SLC7A11. Scale bar: 200 μm. (<b>D</b>) HE staining used to assess the morphology of mouse heart, liver, spleen, lung, and kidney tissues. Scale bar: 200 μm. Data are presented as mean ± SD. **** <span class="html-italic">p</span> < 0.0001compared with the control group.</p> "> Figure 6
<p>Ferroptosis inhibitor Fer-1 blocked HC-GO-induced ferroptosis in HCT116 cells. The concentration of Fer-1 was 10 μM [<a href="#B39-pharmaceutics-16-01605" class="html-bibr">39</a>]. (<b>A</b>) CCK-8 assay used to analyze cell proliferation; (<b>B</b>,<b>C</b>) Colony formation assay used to analyze cell proliferation; (<b>D</b>,<b>E</b>) Fer-1 blocks the increase in intracellular ROS levels induced by HC-GO; (<b>F</b>,<b>G</b>) Fer-1 blocks the increase in intracellular lipid ROS levels induced by HC-GO; (<b>H</b>) Fer-1 blocks the increase in GSH levels induced by HC-GO; (<b>I</b>,<b>J</b>) Western blot (WB) results show that Fer-1 blocks the decrease in GPX4 and SLC7A11 expression induced by HC-GO; (<b>K</b>,<b>L</b>) Immunofluorescence shows that Fer-1 blocks the decrease in GPX4 expression induced by HC-GO; (<b>M</b>,<b>N</b>) Immunofluorescence shows that Fer-1 blocks the decrease in SLC7A11 expression induced by HC-GO. Scale bar: 50 μm. Data are presented as mean ± SD. <sup>ns</sup> <span class="html-italic">p</span> > 0.05, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001compared with the control group/ HC-GO. All experiments were independently repeated at least three times.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of GO and HC-GO
2.2. Characterization of HC-GO
2.3. Cell Culture
2.4. Cell Proliferation and Migration Assays
2.4.1. Plate Clone Formation Assay
2.4.2. CCK-8 Assay
2.4.3. Wound Healing Assays
2.4.4. Transwell Migration Assay
2.5. Ferroptosis-Related Assay Measurements
2.5.1. Fe2+ Content Assay
2.5.2. ROS Assay
2.5.3. Lipid ROS Assay
2.5.4. GSH Detection
2.6. Western Blotting
2.7. Transmission Electron Microscopy
2.8. Immunohistochemical Analysis
2.9. Immunofluorescence Staining
2.10. Animal Experiment
2.11. Histological Analysis
2.12. Statistical Analysis
3. Results
3.1. Structure and Morphology of HC-GO
3.2. HC-GO Inhibits Proliferation and Migration of CRC Cells In Vitro
3.3. HC-GO Induces Ferroptosis in CRC Cells In Vitro
3.4. HC-GO Inhibits CRC Cells and Induces Ferroptosis In Vivo
3.5. HC-GO Inhibits CRC Cells Through Ferroptosis Mediated by the System Xc-/GSH/GPX4 Axis
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.E.; Giancotti, F.G.; Rustgi, A.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci. 2023, 44, 222–236. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Chen, H.; Wong, C.C.; Peng, Y.; Gou, H.; Zhang, J.; Pan, Y.; Chen, D.; Lin, Y.; Wang, S.; et al. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology 2023, 165, 445–462. [Google Scholar] [CrossRef]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Yoshino, T.; Hooda, N.; Younan, D.; Muro, K.; Shitara, K.; Heinemann, V.; O’Neil, B.H.; Herrero, F.R.; Peeters, M.; Soeda, J.; et al. A meta-analysis of efficacy and safety data from head-to-head first-line trials of epidermal growth factor receptor inhibitors versus bevacizumab in adult patients with RAS wild-type metastatic colorectal cancer by sidedness. Eur. J. Cancer 2024, 202, 113975. [Google Scholar] [CrossRef]
- Schmitt, M.; Ceteci, F.; Gupta, J.; Pesic, M.; Böttger, T.W.; Nicolas, A.M.; Kennel, K.B.; Engel, E.; Schewe, M.; Callak Kirisözü, A.; et al. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation. Nature 2022, 612, 347–353. [Google Scholar] [CrossRef]
- Yaeger, R.; Mezzadra, R.; Sinopoli, J.; Bian, Y.; Marasco, M.; Kaplun, E.; Gao, Y.; Zhao, H.; Paula, A.D.C.; Zhu, Y.; et al. Molecular Characterization of Acquired Resistance to KRASG12C-EGFR Inhibition in Colorectal Cancer. Cancer Discov. 2023, 13, 41–55. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Lei, G.; Zhuang, L.; Gan, B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 2024, 42, 513–534. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, Y.; Jiang, Y.; Zhang, L.; Cheng, W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188890. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Kroemer, G.; Kang, R. Ferroptosis in immunostimulation and immunosuppression. Immunol. Rev. 2024, 321, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer 2022, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, W.; Yang, L.; Wang, T.; Li, C.; Yu, J.; Zhang, P.; Yin, Y.; Li, R.; Tao, K. Nrf2 inhibition increases sensitivity to chemotherapy of colorectal cancer by promoting ferroptosis and pyroptosis. Sci. Rep. 2023, 13, 14359. [Google Scholar] [CrossRef]
- Wen, R.-J.; Dong, X.; Zhuang, H.-W.; Pang, F.-X.; Ding, S.-C.; Li, N.; Mai, Y.-X.; Zhou, S.-T.; Wang, J.-Y.; Zhang, J.-F. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomed. Int. J. Phytother. Phytopharm. 2023, 116, 154881. [Google Scholar] [CrossRef]
- Zeng, K.; Li, W.; Wang, Y.; Zhang, Z.; Zhang, L.; Zhang, W.; Xing, Y.; Zhou, C. Inhibition of CDK1 Overcomes Oxaliplatin Resistance by Regulating ACSL4-mediated Ferroptosis in Colorectal Cancer. Adv. Sci. 2023, 10, e2301088. [Google Scholar] [CrossRef]
- Zare, P.; Aleemardani, M.; Seifalian, A.; Bagher, Z.; Seifalian, A.M. Graphene Oxide: Opportunities and Challenges in Biomedicine. Nanomaterials 2021, 11, 1083. [Google Scholar] [CrossRef]
- Sadeghi, M.S.; Sangrizeh, F.H.; Jahani, N.; Abedin, M.S.; Chaleshgari, S.; Ardakan, A.K.; Baeelashaki, R.; Ranjbarpazuki, G.; Rahmanian, P.; Zandieh, M.A.; et al. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. Environ. Res. 2023, 237, 117027. [Google Scholar] [CrossRef]
- Rosli, N.F.; Fojtů, M.; Fisher, A.C.; Pumera, M. Graphene Oxide Nanoplatelets Potentiate Anticancer Effect of Cisplatin in Human Lung Cancer Cells. Langmuir 2019, 35, 3176–3182. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Liu, T.; Zhang, Y.; Wang, C.; Xie, B. Ultrasmall graphene oxide for combination of enhanced chemotherapy and photothermal therapy of breast cancer. Colloids Surf. B Biointerfaces 2023, 225, 113288. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; He, Y.; Liu, X.; Wang, S.; Ma, C.; Tian, X.; Wang, J.; Wu, X. Graphene oxide inhibits cell migration and invasion by destroying actin cytoskeleton in cervical cancer cells. Aging 2020, 12, 17625–17633. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.K.; Soe, Z.C.; Ou, W.; Poudel, K.; Jeong, J.-H.; Jin, S.G.; Ku, S.K.; Choi, H.-G.; Lee, Y.M.; Yong, C.S.; et al. Palladium nanoparticle-decorated 2-D graphene oxide for effective photodynamic and photothermal therapy of prostate solid tumors. Colloids Surfaces. B Biointerfaces 2018, 169, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhao, L.; Yang, Z.; Liu, Z.; Gu, J.; Bai, B.; Liu, J.; Xu, J.; Yang, H. Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect. Int. J. Nanomed. 2018, 13, 2907–2919. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef]
- Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297. [Google Scholar] [CrossRef]
- He, S.; Li, J.; Chen, M.; Deng, L.; Yang, Y.; Zeng, Z.; Xiong, W.; Wu, X. Graphene Oxide-Template Gold Nanosheets as Highly Efficient Near-Infrared Hyperthermia Agents for Cancer Therapy. Int. J. Nanomed. 2020, 15, 8451–8463. [Google Scholar] [CrossRef]
- Choi, H.W.; Lim, J.H.; Kim, C.W.; Lee, E.; Kim, J.-M.; Chang, K.; Chung, B.G. Near-Infrared Light-Triggered Generation of Reactive Oxygen Species and Induction of Local Hyperthermia from Indocyanine Green Encapsulated Mesoporous Silica-Coated Graphene Oxide for Colorectal Cancer Therapy. Antioxidants 2022, 11, 174. [Google Scholar] [CrossRef]
- Verde, V.; Longo, A.; Cucci, L.M.; Sanfilippo, V.; Magrì, A.; Satriano, C.; Anfuso, C.D.; Lupo, G.; La Mendola, D. Anti-Angiogenic and Anti-Proliferative Graphene Oxide Nanosheets for Tumor Cell Therapy. Int. J. Mol. Sci. 2020, 21, 5571. [Google Scholar] [CrossRef]
- Liu, X.; Yan, B.; Li, Y.; Ma, X.; Jiao, W.; Shi, K.; Zhang, T.; Chen, S.; He, Y.; Liang, X.-J.; et al. Graphene Oxide-Grafted Magnetic Nanorings Mediated Magnetothermodynamic Therapy Favoring Reactive Oxygen Species-Related Immune Response for Enhanced Antitumor Efficacy. ACS Nano 2020, 14, 1936–1950. [Google Scholar] [CrossRef]
- Shen, J.; Dong, J.; Shao, F.; Zhao, J.; Gong, L.; Wang, H.; Chen, W.; Zhang, Y.; Cai, Y. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine 2022, 17, 591–605. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Chumakova, N.; Kokorin, A. Graphene Oxide Membranes-Synthesis, Properties, and Applications. Membranes 2023, 13, 771. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Nishina, Y. Covalent functionalization of carbon materials with redox-active organic molecules for energy storage. Nanoscale 2021, 13, 36–50. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, H.; Wang, F.; Ren, J.; Qu, X. How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. Chem. Commun. 2017, 53, 10588–10591. [Google Scholar] [CrossRef]
- Muzyka, R.; Kwoka, M.; Smędowski, Ł.; Díez, N.; Gryglewicz, G. Oxidation of graphite by different modified Hummers methods. New Carbon Mater. 2017, 32, 15–20. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Wang, F.; Chi, H. Evolution of Oxygen Content of Graphene Oxide for Humidity Sensing. Molecules 2024, 29, 3741. [Google Scholar] [CrossRef]
- Muzyka, R.; Drewniak, S.; Pustelny, T.; Sajdak, M.; Drewniak, Ł. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy Statistical Analysis. Materials 2021, 14, 769. [Google Scholar] [CrossRef]
- Gutiérrez-Pineda, E.; Subrati, A.; Rodríguez-Presa, M.J.; Gervasi, C.A.; Moya, S.E. Electrochemical Exfoliation of Graphene Oxide: Unveiling Structural Properties and Electrochemical Performance. Chemistry 2023, 29, e202302450. [Google Scholar] [CrossRef]
- Yang, R.; Gao, W.; Wang, Z.; Jian, H.; Peng, L.; Yu, X.; Xue, P.; Peng, W.; Li, K.; Zeng, P. Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis. Phytomed. Int. J. Phytother. Phytopharm. 2024, 122, 155135. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef]
- Taieb, J.; Sinicrope, F.A.; Pederson, L.; Lonardi, S.; Alberts, S.R.; George, T.J.; Yothers, G.; Van Cutsem, E.; Saltz, L.; Ogino, S.; et al. Different prognostic values of KRAS exon 2 submutations and BRAF V600E mutation in microsatellite stable (MSS) and unstable (MSI) stage III colon cancer: An ACCENT/IDEA pooled analysis of seven trials. Ann. Oncol. 2023, 34, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wen, R.; Zhou, L.; Gao, X.; Lou, Z.; Hao, L.; Meng, R.; Gong, H.; Yu, G.; Zhang, W. Clinicopathological features and prognosis of synchronous and metachronous colorectal cancer: A retrospective cohort study. Int. J. Surg. 2023, 109, 4073–4090. [Google Scholar] [CrossRef] [PubMed]
- Al Zein, M.; Boukhdoud, M.; Shammaa, H.; Mouslem, H.; El Ayoubi, L.M.; Iratni, R.; Issa, K.; Khachab, M.; Assi, H.I.; Sahebkar, A.; et al. Immunotherapy and immunoevasion of colorectal cancer. Drug Discov. Today 2023, 28, 103669. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhou, L.; Zhang, W.; Wang, D.; Tang, D. Ferroptosis: The balance between death and survival in colorectal cancer. Int. J. Biol. Sci. 2024, 20, 3773–3783. [Google Scholar] [CrossRef]
- Yan, H.; Talty, R.; Aladelokun, O.; Bosenberg, M.; Johnson, C.H. Ferroptosis in colorectal cancer: A future target? Br. J. Cancer 2023, 128, 1439–1451. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef]
- Pope, L.E.; Dixon, S.J. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 2023, 33, 1077–1087. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Liao, Y.; Zhu, C.; Zou, Z. GPX4, ferroptosis, and diseases. Biomed. Pharmacother. 2024, 174, 116512. [Google Scholar] [CrossRef]
- Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021, 12, 599–620. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy 2021, 17, 2054–2081. [Google Scholar] [CrossRef]
- Agmon, E.; Stockwell, B.R. Lipid homeostasis and regulated cell death. Curr. Opin. Chem. Biol. 2017, 39, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, J.; Cheng, Q.; Zhang, Q.; Zhang, Y.; Jiang, L.; Huang, Y.; Li, W.; Zhao, Y.; Chen, G.; et al. Targeted activation of ferroptosis in colorectal cancer via LGR4 targeting overcomes acquired drug resistance. Nat. Cancer 2024, 5, 572–589. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, Y.; Lin, S.; Liu, Y.; Li, W. Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging 2021, 13, 13515–13534. [Google Scholar] [CrossRef]
- Taheriazam, A.; Abad, G.G.Y.; Hajimazdarany, S.; Imani, M.H.; Ziaolhagh, S.; Zandieh, M.A.; Bayanzadeh, S.D.; Mirzaei, S.; Hamblin, M.R.; Entezari, M.; et al. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J. Control. Release 2023, 354, 503–522. [Google Scholar] [CrossRef]
- Mariadoss, A.V.A.; Saravanakumar, K.; Sathiyaseelan, A.; Wang, M.-H. Preparation, characterization and anti-cancer activity of graphene oxide--silver nanocomposite. J. Photochem. Photobiol. B Biol. 2020, 210, 111984. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Q.; Cao, J.; Gao, Y.; Sun, Y. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol. 2021, 12, 18. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.-Y.; Yang, J.-Z.; Zhang, Y.-J.; Li, W.-X.; Fan, C.-H.; Huang, Q. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int. J. Nanomed. 2014, 9, 4697–4707. [Google Scholar] [CrossRef]
- Kanakia, S.; Toussaint, J.D.; Mullick Chowdhury, S.; Tembulkar, T.; Lee, S.; Jiang, Y.-P.; Lin, R.Z.; Shroyer, K.R.; Moore, W.; Sitharaman, B. Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials 2014, 35, 7022–7031. [Google Scholar] [CrossRef]
- Mohamed, H.R.H.; Welson, M.; Yaseen, A.E.; El-Ghor, A. Induction of chromosomal and DNA damage and histological alterations by graphene oxide nanoparticles in Swiss mice. Drug Chem. Toxicol. 2021, 44, 631–641. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhang, Q.; Zhu, H.; Ouyang, G.; Wang, X.; Cai, Y. High Carbonyl Graphene Oxide Suppresses Colorectal Cancer Cell Proliferation and Migration by Inducing Ferroptosis via the System Xc−/GSH/GPX4 Axis. Pharmaceutics 2024, 16, 1605. https://doi.org/10.3390/pharmaceutics16121605
Zhou X, Zhang Q, Zhu H, Ouyang G, Wang X, Cai Y. High Carbonyl Graphene Oxide Suppresses Colorectal Cancer Cell Proliferation and Migration by Inducing Ferroptosis via the System Xc−/GSH/GPX4 Axis. Pharmaceutics. 2024; 16(12):1605. https://doi.org/10.3390/pharmaceutics16121605
Chicago/Turabian StyleZhou, Xiecheng, Qixing Zhang, Haoran Zhu, Guangxiong Ouyang, Xin Wang, and Yuankun Cai. 2024. "High Carbonyl Graphene Oxide Suppresses Colorectal Cancer Cell Proliferation and Migration by Inducing Ferroptosis via the System Xc−/GSH/GPX4 Axis" Pharmaceutics 16, no. 12: 1605. https://doi.org/10.3390/pharmaceutics16121605
APA StyleZhou, X., Zhang, Q., Zhu, H., Ouyang, G., Wang, X., & Cai, Y. (2024). High Carbonyl Graphene Oxide Suppresses Colorectal Cancer Cell Proliferation and Migration by Inducing Ferroptosis via the System Xc−/GSH/GPX4 Axis. Pharmaceutics, 16(12), 1605. https://doi.org/10.3390/pharmaceutics16121605