Physically Cross-Linked PVA Hydrogels as Potential Wound Dressings: How Freezing Conditions and Formulation Composition Define Cryogel Structure and Performance
<p>Visual appearance of hydrogel membranes prepared with different PVA concentrations (5%, 8%, 10%) and freezing methods, showing structural differences due to varying preparation conditions.</p> "> Figure 2
<p>SEM images of hydrogel dressings prepared with varying PVA<sub>56–98</sub> concentrations and freezing temperatures, captured after 48 h of lyophilization at 1500× magnification.</p> "> Figure 3
<p>Comparative water uptake (Uw) of lab-developed (<b>panel A</b>) and commercial hydrogel wound dressings (<b>panel B</b>). Panel A shows the effect of cryogel composition (8% and 10% PVA<sub>56–98</sub>) and preparation method (−25 °C (A), −80 °C (B), −78 °C (C), and −196 °C (D)) on Uw capacity.</p> "> Figure 4
<p>Comparative analysis of mechanical properties: lab-developed dressings (M8_PG10, M10_PG10) vs. commercial hydrogel wound dressings (Product_1, Product_2)—the impact of composition and freezing conditions on elasticity and mechanical strength.</p> "> Figure 5
<p>Thermograms of 8% (<span class="html-italic">w</span>/<span class="html-italic">w</span>) PVA<sub>56–98</sub> cryogels formed at various freezing temperatures: (<b>A</b>) full range and (<b>B</b>) magnified region from −120 °C to 0 °C.</p> "> Figure 6
<p>Time-dependent weight loss of M8 samples during cooling and heating cycles.</p> "> Figure 7
<p>Graph of the dependence of parameters obtained from fitting function (3) to the data using the CPMG method, (<b>A</b>) amplitudes, and (<b>B</b>) relaxation times depending on the cycle.</p> "> Figure 8
<p>T<sub>1</sub>–T<sub>2</sub> maps for selected hydrogel membranes obtained by cyclic freezing and thawing. (<b>A</b>) Freezing temperature of −25 °C; (<b>B</b>) Freezing temperature of −80 °C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Procedure for Hydrogel Wound Dressing Preparation
2.3. Hydrogel Dressings Characterization Methods
2.3.1. Scanning Electron Microscopy Analysis (SEM)
2.3.2. Thermal Analysis
2.3.3. Nuclear Magnetic Resonance Relaxometry
2.3.4. Assessment of pH
2.4. Functional Properties of Cryogels
2.4.1. Water Uptake Capacity
2.4.2. Mechanical Properties
2.4.3. Adhesive Properties
3. Results and Discussion
3.1. Preliminary Insights on Polymer Selection for Wound Dressing Applications
3.2. Effect of Freezing Conditions and PVA56–98 Concentration on Cryogel Properties
3.2.1. Impact of Formulation on pH of Gel Precursors
3.2.2. Visual and Structural Characterization
3.2.3. Water Absorption Capacity
3.2.4. Adhesive Properties of Cryogels
3.2.5. Mechanical Properties of Cryogels
3.3. Mechanistic Insights into Cryogel Properties through Thermal and Relaxometric Techniques
3.3.1. Thermal Analysis
3.3.2. NMR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baron, R.I.; Culica, M.E.; Biliuta, G.; Bercea, M.; Gherman, S.; Zavastin, D.; Ochiuz, L.; Avadanei, M.; Coseri, S. Physical Hydrogels of Oxidized Polysaccharides and Poly(Vinyl Alcohol) Forwound Dressing Applications. Materials 2019, 12, 1569. [Google Scholar] [CrossRef] [PubMed]
- Kolosova, O.Y.; Shaikhaliev, A.I.; Krasnov, M.S.; Bondar, I.M.; Sidorskii, E.V.; Sorokina, E.V.; Lozinsky, V.I. Cryostructuring of Polymeric Systems: 64. Preparation and Properties of Poly(Vinyl Alcohol)-Based Cryogels Loaded with Antimicrobial Drugs and Assessment of the Potential of Such Gel Materials to Perform as Gel Implants for the Treatment of Infected Wounds. Gels 2023, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Dawn Bannerman, A.; Yang, L.; Mak, H. Poly(Vinyl Alcohol) Cryogels for Biomedical Applications. Polym. Cryogels Macroporous Gels Remarkable Prop. 2014, 263, 283–321. [Google Scholar] [CrossRef]
- Razavi, M.; Qiao, Y.; Thakor, A.S. Three-Dimensional Cryogels for Biomedical Applications. J. Biomed. Mater. Res. A 2019, 107, 2736–2755. [Google Scholar] [CrossRef] [PubMed]
- Akin, B.; Ozmen, M.M. Antimicrobial Cryogel Dressings towards Effective Wound Healing. Prog. Biomater. 2022, 11, 331–346. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Bajpai, A.K.; Bajpai, J.; Singh, S.K. Evaluation of Poly (Vinyl Alcohol) Based Cryogel-Zinc Oxide Nanocomposites for Possible Applications as Wound Dressing Materials. Mater. Sci. Eng. C 2016, 65, 408–418. [Google Scholar] [CrossRef]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers 2022, 14, 3023. [Google Scholar] [CrossRef]
- GhavamiNejad, A.; Ashammakhi, N.; Wu, X.Y.; Khademhosseini, A. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. Small 2020, 16, 2002931. [Google Scholar] [CrossRef]
- Arabpour, Z.; Abedi, F.; Salehi, M.; Baharnoori, S.M.; Soleimani, M.; Djalilian, A.R. Hydrogel-Based Skin Regeneration. Int. J. Mol. Sci. 2024, 25, 1982. [Google Scholar] [CrossRef]
- Carriero, V.C.; Di Muzio, L.; Petralito, S.; Casadei, M.A.; Paolicelli, P. Cryogel Scaffolds for Tissue-Engineering: Advances and Challenges for Effective Bone and Cartilage Regeneration. Gels 2023, 9, 979. [Google Scholar] [CrossRef]
- Baimenov, A.; Berillo, D.A.; Poulopoulos, S.G.; Inglezakis, V.J. A Review of Cryogels Synthesis, Characterization and Applications on the Removal of Heavy Metals from Aqueous Solutions. Adv. Colloid Interface Sci. 2020, 276, 102088. [Google Scholar] [CrossRef] [PubMed]
- Omidian, H.; Dey Chowdhury, S.; Babanejad, N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023, 15, 1836. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.I.; Duceac, I.A.; Morariu, S.; Bostănaru-Iliescu, A.C.; Coseri, S. Hemostatic Cryogels Based on Oxidized Pullulan/Dopamine with Potential Use as Wound Dressings. Gels 2022, 8, 726. [Google Scholar] [CrossRef]
- Zhuo, S.; Liang, Y.; Wu, Z.; Zhao, X.; Han, Y.; Guo, B. Supramolecular Hydrogels for Wound Repair and Hemostasis. Mater. Horiz. 2023, 11, 37–101. [Google Scholar] [CrossRef]
- Santos, A.M.N.; Moreira, A.P.D.; Carvalho, C.W.P.; Luchese, R.; Ribeiro, E.; McGuinness, G.B.; Mendes, M.F.; Oliveira, R.N. Physically Cross-Linked Gels of PVA with Natural Polymers as Matrices for Manuka Honey Release in Wound-Care Applications. Materials 2019, 12, 559. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, C.; Hu, Y.; Zheng, T.; An, J. Constructions of Synergistic Photothermal Therapy Antibacterial Hydrogel Based on Polydopamine, Tea Polyphenols and Polyvinyl Alcohol and Effects on Wound Healing in Mouse. Colloids Surf. B Biointerfaces 2022, 219, 112831. [Google Scholar] [CrossRef]
- Górska, A.; Krupa, A.; Majda, D.; Kulinowski, P.; Kurek, M.; Węglarz, W.P.; Jachowicz, R. Poly(Vinyl Alcohol) Cryogel Membranes Loaded with Resveratrol as Potential Active Wound Dressings. AAPS PharmSciTech 2021, 22, 109. [Google Scholar] [CrossRef]
- Hanif, W.; Hardiansyah, A.; Randy, A.; Asri, L.A.T.W. Physically Crosslinked PVA/Graphene-Based Materials/Aloe Vera Hydrogel with Antibacterial Activity. RSC Adv. 2021, 11, 29029–29041. [Google Scholar] [CrossRef]
- Stan, D.; Codrici, E.; Enciu, A.M.; Olewnik-Kruszkowska, E.; Gavril, G.; Ruta, L.L.; Moldovan, C.; Brincoveanu, O.; Bocancia-Mateescu, L.A.; Mirica, A.C.; et al. Exploring the Impact of Alginate—PVA Ratio and the Addition of Bioactive Substances on the Performance of Hybrid Hydrogel Membranes as Potential Wound Dressings. Gels 2023, 9, 476. [Google Scholar] [CrossRef]
- Mowiol® 8-88. 81383. Available online: https://www.Sigmaaldrich.Com/PL/Pl/Product/Aldrich/81383?Srsltid=AfmBOoplseWeFYS9lX4WfKGHxEcFncljnLLxdKDxjkZXPOmkAHox1Ket&icid=sharepdp-Clipboard-Copy-Productdetailpage (accessed on 13 September 2024).
- Mowiol® 18-88. 81365. Available online: https://www.Sigmaaldrich.Com/PL/Pl/Product/Aldrich/81365?Srsltid=AfmBOoqU1Sixgz6JZ_Mm1OR4ls9F8xq_tZYocX573qlB2urQxqiCjmk0&icid=sharepdp-Clipboard-Copy-Productdetailpage (accessed on 13 September 2024).
- Mowiol® 10-98. 10852. Available online: https://www.Sigmaaldrich.Com/PL/Pl/Product/Aldrich/10852?Srsltid=AfmBOopKbRziUSwSfR0ew-OOZbxo6DRDyfibN37fkUodfeZIzbUC1fEZ (accessed on 13 September 2024).
- Mowiol® 20-98. 11773. Available online: https://www.Sigmaaldrich.Com/PL/Pl/Product/Aldrich/11773?Srsltid=AfmBOopuVxsR2-EFMK2AVaJhb81gPf35lzvjnCptOOFsEhWZE2bpUcjI (accessed on 13 September 2024).
- Mowiol® 28-99. 10849. Available online: https://www.Sigmaaldrich.Com/PL/Pl/Product/Aldrich/10849?Srsltid=AfmBOoo88j9CK2mjN2ABp5yuR2pkDrJiPZ0FrYwqlCitzO1aiofDhpry (accessed on 13 September 2024).
- Kuraray Poval® 56-98. 10851. Available online: https://www.Sigmaaldrich.Com/PL/Pl/Product/Aldrich/10851?Srsltid=AfmBOop3SkT_qTVVWF1DAqYTH6sPett6ekUnlGUNa3L7iRxFH3UK86NG (accessed on 13 September 2024).
- Park, E.; Ryu, J.H.; Lee, D.; Lee, H. Freeze-Thawing-Induced Macroporous Catechol Hydrogels with Shape Recovery and Sponge-like Properties. ACS Biomater. Sci. Eng. 2021, 7, 4318–4329. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Górska, A.; Mendyk, A. Hydrogels as Effective Wound Dressings in Support of Wounds Treatment. Farm. Pol. 2023, 79, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Han, H.; Xu, L.; Gao, Y.; Yang, Z.; Jiang, Z.; De Schutter, G. The Improvement of Freezing–Thawing Resistance of Concrete by Cellulose/Polyvinyl Alcohol Hydrogel. Constr. Build. Mater. 2021, 291, 123274. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Wu, M.; Ni, H.; Feng, J.; Zhao, L.; Zhang, J. Cryogel Wound Dressings Based on Natural Polysaccharides Perfectly Adhere to Irregular Wounds for Rapid Haemostasis and Easy Disassembly. Wound Repair Regen. 2024, 32, 393–406. [Google Scholar] [CrossRef]
- Broussard, K.C.; Powers, J.G. Wound Dressings: Selecting the Most Appropriate Type. Am. J. Clin. Dermatol. 2013, 14, 449–459. [Google Scholar] [CrossRef]
- Sim, P.; Strudwick, X.L.; Song, Y.M.; Cowin, A.J.; Garg, S. Influence of Acidic pH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int. J. Mol. Sci. 2022, 23, 13655. [Google Scholar] [CrossRef]
- McColl, D.; Cartlidge, B.; Connolly, P. Real-Time Monitoring of Moisture Levels in Wound Dressings in Vitro: An Experimental Study. Int. J. Surg. 2007, 5, 316–322. [Google Scholar] [CrossRef]
- Malu, R.G.; Nagoba, B.S.; Jaju, C.R.; Suryawanshi, N.M.; Mali, S.A.; Goyal, V.S.; Misal, N.S. Topical Use of Citric Acid for Wound Bed Preparation. Int. Wound J. 2016, 13, 709–712. [Google Scholar] [CrossRef]
- Nagoba, B.S.; Gandhi, R.C.; Wadher, B.J.; Gandhi, S.P.; Selkar, S.P. Citric Acid Treatment of Necrotizing Fasciitis: A Report of Two Cases. Int. Wound J. 2010, 7, 536–538. [Google Scholar] [CrossRef]
- Lönnqvist, S.; Emanuelsson, P.; Kratz, G. Influence of Acidic PH on Keratinocyte Function and Re-Epithelialisation of Human in Vitro Wounds. J. Plast. Surg. Hand Surg. 2015, 49, 346–352. [Google Scholar] [CrossRef]
- Obagi, Z.; Damiani, G.; Grada, A.; Falanga, V. Principles of Wound Dressings: A Review. Surg. Technol. Int. 2019, 35, 50–57. [Google Scholar] [PubMed]
- Lindholm, C.; Searle, R. Wound Management for the 21st Century: Combining Effectiveness and Efficiency. Int. Wound J. 2016, 13, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Brumberg, V.; Astrelina, T.; Malivanova, T.; Samoilov, A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021, 9, 1235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yang, Z.; Seitz, M.P.; Jain, E. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering. ACS Appl. Bio Mater. 2024, 7, 5925–5938. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhao, J.; Zhu, C.; Jiang, M.; Ma, P.; Mi, Y.; Fan, D. Oxidized Dextran Crosslinked Polysaccharide/Protein/Polydopamine Composite Cryogels with Multiple Hemostatic Efficacies for Noncompressible Hemorrhage and Wound Healing. Int. J. Biol. Macromol. 2022, 215, 675–690. [Google Scholar] [CrossRef]
- Sim, P.; Song, Y.; Yang, G.N.; Cowin, A.J.; Garg, S. In Vitro Wound Healing Properties of Novel Acidic Treatment Regimen in Enhancing Metabolic Activity and Migration of Skin Cells. Int. J. Mol. Sci. 2022, 23, 7188. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. Advanced SA/PVA-Based Hydrogel Matrices with Prolonged Release of Aloe Vera as Promising Wound Dressings. Mater. Sci. Eng. C 2021, 120, 111667. [Google Scholar] [CrossRef]
- Shi, C.; Wang, C.; Liu, H.; Li, Q.; Li, R.; Zhang, Y.; Liu, Y.; Shao, Y.; Wang, J. Selection of Appropriate Wound Dressing for Various Wounds. Front. Bioeng. Biotechnol. 2020, 8, 182. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Damshkaln, L.G.; Shaskol’Skii, B.L.; Babushkina, T.A.; Kurochkin, I.N.; Kurochkin, I.I. Study of Cryostructuring of Polymer Systems: 27. Physicochemical Properties of Poly(Vinyl Alcohol) Cryogels and Specific Features of Their Macroporous Morphology. Colloid J. 2007, 69, 747–764. [Google Scholar] [CrossRef]
- Baran, E.; Birczyński, A.; Milanowski, B.; Klaja, J.; Nowak, P.; Dorożyński, P.; Kulinowski, P. 3D Printed Drug Delivery Systems in Action–Magnetic Resonance Imaging and Relaxometry for Monitoring Mass Transport Phenomena. ACS Appl. Mater. Interfaces 2024, 16, 40714–40725. [Google Scholar] [CrossRef]
- Baran, E.; Birczyński, A.; Dorożyński, P.; Kulinowski, P. Low-field time-domain NMR relaxometry for studying polymer hydration and mobilization in sodium alginate matrix tablets. Carbohydr. Polym. 2023, 299, 120215. [Google Scholar] [CrossRef] [PubMed]
No. | Type of PVA | Mw 1 [g/mol] | DH 2 [%] | Pw 3 | Reference |
---|---|---|---|---|---|
1 | PVA8–88 | ~67,000 | 86.7–88.7 | ~1400 | [20] |
2 | PVA18–88 | ~130,000 | 86.7–88.7 | ~2700 | [21] |
3 | PVA10–98 | ~61,000 | 98.0–98.8 | ~1400 | [22] |
4 | PVA20–98 | ~125,000 | 98.0–98.8 | ~2800 | [23] |
5 | PVA28–99 | ~145,000 | 99.0–99.8 | ~3300 | [24] |
6 | PVA56–98 | ~195,000 | 98.0–98.8 | ~4300 | [25] |
Formulation Name | PVA 1 (% w/w) | PG 2 (% w/w) | W 3 (% w/w) |
---|---|---|---|
* M5_PG5 | 5.0 | 5.0 | 90.0 |
M5_PG8 | 5.0 | 8.0 | 87.0 |
M5_PG10 | 5.0 | 10.0 | 85.0 |
M8_PG5 | 8.0 | 5.0 | 87.0 |
M8_PG8 | 8.0 | 8.0 | 84.0 |
M8_PG10 | 8.0 | 10.0 | 82.0 |
M10_PG5 | 10.0 | 5.0 | 85.0 |
M10_PG8 | 10.0 | 8.0 | 82.0 |
M10_PG10 | 10.0 | 10.0 | 80.0 |
PVA Type | Ph Value | FA [N] | Uw [%] |
---|---|---|---|
PVA8–88 | 5.76 ± 0.10 | Not tested 1 | Not tested 1 |
PVA18–88 | 5.53 ± 0.07 | Not tested 1 | Not tested 1 |
PVA10–98 | 5.39 ± 0.12 | Disintegrated 2 | Disintegrated 2 |
PVA20–98 | 5.26 ± 0.21 | 0.220 ± 0.024 | 81.53 ± 4.03 |
PVA28–99 | 6.23 ± 0.20 | 0.135 ± 0.060 | 10.18 ± 0.95 |
PVA56–98 | 5.41 ± 0.17 | 0.099 ± 0.033 | 69.10 ± 4.13 |
PVA Type | Thickness [mm] | * σ [MPa] | * Fmax [N] | * E [MPa] | * ε [%] | * e [%] |
---|---|---|---|---|---|---|
PVA20–98 | 3.19 ± 0.16 | 0.04 ± 0.01 | 0.54 ± 0.07 | 0.02 ± 0.00 | 265.44 ± 12.72 | 0 |
PVA28–99 | 3.32 ± 0.22 | 0.19 ± 0.02 | 3.47 ± 0.42 | 0.12 ± 0.01 | 238.98 ± 24.13 | 0 |
PVA56–98 | 3.29 ± 0.11 | 0.11 ± 0.02 | 2.08 ± 0.36 | 0.03 ± 0.00 | 348.97 ± 24.73 | 0 |
Formulation Name | Parameters | ||
---|---|---|---|
Average Pore Width 1 [µm] | Average Pore Length 1 [µm] | Porosity 2 [%] | |
M5_PG10_B * | 13.76 ± 9.29 | 28.35 ± 16.81 | 49.11 ± 2.46 |
M8_PG10_B * | 10.79 ± 4.88 | 13.23 ± 8.20 | 46.94 ± 6.59 |
M10_PG10_B * | 1.48 ± 0.38 | 4.42 ± 2.01 | 29.64 ± 3.30 |
Formulation Name | Parameters | |||
---|---|---|---|---|
A1 [a.u.] | A2 [a.u.] | T21 [ms] | T22 [ms] | |
M5_PG10_A | 107.97 | 37.82 | 53.07 | 400.76 |
M5_PG10_B | 168.02 | 31.84 | 29.89 | 285.93 |
M8_PG10_A | 239.36 | 51.03 | 87.47 | 343.87 |
M8_PG10_B | 235.68 | 39.88 | 66.80 | 272.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górska, A.; Baran, E.; Knapik-Kowalczuk, J.; Szafraniec-Szczęsny, J.; Paluch, M.; Kulinowski, P.; Mendyk, A. Physically Cross-Linked PVA Hydrogels as Potential Wound Dressings: How Freezing Conditions and Formulation Composition Define Cryogel Structure and Performance. Pharmaceutics 2024, 16, 1388. https://doi.org/10.3390/pharmaceutics16111388
Górska A, Baran E, Knapik-Kowalczuk J, Szafraniec-Szczęsny J, Paluch M, Kulinowski P, Mendyk A. Physically Cross-Linked PVA Hydrogels as Potential Wound Dressings: How Freezing Conditions and Formulation Composition Define Cryogel Structure and Performance. Pharmaceutics. 2024; 16(11):1388. https://doi.org/10.3390/pharmaceutics16111388
Chicago/Turabian StyleGórska, Anna, Ewelina Baran, Justyna Knapik-Kowalczuk, Joanna Szafraniec-Szczęsny, Marian Paluch, Piotr Kulinowski, and Aleksander Mendyk. 2024. "Physically Cross-Linked PVA Hydrogels as Potential Wound Dressings: How Freezing Conditions and Formulation Composition Define Cryogel Structure and Performance" Pharmaceutics 16, no. 11: 1388. https://doi.org/10.3390/pharmaceutics16111388
APA StyleGórska, A., Baran, E., Knapik-Kowalczuk, J., Szafraniec-Szczęsny, J., Paluch, M., Kulinowski, P., & Mendyk, A. (2024). Physically Cross-Linked PVA Hydrogels as Potential Wound Dressings: How Freezing Conditions and Formulation Composition Define Cryogel Structure and Performance. Pharmaceutics, 16(11), 1388. https://doi.org/10.3390/pharmaceutics16111388