The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties
"> Figure 1
<p>Schematic representation of the texture analyser. Illustration based on Amorós-Galicia et al., 2023 [<a href="#B45-pharmaceutics-16-01338" class="html-bibr">45</a>]. On the right-hand side of the figure, the texture analyser is shown. The upper probe holds the simulated fluid along with the formulation to be evaluated, while a Petri dish containing the oesophageal tissue covered with simulated medium is placed in the lower part. The graph represents a typical force–displacement curve obtained during the bioadhesion test.</p> "> Figure 2
<p>Boxplot with outliers of the pressure (<b>A</b>) and weight (<b>B</b>) of the printlets developed. • represents cases or rows with values greater than the height of the boxes multiplied by 1.5.</p> "> Figure 3
<p>Overlaid UHPLC chromatograms of BUD subjected to stress conditions in basic medium (NaOH 0.1 M) at different times (0 min; 10 min; 60 min; and 24 h). Epimer B (22R); Epimer A (22S).</p> "> Figure 4
<p>Plots of the log of viscosity versus the log of shear rates of L1-MC and L2-XG during stability tests under different storage conditions. (<b>A</b>). 5 °C; (<b>B</b>). 25 °C; and (<b>C</b>). 40 °C.</p> "> Figure 5
<p>Visual comparison of the shape and size of the moulded tablets (M1) and printlets (P1, P0.5, P0.5-XG) with a size 0 capsule.</p> "> Figure 6
<p>Comparative analysis of the maximum bioadhesion results for all formulations studied. (<b>A</b>). Average maximum bioadhesion forces for the doses of each formulation studied. (<b>B</b>). Average maximum bioadhesion forces normalized to 1 g of formulation. (<b>C</b>). Average work adhesion, W (mJ), for the doses of each formulation studied. (<b>D</b>). Average work adhesion, W (mJ), normalised to 1 g of formulation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Quality Target Product Profile
2.3. Composition of the Formulations
2.4. Preparation of Formulations
2.4.1. Preparation of Oral Viscous Suspensions
2.4.2. Preparation of Moulded Tablets
2.4.3. Preparation of Printlets
- Preparation of semi-solid masses
- Extrudability analysis of the semi-solid masses
- Printing Settings and Quality Control of the Printing process
2.5. UPLC Method Validation
2.6. Extraction Methods
2.6.1. Extraction for Liquid Formulations (L1-MC, L2-XG)
2.6.2. Extraction for Solid Formulations (M1, P1, P0.5, P0.5-XG)
2.7. Quality Control
2.7.1. Quality Control for Liquid Formulations
2.7.2. Quality Control for Solid Formulations
2.8. Chemical Stability
2.9. In Vitro Mucoadhesive Test
3. Results and Discussion
3.1. Formulations Developed
3.2. Extraction and Validation of Budesonide Method
3.3. Liquid Formulations
3.4. Solid Formulations
3.5. Chemical Stability of Budesonide Formulations
3.6. Mucoadhesive Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
API | Active pharmaceutical ingredient |
AUC | Area under the curve |
BUD | Budesonide |
EMA | European Medicines Agency |
EoE | Eosinophilic oesophagitis |
EP | European Pharmacopoeia |
F | Force |
FP | Fluticasone propionate |
ICH | International Conference of Harmonisation |
MC | Methylcellulose |
OVB | Oral viscous budesonide |
Printlets | 3D-printed dosage forms |
QTTP | Quality target product profile |
SSE | Semi-solid extrusion |
STC | Swallowed topical corticosteroids |
W | Work |
XG | Xanthan gum |
References
- Hirano, I.; Collins, M.H.; Katzka, D.A.; Mukkada, V.A.; Falk, G.W.; Morey, R.; Desai, N.K.; Lan, L.; Williams, J.; Dellon, E.S. Budesonide Oral Suspension Improves Outcomes in Patients With Eosinophilic Esophagitis: Results from a Phase 3 Trial. Clin. Gastroenterol. Hepatol. 2022, 20, 525–534.e10. [Google Scholar] [CrossRef] [PubMed]
- Lucendo, A.J.; Molina-Infante, J.; Arias, Á.; von Arnim, U.; Bredenoord, A.J.; Bussmann, C.; Amil Dias, J.; Bove, M.; González-Cervera, J.; Larsson, H.; et al. Guidelines on eosinophilic esophagitis: Evidence-based statements and recommendations for diagnosis and management in children and adults. United Eur. Gastroenterol. J. 2017, 5, 335–358. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, A.; Gennari, C.G.; Musazzi, U.M.; Ortenzi, M.A.; Bordignon, S.; Minghetti, P. Mucoadhesive Budesonide Formulation for the Treatment of Eosinophilic Esophagitis. Pharmaceutics 2020, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Rothenberg, M.E.; Collins, M.H.; Hirano, I.; Chehade, M.; Bredenoord, A.J.; Lucendo, A.J.; Spergel, J.M.; Aceves, S.; Sun, X.; et al. Dupilumab in Adults and Adolescents with Eosinophilic Esophagitis. N. Engl. J. Med. 2022, 387, 2317–2330. [Google Scholar] [CrossRef]
- Lucendo, A.J. Pharmacological treatments for eosinophilic esophagitis: Current options and emerging therapies. Exp. Rev. Clin. Immunol. 2020, 16, 63–77. [Google Scholar] [CrossRef]
- Jorveza [Technical DATA Sheet]. Dr. Falk Pharma GmbH. 2018. Available online: https://www.ema.europa.eu/en/documents/product-information/jorveza-epar-product-information_en.pdf (accessed on 13 October 2024).
- Dellon, E.S.; Woosley, J.T.; Arrington, A.; McGee, S.J.; Covington, J.; Moist, S.E.; Gebhart, J.H.; Tylicki, A.E.; Shoyoye, S.O.; Martin, C.F.; et al. Efficacy of Budesonide vs. Fluticasone for Initial Treatment of Eosinophilic Esophagitis in a Randomized Controlled Trial. Gastroenterology 2019, 157, 65–73.e5. [Google Scholar] [CrossRef]
- Navarro, P.; Feo-Ortega, S.; Casabona-Francés, S.; Gutiérrez-Junquera, C.; Savarino, E.V.; Amorena, E.; Fernández-Fernández, S.; Pérez-Martínez, I.; Oliva, S.; Barrio, J.; et al. Determinant factors for first-line treatment choice and effectiveness in pediatric eosinophilic esophagitis: An analysis of the EUREOS EoE CONNECT registry. Eur. J. Pediatr. 2024, 183, 3567–3578. [Google Scholar] [CrossRef]
- Cotton, C.C.; Eluri, S.; Wolf, W.A.; Dellon, E.S. Six-Food Elimination Diet and Topical Steroids are Effective for Eosinophilic Esophagitis: A Meta-Regression. Dig. Dis. Sci. 2017, 62, 2408–2420. [Google Scholar] [CrossRef]
- Syverson, E.P.; Tobin, M.; Patton, T.; Franciosi, J.P.; Gupta, S.K.; Venkatesh, R.D. Variability in Swallowed Topical Corticosteroid Practice Patterns for Treatment of Pediatric Eosinophilic Esophagitis. J. Pediatr. Gastroenterol. Nutr. 2023, 77, 256–259. [Google Scholar] [CrossRef]
- Laserna-Mendieta, E.J.; Navarro, P.; Casabona-Francés, S.; Savarino, E.V.; Amorena, E.; Pérez-Martínez, I.; Guagnozzi, D.; Blas-Jhon, L.; Betoré, E.; Guardiola-Arévalo, A.; et al. Swallowed topical corticosteroids for eosinophilic esophagitis: Utilization and real-world efficacy from the EoE CONNECT registry. United Eur. Gastroenterol. J. 2024, 12, 585–595. [Google Scholar] [CrossRef]
- Gutiérrez Junquera, C.; Fernández Fernández, S.; Domínguez-Ortega, G.; Vila Miravet, V.; García Puig, R.; García Romero, R.; Fernández de Valderrama, A.; Andradas Rivas, R. Recomendaciones para el diagnóstico y manejo práctico de la esofagitis eosinofílica pediátrica. An Pediatr. 2020, 92, 376.e1–376.e10. [Google Scholar] [CrossRef]
- Bonnet, M.; Dermu, M.; Roessle, C.; Bellaiche, M.; Abarou, T.; Vasseur, V.; Benakouche, S.; Storme, T. Formulation of a 3-months Stability Oral Viscous Budesonide Gel and Development of an Indicating Stability HPLC Method. Pharm. Technol. Hosp. Pharm. 2018, 3, 91–99. [Google Scholar] [CrossRef]
- Dellon, E.S.; Katzka, D.A.; Collins, M.H.; Hamdani, M.; Gupta, S.K.; Hirano, I. Budesonide Oral Suspension Improves Symptomatic, Endoscopic, and Histologic Parameters Compared with Placebo in Patients With Eosinophilic Esophagitis. Gastroenterology 2017, 152, 776–786.e5. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Sheikh, A.; Speck, O.; Woodward, K.; Whitlow, A.B.; Hores, J.M.; Ivanovic, M.; Chau, A.; Woosley, J.T.; Madanick, R.D.; et al. Viscous Topical Is More Effective Than Nebulized Steroid Therapy for Patients With Eosinophilic Esophagitis. Gastroenterology 2012, 143, 321–324.e1. [Google Scholar] [CrossRef]
- Miehlke, S.; Hruz, P.; Vieth, M.; Bussmann, C.; Arnim, U.v.; Bajbouj, M.; Schlag, C.; Madisch, A.; Fibbe, C.; Wittenburg, H.; et al. A randomised, double-blind trial comparing budesonide formulations and dosages for short-term treatment of eosinophilic oesophagitis. Gut 2016, 65, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Lucendo, A.J.; Miehlke, S.; Schlag, C.; Vieth, M.; von Arnim, U.; Molina-Infante, J.; Hartmann, D.; Bredenoord, A.J.; Ciriza de Los Rios, C.; Schubert, S.; et al. Efficacy of Budesonide Orodispersible Tablets as Induction Therapy for Eosinophilic Esophagitis in a Randomized Placebo-Controlled Trial. Gastroenterology 2019, 157, 74–86.e15. [Google Scholar] [CrossRef] [PubMed]
- Ryrfeldt, A.; Edsbäcker, S.; Pauwels, R. Kinetics of the epimeric glucocorticoid budesonide. Clin. Pharmacol. Ther. 1984, 35, 525–530. [Google Scholar] [CrossRef]
- Dahlberg, E.; Thalén, A.; Brattsand, R.; Gustafsson, J.A.; Johansson, U.; Roempke, K.; Saartok, T. Correlation between chemical structure, receptor binding, and biological activity of some novel, highly active, 16 alpha, 17 alpha-acetal-substituted glucocorticoids. Mol. Pharmacol. 1984, 25, 70–78. Available online: https://pubmed.ncbi.nlm.nih.gov/6708937/ (accessed on 13 October 2024).
- Hamedani, R.; Feldman, R.D.; Feagan, B.G. Review article: Drug development in inflammatory bowel disease: Budesonide—A model of targeted therapy. Aliment. Pharmacol. Ther. 1997, 11 (Suppl. S3), 98–108. [Google Scholar] [CrossRef]
- Comittee for Medicinal Products for Human Use, (CHMP) Reflection Paper: Formulations of Choice for the Paediatric Population. EMA. 2006. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-formulations-choice-paediatric-population_en.pdf (accessed on 3 September 2024).
- Freerks, L.; Sommerfeldt, J.; Löper, P.C.; Klein, S. Safe, swallowable and palatable paediatric mini-tablet formulations for a WHO model list of essential medicines for children compound—A promising starting point for future PUMA applications. Eur. J. Pharm. Biopharm. 2020, 156, 11–19. [Google Scholar] [CrossRef]
- Khan, D.; Kirby, D.; Bryson, S.; Shah, M.; Rahman Mohammed, A. Paediatric specific dosage forms: Patient and formulation considerations. Int. J. Pharm. 2022, 616, 121501. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, H.G. WHO guideline development of paediatric medicines: Points to consider in pharmaceutical development. Int. J. Pharm. 2012, 435, 134–135. [Google Scholar] [CrossRef] [PubMed]
- Lopez, F.L.; Ernest, T.B.; Tuleu, C.; Gul, M.O. Formulation approaches to pediatric oral drug delivery: Benefits and limitations of current platforms. Exp. Opin. Drug Deliv. 2015, 12, 1727–1740. [Google Scholar] [CrossRef] [PubMed]
- Suárez-González, J.; Magariños-Triviño, M.; Díaz-Torres, E.; Cáceres-Pérez, A.R.; Santoveña-Estévez, A.; Fariña, J.B. Individualized orodispersible pediatric dosage forms obtained by molding and semi-solid extrusion by 3D printing: A comparative study for hydrochlorothiazide. J. Drug Deliv. Sci. Technol. 2021, 66, 102884. [Google Scholar] [CrossRef]
- Farmalabor Tech. Available online: https://tech.farmalabor.it/product/tablets-production/CFT-100-AL-100--optima-tablet-100mg-size-adjustment-kit.html (accessed on 29 August 2024).
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use Considerations (ICH) Guideline Q8 (R2) on Pharmaceutical Development—Step 5. 2009. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use-considerations-ich-guideline-q8-r2-pharmaceutical-development-step-5_en.pdf (accessed on 5 September 2024).
- Smith, K.; Pohl, M.; Sweitzer, M.; Larew, J.; Hanna-Brown, M.; Hansen, G.; Nethercote, P.; Borman, P. Implications and Opportunities of Applying QbD Principles to Analytical Measurement. Pharm. Technol. Eur. 2010, 22, 52–59. Available online: https://www.pharmtech.com/view/implications-and-opportunities-applying-qbd-principles-analytical-measurements (accessed on 5 September 2024).
- Magariños Triviño, M.; Suárez González, J.; Santoveña Estévez, A.M.; Fariña Espinosa, J.B. Desarrollo y control de calidad de dos formulaciones de budesonida viscosa para administración oral en pediatría. RESCIFAR Rev. Esp. Cienc. Farm. 2021, 2, 193–194. [Google Scholar]
- Budesonida Viscosa 0.25 mg/mL Gel Oral. Available online: https://gruposdetrabajo.sefh.es/farmacotecnia/images/stories/PN_Formulas/B/PN_BUDESONIDA_025.pdf (accessed on 15 August 2024).
- Eduardo, D.; Ana, S.; José, B.F. A micro-extrusion 3D printing platform for fabrication of orodispersible printlets for pediatric use. Int. J. Pharm. 2021, 605, 120854. [Google Scholar] [CrossRef]
- Díaz-Torres, E.; Suárez-González, J.; Monzón-Rodríguez, C.N.; Santoveña-Estévez, A.; Fariña, J.B. Characterization and Validation of a New 3D Printing Ink for Reducing Therapeutic Gap in Pediatrics through Individualized Medicines. Pharmaceutics 2023, 15, 1642. [Google Scholar] [CrossRef]
- Díaz-Torres, E.; Rodríguez-Pombo, L.; Ong, J.J.; Basit, A.W.; Santoveña-Estévez, A.; Fariña, J.B.; Alvarez-Lorenzo, C.; Goyanes, A. Integrating pressure sensor control into semi-solid extrusion 3D printing to optimize medicine manufacturing. Int. J. Pharm. X 2022, 4, 100133. [Google Scholar] [CrossRef]
- 720004129EN; Transfer and Routine Use Analysis of Budesonide Nasal Spray from HPLC to UPLC. Waters Corporation: Milford, MA, USA, 2013; pp. 18–24.
- International Conference on Harmonisation Validation of Analytical Procedures: Text and Methodology ICH Topic Q 2 (R1); ICH: Geneva, Switzerland, 2005; p. 17.
- Agencia Española de Medicamentos y Productos Sanitarios PN/L/FF/008/00 Elaboración de Suspensiones. Formulario Nacional. Available online: https://www.aemps.gob.es/formulario-nacional/procedimientos-normalizados-de-trabajo/procedimientos-de-elaboracion-de-formas-farmaceuticas/pn_l_ff_008_00.pdf (accessed on 3 September 2024).
- EDQM 2.9.27; Uniformity and Accuracy of Delivered Doses of Multidose Containers. European Pharmacopoeia: Strasbourg, France, 2024.
- Suárez-González, J.; Santoveña-Estévez, A.; Armijo-Ruíz, S.; Castillo, A.; Fariña, J.B. A High-Demanding Strategy to Ensure the Highest Quality Standards of Oral Liquid Individualized Medicines for Pediatric Use. AAPS PharmSciTech 2019, 20, 208. [Google Scholar] [CrossRef]
- EDQM 2.9.40; Uniformity of Dosage Units. European Pharmacopoeia: Strasbourg, France, 2024.
- EDQM 2.9.5; Uniformity of Mass of Single-Dose Preparations. Euorpean Pharmacopoeia: Strasbourg, France, 2024.
- EDQM 2.9.1; Disintegration of Tablets and Capsules. European Pharmacopoeia: Strasbourg, France, 2024.
- The International Council of Harmonisation. Stability Testing of New Drug Substances and Products Q1A (R2); European Medicines Agency (EMA): Amsterdam, The Netherlands, 2003; pp. 1–20. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-1-r2-stability-testing-new-drug-substances-products-step-5_en.pdf (accessed on 16 February 2023).
- Smart, J.D.; Dunkley, S.; Tsibouklis, J.; Young, S. An in vitro model for the evaluation of the adhesion of solid oral dosage forms to the oesophagus. Int. J. Pharm. 2013, 447, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Amorós-Galicia, L.; Nardi-Ricart, A.; Verdugo-González, C.; Arroyo-García, C.M.; García-Montoya, E.; Pérez-Lozano, P.; Suñé-Negre, J.M.; Suñé-Pou, M. Development of a Standardized Method for Measuring Bioadhesion and Mucoadhesion That Is Applicable to Various Pharmaceutical Dosage Forms. Pharmaceutics 2022, 14, 1995. [Google Scholar] [CrossRef] [PubMed]
- Hägerström, H.; Edsman, K. Interpretation of mucoadhesive properties of polymer gel preparations using a tensile strength method. J. Pharm. Pharmacol. 2001, 53, 1589–1599. [Google Scholar] [CrossRef]
- Suárez-González, J.; Díaz-Torres, E.; Monzón-Rodríguez, C.N.; Santoveña-Estévez, A.; Fariña, J.B. Revolutionizing Three-Dimensional Printing: Enhancing Quality Assurance and Point-of-Care Integration through Instrumentation. Pharmaceutics 2024, 16, 408. [Google Scholar] [CrossRef]
- Lee, C.H.; Moturi, V.; Lee, Y. Thixotropic property in pharmaceutical formulations. J. Control. Release 2009, 136, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Pecora, T.M.G.; Ragazzo, B.; Bertin, W.; Ragonese, A.; Mascagni, M.; Maffei, P.; Pignatello, R. Rheological Behavior of a New Mucoadhesive Oral Formulation Based on Sodium Chondroitin Sulfate, Xyloglucan and Glycerol. J. Funct. Biomater. 2021, 12, 28. [Google Scholar] [CrossRef]
- Provenza, N.; Calpena, A.C.; Mallandrich, M.; Halbaut, L.; Clares, B. Design and physicochemical stability studies of paediatric oral formulations of sildenafil. Int. J. Pharm. 2014, 460, 234–239. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, L.; Zheng, C.; Wang, X.; Wang, K.; Zhu, J. Motion behavior of non-Newtonian fluid-solid interaction foods. J. Food Eng. 2023, 347, 111448. [Google Scholar] [CrossRef]
- Sanz, R.; Clares, B.; Mallandrich, M.; Suñer-Carbó, J.; Montes, M.J.; Calpena, A.C. Development of a mucoadhesive delivery system for control release of doxepin with application in vaginal pain relief associated with gynecological surgery. Int. J. Pharm. 2018, 535, 393–401. [Google Scholar] [CrossRef]
- Márquez Valls, M.; Martínez Labrador, A.; Halbaut Bellowa, L.; Bravo Torres, D.; Granda, P.C.; Miñarro Carmona, M.; Limón, D.; Calpena Campmany, A.C. Biopharmaceutical Study of Triamcinolone Acetonide Semisolid Formulations for Sublingual and Buccal Administration. Pharmaceutics 2021, 13, 1080. [Google Scholar] [CrossRef]
- Michele, T.M.; Knorr, B.; Vadas, E.B.; Reiss, T.F. Safety of chewable tablets for children. J. Asthma 2002, 39, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Khizer, Z.; Akram, M.R.; Tahir, M.A.; Liu, W.; Lou, S.; Conway, B.R.; Ghori, M.U. Personalised 3D-Printed Mucoadhesive Gastroretentive Hydrophilic Matrices for Managing Overactive Bladder (OAB). Pharmaceuticals 2023, 16, 372. [Google Scholar] [CrossRef] [PubMed]
- Sandri, G.; Ruggeri, M.; Rossi, S.; Bonferoni, M.C.; Vigani, B.; Ferrari, F. Chapter 8—(Trans)buccal drug delivery. In Nanotechnology for Oral Drug Delivery; Martins, J.P., Santos, H.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 225–250. [Google Scholar]
Attribute | Development Target | ||
---|---|---|---|
Route of administration | Oral | ||
Dose strength | 1 mg | 1 mg | 0.5 mg |
Dosage form | Viscous oral liquid formulation | Orodispersible solid dosage form | |
Dosing regimen | Once/twice daily | ||
Impurities | Degradation products | ||
Requirements: to ensure patient safety and efficacy throughout shelf life | All appropriate quality criteria: identification; appearance; mass uniformity; content uniformity; chemical stability; mucoadhesive properties. | All appropriate quality criteria: identification; appearance; disintegration; mass uniformity; content uniformity; chemical stability; mucoadhesive properties. | |
Shelf life | Minimum 30 days |
Composition | L1-MC | L2-XG |
---|---|---|
Budesonide | 0.02 | 0.025 |
Glycerine | 2.52 | 12.61 |
Methylcellulose | 1.00 | - |
Saccharin sodium | 0.05 | 0.08 |
Nipagin sodium | 0.05 | - |
Nipasol sodium | 0.02 | - |
Sodium citrate | 0.05 | - |
Citric acid monohydrate | 0.10 | - |
Xanthan gum | - | 2.00 |
Sodium benzoate | - | 0.19 |
EDTA | - | 0.10 |
Water, Ultrapure | 96.19 | 85.00 |
Total | 100.00 | 100.00 |
Moulded Tablets | Printlets | |||
---|---|---|---|---|
Composition | M1 | P1 | P0.5 | P0.5-XG |
BUD | 0.69 1 | 1.74 | 0.83 | 0.87 |
Lactose, monohydrate | 60.75 | 14.78 | 14.66 | 14.67 |
Ac-Di-Sol® | - | 10.43 | 10.33 | 10.78 |
Sucrose | 26.23 | - | - | - |
PVP 2 | 0.59 | 3.48 | 3.33 | 3.48 |
Xanthan Gum | - | - | - | 0.63 |
Ethanol | 2.78 | 16.47 | 19.99 | 16.47 |
Apple essence | 0.36 | 1.33 | 1.28 | 1.33 |
Water, Ultrapure | 8.53 | 51.77 | 49.58 | 51.77 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Step | Action | Plunger Speed (mm/s) | Distance (mm) | Time (s) |
---|---|---|---|---|
1 | Downward force on plunger cartridge | 0.005 | 5 | 1000 |
2 | Hold time | 0 | 0 | 60 |
3 | Retraction of the same distance | 0.050 | 5 | 100 |
4 | Final wait time | 0 | 0 | 60 |
Semi-Solid Masses | P1 | P0.5 | P0.5-XG |
---|---|---|---|
Extrudability speed (mm/s) * | 0.010 | 0.010 | 0.010 |
Start flow pressure (yield point) (kPa) | 38.004 | 62.604 | 61.051 |
Maximum applied pressure (kPa) | 59.716 | 66.879 | 113.310 |
Steady flow pressure (kPa) | 56.508 | 62.604 | 105.649 |
Flow cessation pressure (kPa) | 39.111 | 49.188 | 82.193 |
Recoverable stress (%) | 94.66 | 93.61 | 93.23 |
Oral Viscous Formulations | Conditions | pH0–pH30 |
---|---|---|
L1-MC | 5 °C | 4.15 ± 0.01–4.18 ± 0.01 |
25 °C | 4.09 ± 0.01–4.28 ± 0.03 | |
40 °C | 4.12 ± 0.01–4.30 ± 0.08 | |
L2-XG | 5 °C | 6.04 ± 0.00–5.97 ± 0.01 |
25 °C | 5.94 ± 0.01–5.95 ± 0.01 | |
40 °C | 5.91 ± 0.01–5.81 ± 0.09 |
L1-MC | L2-XG | |||
---|---|---|---|---|
Average (mg) | 5.084 | 3.771 | ||
SD | 0.029 | 0.143 | ||
Limits | LL | UL | LL | UL |
±10% | 4.576 | 5.593 | 3.394 | 4.148 |
±20% | 4.068 | 6.101 | 3.017 | 4.525 |
L1-MC | L2-XG | |
---|---|---|
Average (%DV) | 97.22 | 102.93 |
SD | 1.45 | 4.33 |
RSD | 1.49 | 4.21 |
AV | 4.76 | 5.97 |
Parameters | Moulded Tablets | Printlets | ||
---|---|---|---|---|
M1 | P1 | P0.5 | P0.5-XG | |
Diameter (n = 10) | 5.91 ± 0.08 mm | 4.12 ± 0.08 mm | 4.16 ± 0.08 mm | 3.99 ± 0.16 mm |
Thickness (n = 10) | 3.27 ± 0.10 mm | 2.08 ± 0.09 mm | 2.17 ± 0.10 mm | 2.01 ± 0.14 mm |
M1 | P1 | P0.5 | P0.5-XG | |||||
---|---|---|---|---|---|---|---|---|
Average (mg) | 104.85 | 19.57 | 18.46 | 19.88 | ||||
SD | 5.71 | 0.44 | 0.48 | 0.56 | ||||
RSD | 5.45 | 2.23 | 2.59 | 2.83 | ||||
Limits | LL | UP | LL | UL | LL | UL | LL | UL |
±10% | - | - | 17.61 | 21.53 | 16.61 | 20.30 | 17.90 | 21.87 |
±7.5% | 96.99 | 112.72 | - | - | - | - | - | - |
M1 | P1 | P0.5 | P0.5-XG | |
---|---|---|---|---|
Average (% DV) | 101.59 | 101.76 | 103.45 | 106.00 |
SD | 5.38 | 2.65 | 3.17 | 1.79 |
RSD | 5.30 | 2.60 | 3.08 | 1.69 |
AV | 12.96 | 6.36 | 8.70 | 4.54 |
Oral Viscous Formulations | Storage Conditions | 0 Days | 15 Days | 30 Days |
---|---|---|---|---|
L1-MC | 5 °C | 100.00 | 100.59 ± 3.16 | 102.56 ± 1.02 |
25 °C | 100.00 | 101.26 ± 8.87 | 98.08 ± 5.21 | |
40 °C | 100.00 | 99.00 ± 4.39 | 97.92 ± 6.25 | |
L2-XG | 5 °C | 100.00 | 103.97 ± 3.47 | 95.93 ± 4.17 |
25 ° C | 100.00 | 102.41 ± 0.82 | 101.36 ± 8.23 | |
40 °C | 100.00 | 101.37 ± 3.89 | 97.76 ± 10.77 |
Moulded Tablets and Printlets | Storage Conditions | 0 Days | 30 Days |
---|---|---|---|
M1 | 25 °C | 100.00 | 100.82 ± 3.34 |
P1 | 100.00 | 97.56 ± 9.39 | |
P0.5 | 100.00 | 102.78 ± 2.04 | |
P0.5-XG | 100.00 | 99.88 ± 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magariños-Triviño, M.; Díaz-Torres, E.; Suárez-González, J.; Santoveña-Estévez, A.; Fariña, J.B. The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties. Pharmaceutics 2024, 16, 1338. https://doi.org/10.3390/pharmaceutics16101338
Magariños-Triviño M, Díaz-Torres E, Suárez-González J, Santoveña-Estévez A, Fariña JB. The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties. Pharmaceutics. 2024; 16(10):1338. https://doi.org/10.3390/pharmaceutics16101338
Chicago/Turabian StyleMagariños-Triviño, María, Eduardo Díaz-Torres, Javier Suárez-González, Ana Santoveña-Estévez, and José B. Fariña. 2024. "The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties" Pharmaceutics 16, no. 10: 1338. https://doi.org/10.3390/pharmaceutics16101338
APA StyleMagariños-Triviño, M., Díaz-Torres, E., Suárez-González, J., Santoveña-Estévez, A., & Fariña, J. B. (2024). The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties. Pharmaceutics, 16(10), 1338. https://doi.org/10.3390/pharmaceutics16101338