In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride
"> Figure 1
<p>(<b>A</b>) Mean diameter, (<b>B</b>) size distribution and (<b>C</b>) surface charge of GNPs prepared with 0.1% <span class="html-italic">w</span>/<span class="html-italic">v</span> of Brij O2 and 0.2–0.8 mg/mL of B1. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.001 vs. empty Brij O2 GNPs. Values are average of three different experiments ± standard deviation. TEM micrographs of (<b>D</b>) empty Brij O2 GNPs and (<b>E</b>) nanosystems prepared with 0.6 mg/mL of drug. Scale bar = 100 nm.</p> "> Figure 2
<p>TSI profiles of Brij O2 GNPs (0.01% <span class="html-italic">w</span>/<span class="html-italic">v</span> of gliadin and 0.1% <span class="html-italic">w</span>/<span class="html-italic">v</span> of Brij O2) prepared with increasing concentrations of B1. Analyses were carried out at room and body temperature for 1 h.</p> "> Figure 3
<p>(<b>A</b>) Entrapment efficiency and loading capacity of Brij O2 GNPs prepared with different concentrations of B1 (upper panel); (<b>B</b>) release profiles of B1 (0.2–0.8 mg/mL) from Brij O2 GNPs under SGF (pH 1.2) and SIF (pH 6.8), expressed as a function of amount of B1 entrapped and incubation time. Values represent mean of five different experiments ± standard deviation. Error bars, if not shown, are within symbols. (<b>C</b>) FT-IR spectra of B1-loaded Brij O2 GNPs prepared with initial drug concentration of 0.6 mg/mL.</p> "> Figure 4
<p>Mean sizes and Z-potential values of Brij O2 and B1 Brij O2 GNPs (0.5 mg/mL) incubated at 37 °C with 1 mL of mucin solutions (0.1–0.5% <span class="html-italic">w</span>/<span class="html-italic">v</span>) as function of time. ** <span class="html-italic">p</span> < 0.001 and * <span class="html-italic">p</span> < 0.05 vs. means sizes and Z-potential values measured before incubation with mucin. Results are reported as mean of three different experiments ± standard deviation.</p> "> Figure 5
<p>(<b>A</b>) Amount of mucin (0.5% <span class="html-italic">w</span>/<span class="html-italic">v</span>) adsorbed onto empty and B1-loaded GNPs (0.5 mg/mL), expressed as function of incubation time. (<b>B</b>) FT-IR profile of empty and B1-loaded Brij O2 GNPs (0.5 mg/mL) incubated with 0.5% <span class="html-italic">w</span>/<span class="html-italic">v</span> of mucin for 4 h. ** <span class="html-italic">p</span> < 0.001 and * <span class="html-italic">p</span> < 0.05: empty GNPs vs. B1-loaded GNPs.</p> "> Scheme 1
<p>Schematic representation of the preparation procedure of gliadin nanoparticles.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Physico-Chemical Characterization of Brij GNPs
2.3. Fourier-Transformed Infrared (FT-IR) Analyses
2.4. Entrapment Efficiency, Loading Capacity and Release Profiles
2.5. Adsorption of Mucin
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Brij O2-Stabilized GNPs Containing B1
3.2. In Vitro Mucoadhesive Features of B1-Loaded Brij O2 GNPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sosnik, A.; das Neves, J.; Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog. Polym. Sci. 2014, 39, 2030–2075. [Google Scholar] [CrossRef]
- Ahmady, A.; Abu Samah, N.H. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int. J. Pharm. 2021, 608, 121037. [Google Scholar] [CrossRef] [PubMed]
- Boegh, M.; Baldursdóttir, S.G.; Müllertz, A.; Nielsen, H.M. Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption. Eur. J. Pharm. Biopharm. 2014, 87, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.; Smyth, H.D.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 2017, 532, 555–572. [Google Scholar] [CrossRef]
- Navarro, L.A.; French, D.L.; Zauscher, S. Advances in mucin mimic synthesis and applications in surface science. Curr. Opin. Colloid Interface Sci. 2018, 38, 122–134. [Google Scholar] [CrossRef]
- Cruz, R.M.; Santos-Martinez, M.J.; Tajber, L. Impact of polyethylene glycol polymers on the physicochemical properties and mucoadhesivity of itraconazole nanoparticles. Eur. J. Pharm. Biopharm. 2019, 144, 57–67. [Google Scholar] [CrossRef]
- Collado-González, M.; Espinosa, Y.G.; Goycoolea, F.M. interaction between chitosan and mucin: Fundamentals and applications. Biomimetics 2019, 4, 32. [Google Scholar] [CrossRef]
- Huckaby, J.T.; Lai, S.K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. 2018, 124, 125–139. [Google Scholar] [CrossRef]
- Nordgård, C.T.; Draget, K.I. Co association of mucus modulating agents and nanoparticles for mucosal drug delivery. Adv. Drug Deliv. Rev. 2018, 124, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Sunoqrot, S.; Hasan, L.; Alsadi, A.; Hamed, R.; Tarawneh, O. Interactions of mussel-inspired polymeric nanoparticles with gastric mucin: Implications for gastro-retentive drug delivery. Colloids Surf. B Biointerfaces 2017, 156, 1–8. [Google Scholar] [CrossRef]
- Estrellas, K.M.; Fiecas, M.; Azagury, A.; Laulicht, B.; Cho, D.Y.; Mancini, A.; Reineke, J.; Furtado, S.; Mathiowitz, E. Time-dependent mucoadhesion of conjugated bioadhesive polymers. Colloids Surf. B Biointerfaces 2019, 173, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Abruzzo, A.; Giordani, B.; Miti, A.; Vitali, B.; Zuccheri, G.; Cerchiara, T.; Luppi, B.; Bigucci, F. Mucoadhesive and mucopenetrating chitosan nanoparticles for glycopeptide antibiotic administration. Int. J. Pharm. 2021, 606, 120874. [Google Scholar] [CrossRef] [PubMed]
- Bedhiafi, T.; Idoudi, S.; Alhams, A.A.; Fernandes, Q.; Iqbal, H.; Basineni, R.; Uddin, S.; Dermime, S.; Merhi, M.; Billa, N. Applications of polydopaminic nanomaterials in mucosal drug delivery. J. Control. Release 2023, 353, 842–849. [Google Scholar] [CrossRef]
- da Silva, J.B.; Ferreira, S.B.d.S.; de Freitas, O.; Bruschi, M.L. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev. Ind. Pharm. 2017, 43, 1053–1070. [Google Scholar] [CrossRef]
- Wong, C.Y.; Luna, G.; Martinez, J.; Al-Salami, H.; Dass, C.R. Bio-nanotechnological advancement of orally administered insulin nanoparticles: Comprehensive review of experimental design for physicochemical characterization. Int. J. Pharm. 2019, 572, 118720. [Google Scholar] [CrossRef]
- Szilágyi, B.; Mammadova, A.; Gyarmati, B.; Szilágyi, A. Mucoadhesive interactions between synthetic polyaspartamides and porcine gastric mucin on the colloid size scale. Colloids Surf. B Biointerfaces 2020, 194, 111219. [Google Scholar] [CrossRef]
- Jalal, R.R.; Ways, T.M.M.; Abu Elella, M.H.; Hassan, D.A.; Khutoryanskiy, V.V. Preparation of mucoadhesive methacrylated chitosan nanoparticles for delivery of ciprofloxacin. Int. J. Biol. Macromol. 2023, 242, 124980. [Google Scholar] [CrossRef] [PubMed]
- Pauluk, D.; Padilha, A.K.; Khalil, N.M.; Mainardes, R.M. Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity. Food Hydrocoll. 2019, 94, 411–417. [Google Scholar] [CrossRef]
- Farzan, M.; Varshosaz, J.; Mirian, M.; Minaiyan, M.; Pezeshki, A. Hyaluronic acid-conjugated gliadin nanoparticles for targeted delivery of usnic acid in breast cancer: An in vitro/in vivo translational study. J. Drug Deliv. Sci. Technol. 2023, 84, 104459. [Google Scholar] [CrossRef]
- Luo, F.-C.; Zhu, J.-J.; You, X.-M.; Yang, X.-Q.; Yin, S.-W. Biocompatible gliadin-sericin complex colloidal particles used for topical delivery of the antioxidant phloretin. Colloids Surf. B Biointerfaces 2023, 225, 113244. [Google Scholar] [CrossRef]
- Marcano, R.G.V.; Khalil, N.M.; Felsner, M.d.L.; Mainardes, R.M. Mitigating amphotericin B cytotoxicity through gliadin-casein nanoparticles: Insights into synthesis, optimization, characterization, in vitro release and cytotoxicity evaluation. Int. J. Biol. Macromol. 2024, 260, 129471. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Gao, Y.; Wu, Z.; Miao, J.; Gao, H.; Ma, L.; Zou, L.; Peng, S.; Liu, C.; Liu, W. Gliadin Nanoparticles Pickering Emulgels for β-Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility. Molecules 2020, 25, 4188. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Zhi, Z.; Zhao, J.; Li, D.; Yu, S.; Duan, M.; Xu, J.; Tong, C.; Pang, J.; Wu, C. Oxidized chitin nanocrystals greatly strengthen the stability of resveratrol-loaded gliadin nanoparticles. J. Agric. Food Chem. 2022, 70, 13778–13786. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Zhang, L.; Liao, W.; Wang, Y.; Gao, Y. Extraction, identification and application of gliadin from gluten: Impact of pH on physicochemical properties of unloaded- and lutein-loaded gliadin nanoparticles. Int. J. Biol. Macromol. 2023, 253, 126638. [Google Scholar] [CrossRef]
- Ezpeleta, I.; Arangoa, M.A.; Irache, J.M.; Stainmesse, S.; Chabenat, C.; Popineau, Y.; Orecchioni, A.-M. Preparation of Ulex europaeus lectin-gliadin nanoparticle conjugates and their interaction with gastrointestinal mucus. Int. J. Pharm. 1999, 191, 25–32. [Google Scholar] [CrossRef]
- Arangoa, M.; Ponchel, G.; Orecchioni, A.; Renedo, M.; Duchêne, D.; Irache, J. Bioadhesive potential of gliadin nanoparticulate systems. Eur. J. Pharm. Sci. 2000, 11, 333–341. [Google Scholar] [CrossRef]
- Umamaheshwari, R.; Jain, N. Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J. Drug Target. 2003, 11, 415–424. [Google Scholar] [CrossRef]
- Umamaheshwari, R.B.; Ramteke, S.; Jain, N.K. Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model. Aaps Pharmscitech 2004, 5, 60–68. [Google Scholar] [CrossRef]
- Ramteke, S.; Ganesh, N.; Bhattacharya, S.; Jain, N.K. Triple therapy-based targeted nanoparticles for the treatment of Helicobacter pylori. J. Drug Target. 2008, 16, 694–705. [Google Scholar] [CrossRef]
- Voci, S.; Pangua, C.; Martínez-Ohárriz, M.C.; Aranaz, P.; Collantes, M.; Irache, J.M.; Cosco, D. Gliadin nanoparticles for oral administration of bioactives: Ex vivo and in vivo investigations. Int. J. Biol. Macromol. 2023, 249, 126111. [Google Scholar] [CrossRef]
- Whitfield, K.C.; Smith, T.J.; Rohner, F.; Wieringa, F.T.; Green, T.J. Thiamine fortification strategies in low- and middle-income settings: A review. Ann. N. Y. Acad. Sci. 2021, 1498, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Voelker, A.L.; Miller, J.; Running, C.A.; Taylor, L.S.; Mauer, L.J. Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine chloride hydrochloride) in solution. Food Res. Int. 2018, 112, 443–456. [Google Scholar] [CrossRef] [PubMed]
- A Smithline, H.; Donnino, M.; Greenblatt, D.J. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin. Pharmacol. 2012, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Muthukrishnan, S.; Murugan, I.; Selvaraj, M. Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydr. Polym. 2019, 212, 169–177. [Google Scholar] [CrossRef]
- Yamada, Y.; Ishimaru, T.; Harashima, H. Validation of the mitochondrial delivery of vitamin B1 to enhance ATP production using SH-SY5Y cells, a model neuroblast. J. Pharm. Sci. 2022, 2, e43. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.S.; Anandan, R.; Navitha, M.; Asha, K.K.; Kumar, K.A.; Mathew, S.; Ravishankar, C.N. Development of thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres for dietary supplementation. J. Food Sci. Technol. 2016, 53, 551–560. [Google Scholar] [CrossRef]
- Fathima, S.J.; Fathima, I.; Abhishek, V.; Khanum, F. Phosphatidylcholine, an edible carrier for nanoencapsulation of unstable thiamine. Food Chem. 2016, 197, 562–570. [Google Scholar] [CrossRef]
- Tejpal, C.; Chatterjee, N.; Elavarasan, K.; Lekshmi, R.; Anandan, R.; Asha, K.; Ganesan, B.; Mathew, S.; Ravishankar, C. Dietary supplementation of thiamine and pyridoxine-loaded vanillic acid-grafted chitosan microspheres enhances growth performance, metabolic and immune responses in experimental rats. Int. J. Biol. Macromol. 2017, 104, 1874–1881. [Google Scholar] [CrossRef]
- Carlan, I.C.; Estevinho, B.N.; Rocha, F. Production of vitamin B1 microparticles by a spray drying process using different biopolymers as wall materials. Can. J. Chem. Eng. 2020, 98, 1682–1695. [Google Scholar] [CrossRef]
- Juhász, Á.; Ungor, D.; Várkonyi, E.Z.; Varga, N.; Csapó, E. The pH-dependent controlled release of encapsulated vitamin b1 from liposomal nanocarrier. Int. J. Mol. Sci. 2021, 22, 9851. [Google Scholar] [CrossRef]
- Tian, J.; Peng, G.; Qu, X.; Yao, Y.; Li, C. Liposoluble vitamin B1 microcapsules: Preparation, characterization, stabilization, and bioaccessibility. Eur. J. Lipid Sci. Technol. 2023, 125, 2300015. [Google Scholar] [CrossRef]
- Kumar, A.; Jindal, A. Cytotoxicity and bioavailability assessment from micellar system based Thiamine-Phospholipid complexes. J. Mol. Liq. 2024, 407, 125177. [Google Scholar] [CrossRef]
- Zhang, J.; Field, C.J.; Vine, D.; Chen, L. Intestinal uptake and transport of vitamin B 12-loaded soy protein nanoparticles. Pharm. Res. 2015, 32, 1288–1303. [Google Scholar] [CrossRef]
- Hu, B.; Yang, Y.; Han, L.; Yang, J.; Zheng, W.; Cao, J. Characterization of hydrophilic and hydrophobic core-shell microcapsules prepared using a range of antisolvent approaches. Food Hydrocoll. 2022, 131, 107750. [Google Scholar] [CrossRef]
- Yang, Y.; Han, L.; Cao, J.; Yang, X.; Hu, C.; Yang, J.; Zheng, Q.; Zhang, X.; Hu, B. Preparation and Characterization of Gliadin-Based Core-Shell Microcapsules by Three Antisolvent Approaches. LWT 2024, 191, 115635. [Google Scholar] [CrossRef]
- Voci, S.; Gagliardi, A.; Salvatici, M.C.; Fresta, M.; Cosco, D. Development of polyoxyethylene (2) oleyl ether-gliadin nanoparticles: Characterization and in vitro cytotoxicity. Eur. J. Pharm. Sci. 2021, 162, 105849. [Google Scholar] [CrossRef]
- Voci, S.; Gagliardi, A.; Fresta, M.; Cosco, D. Ascorbic acid-loaded gliadin nanoparticles as a novel nutraceutical formulation. Food Res. Int. 2022, 161, 111869. [Google Scholar] [CrossRef]
- Gagliardi, A.; Ambrosio, N.; Voci, S.; Salvatici, M.C.; Fresta, M.; Cosco, D. Easy preparation, characterization and cytotoxic investigation of 5-Fluorouracil-loaded zein/sericin nanoblends. J. Mol. Liq. 2022, 366, 120344. [Google Scholar] [CrossRef]
- Gagliardi, A.; Molinaro, R.; Fresta, M.; Duranti, A.; Cosco, D. α-Acylamino-β-lactone N-Acylethanolamine-hydrolyzing Acid amidase inhibitors encapsulated in plga nanoparticles: Improvement of the physical stability and protection of human cells from hydrogen peroxide-induced oxidative stress. Antioxidants 2022, 11, 686. [Google Scholar] [CrossRef]
- Chuacharoen, T.; Sabliov, C.M. The potential of zein nanoparticles to protect entrapped β-carotene in the presence of milk under simulated gastrointestinal (GI) conditions. LWT 2016, 72, 302–309. [Google Scholar] [CrossRef]
- Gagliardi, A.; Voci, S.; Bonacci, S.; Iriti, G.; Procopio, A.; Fresta, M.; Cosco, D. SCLAREIN (SCLAREol contained in zeIN) nanoparticles: Development and characterization of an innovative natural nanoformulation. Int. J. Biol. Macromol. 2021, 193, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.M.d.O.; Gremião, M.P.D.; Cury, B.S.F. Mucin-polysaccharide interactions: A rheological approach to evaluate the effect of pH on the mucoadhesive properties. Int. J. Biol. Macromol. 2020, 149, 234–245. [Google Scholar] [CrossRef]
- Antonio, E.; Junior, O.d.R.A.; Marcano, R.G.D.J.V.; Diedrich, C.; Santos, J.d.S.; Machado, C.S.; Khalil, N.M.; Mainardes, R.M. Chitosan modified poly (lactic acid) nanoparticles increased the ursolic acid oral bioavailability. Int. J. Biol. Macromol. 2021, 172, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, A.; Voci, S.; Ambrosio, N.; Fresta, M.; Duranti, A.; Cosco, D. Characterization and preliminary in vitro antioxidant activity of a new multidrug formulation based on the co-encapsulation of rutin and the α-acylamino-β-lactone NAAA inhibitor URB894 within PLGA nanoparticles. Antioxidants 2023, 12, 305. [Google Scholar] [CrossRef]
- Ambrosio, N.; Gagliardi, A.; Voci, S.; Salvatici, M.C.; Fresta, M.; Cosco, D. Strategies of stabilization of zein nanoparticles containing doxorubicin hydrochloride. Int. J. Biol. Macromol. 2023, 243, 125222. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, A.; Voci, S.; Salvatici, M.C.; Fresta, M.; Cosco, D. Brij-stabilized zein nanoparticles as potential drug carriers. Colloids Surf. B Biointerfaces 2021, 201, 111647. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Yang, J.; Xiong, L.; Sun, Q. Fabrication and characterization of biocompatible hybrid nanoparticles from spontaneous co-assembly of casein/gliadin and proanthocyanidin. Food Hydrocoll. 2017, 73, 74–89. [Google Scholar] [CrossRef]
- Boya, V.N.; Lovett, R.; Setua, S.; Gandhi, V.; Nagesh, P.K.; Khan, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Probing mucin interaction behavior of magnetic nanoparticles. J. Colloid Interface Sci. 2017, 488, 258–268. [Google Scholar] [CrossRef]
- Piazzini, V.; Landucci, E.; D’Ambrosio, M.; Fasiolo, L.T.; Cinci, L.; Colombo, G.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Luceri, C.; Bergonzi, M.C. Chitosan coated human serum albumin nanoparticles: A promising strategy for nose-to-brain drug delivery. Int. J. Biol. Macromol. 2019, 129, 267–280. [Google Scholar] [CrossRef]
- Wang, K.; Li, G.; Zhang, B. Opposite results of emulsion stability evaluated by the TSI and the phase separation proportion. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 402–409. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Xue, C. Effect of carboxymethyl konjac glucomannan coating on the stability and colon-targeted delivery performance of fucoxanthin-loaded gliadin nanoparticles. Food Res. Int. 2022, 162, 111979. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, C.; Guo, H.; Zhang, H.; Yang, Z.; Ren, F. Casein gel particles as novel soft Pickering stabilizers: The emulsifying property and packing behaviour at the oil-water interface. Food Hydrocoll. 2018, 77, 689–698. [Google Scholar] [CrossRef]
- Chen, S.; Han, Y.; Sun, C.; Dai, L.; Yang, S.; Wei, Y.; Mao, L.; Yuan, F.; Gao, Y. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydr. Polym. 2018, 201, 599–607. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, Y.; Chen, J.; Jiang, B.; Zhang, T. Fabrication, characterization, physicochemical stability and simulated gastrointestinal digestion of pterostilbene loaded zein-sodium caseinate-fucoidan nanoparticles using pH-driven method. Food Hydrocoll. 2021, 119, 106851. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Sun, X.; Guo, M. Preparation, characterization, and antioxidant activity of zein nanoparticles stabilized by whey protein nanofibrils. Int. J. Biol. Macromol. 2021, 167, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Nardi, M.; Sarubbi, E.; Somavarapu, S. Eco-Friendly Synthesis of PEtOz-PA: A Promising Polymer for the Formulation of Curcumin-Loaded Micelles. Molecules 2022, 27, 3788. [Google Scholar] [CrossRef]
- Khan, U.; Niaz, A.; Shah, A.; Zaman, M.I.; Zia, M.A.; Iftikhar, F.J.; Nisar, J.; Ahmed, M.N.; Akhter, M.S.; Shah, A.H. Thiamine-functionalized silver nanoparticles for the highly selective and sensitive colorimetric detection of Hg2+ ions. New J. Chem. 2018, 42, 528–534. [Google Scholar] [CrossRef]
- Griffiths, P.C.; Cattoz, B.; Ibrahim, M.S.; Anuonye, J.C. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering. Eur. J. Pharm. Biopharm. 2015, 97, 218–222. [Google Scholar] [CrossRef]
- da Silva, S.B.; Ferreira, D.; Pintado, M.; Sarmento, B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery—In vitro tests. Int. J. Biol. Macromol. 2016, 84, 112–120. [Google Scholar] [CrossRef]
- Malatani, R.T.; Bilal, S.; Mahmood, A.; Sarfraz, R.M.; Zafar, N.; Ijaz, H.; Rehman, U.; Akbar, S.; Alkhalidi, H.M.; Gad, H.A. Development of Tofacitinib Loaded pH-Responsive Chitosan/Mucin Based Hydrogel Microparticles: In-Vitro Characterization and Toxicological Screening. Gels 2023, 9, 187. [Google Scholar] [CrossRef]
- Mardikasari, S.A.; Katona, G.; Sipos, B.; Ambrus, R.; Csóka, I. Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration. Gels 2023, 9, 896. [Google Scholar] [CrossRef] [PubMed]
- Gyarmati, B.; Stankovits, G.; Szilágyi, B.; Galata, D.L.; Gordon, P.; Szilágyi, A. A robust mucin-containing poly(vinyl alcohol) hydrogel model for the in vitro characterization of mucoadhesion of solid dosage forms. Colloids Surf. B Biointerfaces 2022, 213, 112406. [Google Scholar] [CrossRef] [PubMed]
- Gavriely, S.; Richter, S.; Zucker, I. Mucin-Based Composites for Efficient Mercuric Biosorption. Adv. Sustain. Syst. 2022, 6, 2200081. [Google Scholar] [CrossRef]
- Hsein, H.; Garrait, G.; Beyssac, E.; Hoffart, V. Whey protein mucoadhesive properties for oral drug delivery: Mucin–whey protein interaction and mucoadhesive bond strength. Colloids Surf. B Biointerfaces 2015, 136, 799–808. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Mneimneh, A.T. Updated but not outdated “Gliadin”: A plant protein in advanced pharmaceutical nanotechnologies. Int. J. Pharm. 2020, 587, 119672. [Google Scholar] [CrossRef]
- Prakash, S.; Manish; Bansal, P.; Kumar, A.; Saxena, V.; Kumar, V.; Katiyar, D. Overview and in-silico pharmacological profiling of Gliadin: A potential biomaterial. Mater. Today Proc. 2022, 62, 276–282. [Google Scholar] [CrossRef]
- Gonzalez-Obeso, C.; Girotti, A.; Rodriguez-Cabello, J.C. A transferrin receptor-binding mucoadhesive elastin-like recombinamer: In vitro and in vivo characterization. Acta Biomater. 2019, 88, 241–250. [Google Scholar] [CrossRef]
- Sandri, G.; Motta, S.; Bonferoni, M.C.; Brocca, P.; Rossi, S.; Ferrari, F.; Rondelli, V.; Cantù, L.; Caramella, C.; Del Favero, E. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion. Eur. J. Pharm. Biopharm. 2017, 110, 13–18. [Google Scholar] [CrossRef]
- Rathee, S.; Nayak, V.; Singh, K.R.; Ojha, A. Nanofortification of vitamin B-complex in food matrix: Need, regulations, and prospects. Food Chem. Mol. Sci. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Park, W.-S.; Lee, J.; Hong, T.; Park, G.; Youn, S.; Seo, Y.; Lee, S.; Han, S. Comparative pharmacokinetic analysis of thiamine and its phosphorylated metabolites administered as multivitamin preparations. Clin. Ther. 2016, 38, 2277–2285. [Google Scholar] [CrossRef]
Sample | Assigned Band (cm−1) | Corresponding Functional Group |
---|---|---|
Gliadin | 3280 | -NH |
1640 | C=O + -NH | |
1530 | -CN + -NH | |
Brij O2 | 3400 | -OH |
2920 | -CH2 | |
2843 | -CH3 | |
1460 | -CH2 | |
1118 | C-O-C | |
1063 | C-O-C | |
887 | -C-C | |
721 | -CH2 | |
B1 | 3491 | -NH2 |
3250 | -OH | |
1384 | -CN | |
1603 | -NH | |
2940 | -CH3 | |
1359 | -CH3 | |
1060 | -C-O | |
770 | -C-S-C | |
Brij O2 GNPs | 1450, 1230–1320 | -NH, -CN |
835 | -C-C | |
700 | -CH2 | |
B1-loaded Brij O2 GNPs | 3288 | -OH |
2924 | -CH2 | |
1435 | -NH, -CN |
Sample | Assigned Band (cm−1) | Corresponding Functional Group |
---|---|---|
Mucin type II | 3800–3560 | -NH2, O=C-NH2, -OH |
2920 | -CH2 | |
1635 | Amide I | |
1540 | Amide II | |
1225 | -NH | |
Brij O2 GNPs incubated with 0.5% w/v of mucin | 3281 | -OH |
1353 | Amide III | |
B1-loaded Brij O2 GNPs incubated with 0.5% w/v of mucin | 3293 | -OH |
1302 | Amide III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voci, S.; Gagliardi, A.; Giuliano, E.; Salvatici, M.C.; Procopio, A.; Cosco, D. In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride. Pharmaceutics 2024, 16, 1296. https://doi.org/10.3390/pharmaceutics16101296
Voci S, Gagliardi A, Giuliano E, Salvatici MC, Procopio A, Cosco D. In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride. Pharmaceutics. 2024; 16(10):1296. https://doi.org/10.3390/pharmaceutics16101296
Chicago/Turabian StyleVoci, Silvia, Agnese Gagliardi, Elena Giuliano, Maria Cristina Salvatici, Antonio Procopio, and Donato Cosco. 2024. "In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride" Pharmaceutics 16, no. 10: 1296. https://doi.org/10.3390/pharmaceutics16101296
APA StyleVoci, S., Gagliardi, A., Giuliano, E., Salvatici, M. C., Procopio, A., & Cosco, D. (2024). In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride. Pharmaceutics, 16(10), 1296. https://doi.org/10.3390/pharmaceutics16101296