An Application of a Physiologically Based Pharmacokinetic Approach to Predict Ceftazidime Pharmacokinetics in a Pregnant Population
<p>Ceftazidime pregnancy PBPK model structure.</p> "> Figure 2
<p>Plasma concentration profiles after intravenous and intramuscular administration of ceftazidime in non-pregnant subjects. Solid lines = predicted means, Dashed lines = 5th and 95th centiles. Data used for model development are shown in plot (<b>A</b>) (squares [<a href="#B13-pharmaceutics-16-00474" class="html-bibr">13</a>]; circles [<a href="#B21-pharmaceutics-16-00474" class="html-bibr">21</a>], and diamonds [<a href="#B22-pharmaceutics-16-00474" class="html-bibr">22</a>]) after i.v. bolus and in plot (<b>B</b>) i.m. (circles [<a href="#B23-pharmaceutics-16-00474" class="html-bibr">23</a>]; diamonds [<a href="#B22-pharmaceutics-16-00474" class="html-bibr">22</a>]) dose. Predictions against observation are shown in plot (<b>C</b>) (triangles [<a href="#B21-pharmaceutics-16-00474" class="html-bibr">21</a>], squares [<a href="#B23-pharmaceutics-16-00474" class="html-bibr">23</a>], diamonds [<a href="#B22-pharmaceutics-16-00474" class="html-bibr">22</a>], and circles [<a href="#B28-pharmaceutics-16-00474" class="html-bibr">28</a>]), plot (<b>D</b>) (triangles [<a href="#B29-pharmaceutics-16-00474" class="html-bibr">29</a>], squares [<a href="#B23-pharmaceutics-16-00474" class="html-bibr">23</a>], diamonds [<a href="#B22-pharmaceutics-16-00474" class="html-bibr">22</a>], and circles [<a href="#B28-pharmaceutics-16-00474" class="html-bibr">28</a>]), plot (<b>E</b>) (circles [<a href="#B23-pharmaceutics-16-00474" class="html-bibr">23</a>] and squares [<a href="#B13-pharmaceutics-16-00474" class="html-bibr">13</a>]), plot (<b>F</b>) (diamond [<a href="#B22-pharmaceutics-16-00474" class="html-bibr">22</a>], circle [<a href="#B28-pharmaceutics-16-00474" class="html-bibr">28</a>], and square [<a href="#B30-pharmaceutics-16-00474" class="html-bibr">30</a>]), plot (<b>G</b>) [<a href="#B31-pharmaceutics-16-00474" class="html-bibr">31</a>], plot (<b>H</b>) (circles [<a href="#B32-pharmaceutics-16-00474" class="html-bibr">32</a>] and squares [<a href="#B33-pharmaceutics-16-00474" class="html-bibr">33</a>]), plot (<b>I</b>) [<a href="#B34-pharmaceutics-16-00474" class="html-bibr">34</a>], plot (<b>J</b>) [<a href="#B15-pharmaceutics-16-00474" class="html-bibr">15</a>], plot (<b>K</b>) [<a href="#B22-pharmaceutics-16-00474" class="html-bibr">22</a>], and plot (<b>L</b>) (circles [<a href="#B21-pharmaceutics-16-00474" class="html-bibr">21</a>], triangles [<a href="#B35-pharmaceutics-16-00474" class="html-bibr">35</a>], squares [<a href="#B29-pharmaceutics-16-00474" class="html-bibr">29</a>], and diamonds [<a href="#B23-pharmaceutics-16-00474" class="html-bibr">23</a>]). Observed data are mean values, except for Warns et al., [<a href="#B31-pharmaceutics-16-00474" class="html-bibr">31</a>], Seiga et al., [<a href="#B32-pharmaceutics-16-00474" class="html-bibr">32</a>], Kohara et al., [<a href="#B33-pharmaceutics-16-00474" class="html-bibr">33</a>], and Doko et al., [<a href="#B34-pharmaceutics-16-00474" class="html-bibr">34</a>] were individual data were available. Error bars represent standard deviations. See <a href="#app2-pharmaceutics-16-00474" class="html-app">Appendix A</a> for trial settings.</p> "> Figure 3
<p>Maternal plasma concentration (<b>A</b>–<b>D</b>) and clearance (<b>E</b>) profiles after intravenous (<b>A</b>,<b>B</b>,<b>D</b>) and intramuscular (<b>C</b>) administration of ceftazidime in pregnant subjects at different gestational weeks (plot (<b>A</b>) 7–12 GWs [<a href="#B37-pharmaceutics-16-00474" class="html-bibr">37</a>]; plot (<b>B</b>): 7–11 GWs (open circles [<a href="#B38-pharmaceutics-16-00474" class="html-bibr">38</a>] and closed circles [<a href="#B39-pharmaceutics-16-00474" class="html-bibr">39</a>]), plot (<b>C</b>) [<a href="#B40-pharmaceutics-16-00474" class="html-bibr">40</a>], plot (<b>D</b>) [<a href="#B41-pharmaceutics-16-00474" class="html-bibr">41</a>], and plot (<b>E</b>) [<a href="#B42-pharmaceutics-16-00474" class="html-bibr">42</a>]). Solid lines = predicted means, Dashed lines = 5th and 95th centiles. Error bars in the first plot represent standard deviations. The rest of the observed data are individual values. See the <a href="#app3-pharmaceutics-16-00474" class="html-app">Appendix B</a> for trial settings.</p> "> Figure 4
<p>Maternal plasma, umbilical vein plasma, and amniotic concentration profiles after intravenous administration of ceftazidime in pregnant subjects at delivery. Plot (<b>A1</b>,<b>A2</b>) at 25–34 GWs [<a href="#B43-pharmaceutics-16-00474" class="html-bibr">43</a>], plot (<b>B1</b>–<b>C6</b>) at delivery > 37 GWs (open circles [<a href="#B44-pharmaceutics-16-00474" class="html-bibr">44</a>], open triangles [<a href="#B41-pharmaceutics-16-00474" class="html-bibr">41</a>], filled circles [<a href="#B45-pharmaceutics-16-00474" class="html-bibr">45</a>], diamonds [<a href="#B39-pharmaceutics-16-00474" class="html-bibr">39</a>], squares [<a href="#B46-pharmaceutics-16-00474" class="html-bibr">46</a>] closed triangles [<a href="#B38-pharmaceutics-16-00474" class="html-bibr">38</a>], and crosses [<a href="#B47-pharmaceutics-16-00474" class="html-bibr">47</a>]. (<b>B1</b>–<b>B6</b>) after single 1 g i.v. dose, and (<b>C1</b>–<b>C6</b>) after a single 2 g i.v. dose. Solid lines = predicted means, Dashed lines= 5th and 95th centiles. Observations are individual values from different studies. See <a href="#app3-pharmaceutics-16-00474" class="html-app">Appendix B</a> for trial settings.</p> "> Figure 5
<p>PBPK predictions for maternal and umbilical ceftazidime plasma concentration profiles in pregnant subjects at 20 GWs with 100% (<b>A</b>–<b>D</b>), 75% (<b>E</b>,<b>F</b>), 50% (<b>G</b>,<b>H</b>) of a normal GFR for their gestational week. Solid profiles = predicted means, Dashed profiles = 5th and 95th centiles. Horizontal lines represent MIC of 8 mg/L. inf. = infusion. Plots (<b>A</b>–<b>H</b>) correspond to Cases 1–8, respectively (See Materials and Methods section).</p> "> Figure 6
<p>PBPK predictions for maternal and umbilical ceftazidime plasma concentration profiles in pregnant subjects at 30 GWs with 100% (<b>A</b>–<b>D</b>), 75% (<b>E</b>,<b>F</b>), 50% (<b>G</b>,<b>H</b>) of a normal GFR for their gestational week. Solid profiles = predicted means, Dashed profiles = 5th and 95th centiles. Horizontal lines represent MIC of 8 mg/L. inf. = infusion. Plots (<b>A</b>–<b>H</b>) correspond to Cases 1–8, respectively (See Materials and Methods section).</p> "> Figure 7
<p>PBPK predictions for maternal and umbilical ceftazidime plasma concentration profiles in pregnant subjects at 40 GWs with 100% (<b>A</b>–<b>D</b>), 75% (<b>E</b>,<b>F</b>), 50% (<b>G</b>,<b>H</b>) of a normal GFR for their gestational week. Solid profiles = predicted means, Dashed profiles = 5th and 95th centiles. Horizontal lines represent MIC of 8 mg/L. inf. = infusion. Plots (<b>A</b>–<b>H</b>) correspond to Cases (1–8), respectively (See Materials and Methods section).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Abduljalil, K.; Badhan, R.K.S. Drug dosing during pregnancy-opportunities for physiologically based pharmacokinetic models. J. Pharmacokinet. Pharmacodyn. 2020, 47, 319–340. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Furness, P.; Johnson, T.N.; Rostami-Hodjegan, A.; Soltani, H. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: A database for parameters required in physiologically based pharmacokinetic modelling. Clin. Pharmacokinet. 2012, 51, 365–396. [Google Scholar] [CrossRef]
- Ansari, J.; Carvalho, B.; Shafer, S.L.; Flood, P. Pharmacokinetics and Pharmacodynamics of Drugs Commonly Used in Pregnancy and Parturition. Anesth. Analg. 2016, 122, 786–804. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.S.; Rosene-Montella, K. Drugs in pregnancy. Anticoagulants. Best. Pract. Res. Clin. Obstet. Gynaecol. 2001, 15, 847–861. [Google Scholar] [CrossRef] [PubMed]
- Westin, A.A.; Reimers, A.; Spigset, O. Should pregnant women receive lower or higher medication doses? Tidsskr. Nor. Laegeforen 2018, 138. [Google Scholar] [CrossRef]
- El-Khateeb, E.; Burkhill, S.; Murby, S.; Amirat, H.; Rostami-Hodjegan, A.; Ahmad, A. Physiological-based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20-years; in-depth analysis of applications, organizations, and platforms. Biopharm. Drug Dispos. 2021, 42, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.S.; Della Casa Alberighi, O.; Laer, S.; Meibohm, B. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin. Pharmacol. Ther. 2012, 92, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Gardner, I.; Jamei, M. Application of a Physiologically Based Pharmacokinetic Approach to Predict Theophylline Pharmacokinetics Using Virtual Non-Pregnant, Pregnant, Fetal, Breast-Feeding, and Neonatal Populations. Front. Pediatr. 2022, 10, 840710. [Google Scholar] [CrossRef] [PubMed]
- Ait-Chikh, C.; Page, G.; Thoreau, V. Physiologically-based pharmacokinetic models to predict drug exposure during pregnancy. Ann. Pharm. Fr. 2023, 82, 236–242. [Google Scholar] [CrossRef]
- Berezowska, M.; Sharma, P.; Pilla Reddy, V.; Coppola, P. Physiologically Based Pharmacokinetic modelling of drugs in pregnancy: A mini-review on availability and limitations. Fundam. Clin. Pharmacol. 2023. Early View. [Google Scholar] [CrossRef]
- Davison, J.M.; Dunlop, W. Renal hemodynamics and tubular function normal human pregnancy. Kidney Int. 1980, 18, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, C.A.; Mattie, H.; Van Strijen, E. The renal clearance of cefuroxime and ceftazidime and the effect of probenecid on their tubular excretion. Br. J. Clin. Pharmacol. 1994, 37, 193–197. [Google Scholar] [CrossRef] [PubMed]
- GlaxoSmithKline. FORTAZ®: Ceftazidime for Injection. 2007. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/050578s053,050634s020lbl.pdf (accessed on 27 February 2024).
- Zhou, L.; Tong, X.; Sharma, P.; Xu, H.; Al-Huniti, N.; Zhou, D. Physiologically based pharmacokinetic modelling to predict exposure differences in healthy volunteers and subjects with renal impairment: Ceftazidime case study. Basic. Clin. Pharmacol. Toxicol. 2019, 125, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Kemmerich, B.; Warns, H.; Lode, H.; Borner, K.; Koeppe, P.; Knothe, H. Multiple-dose pharmacokinetics of ceftazidime and its influence on fecal flora. Antimicrob. Agents Chemother. 1983, 24, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Bouza, E.; Hellin, T.; Rodriguez-Creixems, M.; Martinez-Beltran, J.; Loza, E.; Baquero, F. Comparison of ceftazidime concentrations in bile and serum. Antimicrob. Agents Chemother. 1983, 24, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Lobell, M.; Sivarajah, V. In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values. Mol. Divers. 2003, 7, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, T.; Rowland, M. Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 2006, 95, 1238–1257. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Rostoker, G.; Andrivet, P.; Pham, I.; Griuncelli, M.; Adnot, S. A modified Cockcroft-Gault formula taking into account the body surface area gives a more accurate estimation of the glomerular filtration rate. J. Nephrol. 2007, 20, 576–585. [Google Scholar]
- Harding, S.M.; Monro, A.J.; Thornton, J.E.; Ayrton, J.; Hogg, M.I. The comparative pharmacokinetics of ceftazidime and cefotaxime in healthy volunteers. J. Antimicrob. Chemother. 1981, 8 (Suppl. B), 263–272. [Google Scholar] [CrossRef]
- Koyama, M.; Nakagawa, K.; Takeda, K.; Higo, K.; Okumura, K. Phase-one Clinical Study on Ceftazidime. Chemotherapy 1983, 31, 146–155. [Google Scholar] [CrossRef]
- Harding, S.M.; Harper, P.B. The pharmacokinetic behaviour of ceftazidime in man and the relationship between serum levels and the in vitro susceptibility of clinical isolates. Infection 1983, 11 (Suppl. 1), S49–S53. [Google Scholar] [CrossRef] [PubMed]
- Alrammaal, H.H.; Abduljalil, K.; Hodgetts Morton, V.; Morris, R.K.; Marriott, J.F.; Chong, H.P.; Batchelor, H.K. Application of a Physiologically Based Pharmacokinetic Model to Predict Cefazolin and Cefuroxime Disposition in Obese Pregnant Women Undergoing Caesarean Section. Pharmaceutics 2022, 14, 1162. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Ning, J.; Pansari, A.; Pan, X.; Jamei, M. Prediction of Maternal and Fetoplacental Concentrations of Cefazolin, Cefuroxime, and Amoxicillin during Pregnancy Using Bottom-Up Physiologically Based Pharmacokinetic Models. Drug Metab. Dispos. 2022, 50, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Pansari, A.; Ning, J.; Jamei, M. Prediction of Maternal and Fetal Acyclovir, Emtricitabine, Lamivudine, and Metformin Concentrations during Pregnancy Using a Physiologically Based Pharmacokinetic Modeling Approach. Clin. Pharmacokinet. 2022, 61, 725–748. [Google Scholar] [CrossRef] [PubMed]
- Nichols, W.W.; Stone, G.G.; Newell, P.; Broadhurst, H.; Wardman, A.; MacPherson, M.; Yates, K.; Riccobene, T.; Critchley, I.A.; Das, S. Ceftazidime-Avibactam Susceptibility Breakpoints against Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2018, 62, e02590-17. [Google Scholar] [CrossRef] [PubMed]
- Ishibiki, K. New antimicrobial agent series XVII: Ceftazidime. Jpn. J. Antibiot. 1986, 39, 2819–2830. [Google Scholar] [PubMed]
- Tjandramaga, T.B.; Van Hecken, A.; Mullie, A.; Verbesselt, R.; De Schepper, P.J.; Verbist, L. Comparative pharmacokinetics of ceftazidime and moxalactam. Antimicrob. Agents Chemother. 1982, 22, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Nakamichi, N.; Obara, M.; Watanabe, Y.; Sakamoto, H.; Terakawa, M. Pharmacokinetics and serum bactericidal titers of FK037 and ceftazidime in healthy volunteers. Chemotherapy 1994, 42, 114–128. [Google Scholar] [CrossRef]
- Warns, H.; Lode, H.; Harnoss, C.M.; Kemmerich, B.; Koeppe, P.; Wagner, J. Multiple dose pharmacokinetics and therapeutic results with ceftazidime. J. Antimicrob. Chemother. 1983, 12 (Suppl. A), 235–240. [Google Scholar] [CrossRef]
- Seiga, K.; Yamaji, K.; Sugiyama, Y. Fundamental and clinical studies on ceftazidime. Jpn. J. Antibiot. 1984, 37, 38–48. [Google Scholar] [PubMed]
- Kohara, T.; Matsui, Y.; Mizutani, T.; Noda, M. Experience with ceftazidime in the field of obstetrics and gynecology. Jpn. J. Antibiot. 1984, 37, 6–13. [Google Scholar] [PubMed]
- Doko, F. Basic and clinical studies on ceftazidime in the field of obstetrics and gynecology. Jpn. J. Antibiot. 1984, 37, 57–62. [Google Scholar]
- Ryan, D.M.; Mason, U.; Harding, S.M. The penetration of ceftazidime into extravascular fluid. J. Antimicrob. Chemother. 1981, 8 (Suppl. B), 283–288. [Google Scholar] [CrossRef] [PubMed]
- Sommers, D.K.; Walters, L.; Van Wyk, M.; Harding, S.M.; Paton, A.M.; Ayrton, J. Pharmacokinetics of ceftazidime in male and female volunteers. Antimicrob. Agents Chemother. 1983, 23, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, N.P.; Walstad, R.A.; Molne, K. The concentrations of ceftazidime and thiopental in maternal plasma, placental tissue and amniotic fluid in early pregnancy. Acta Obstet. Gynecol. Scand. 1987, 66, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kashiwakura, T.; Suzuki, M.; Shimizu, T.; Sengoku, K.; Mure, K.; Sagawa, T.; Ichinohe, K.; Fujimoto, S.; Akahane, M.; et al. Clinical and laboratory evaluations of ceftazidime in perinatal use. A study of ceftazidime in the perinatal co-research group. Jpn. J. Antibiot. 1986, 39, 2199–2213. [Google Scholar]
- Takase, Z.; Miyoshi, T.; Fujiwara, M.; Nakayama, M.; Shirafuji, H. A study on ceftazidime in the perinatal period. Jpn. J. Antibiot. 1986, 39, 2273–2279. [Google Scholar] [PubMed]
- Giamarellou, H.; Gazis, J.; Petrikkos, G.; Antsaklis, A.; Aravantinos, D.; Daikos, G.K. A study of cefoxitin, moxalactam, and ceftazidime kinetics in pregnancy. Am. J. Obstet. Gynecol. 1983, 147, 914–919. [Google Scholar] [CrossRef]
- Matsunami, K.; Itoh, T.; Takada, Y.; Itoh, K.; Hayasaki, M.; Noda, K. Fundamental and clinical evaluation of ceftazidime in the perinatal period. Jpn. J. Antibiot. 1986, 39, 2247–2262. [Google Scholar]
- Nathorst-Boos, J.; Philipson, A.; Hedman, A.; Arvisson, A. Renal elimination of ceftazidime during pregnancy. Am. J. Obstet. Gynecol. 1995, 172, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Dallmann, A.; Van den Anker, J.; Pfister, M.; Koch, G. Characterization of Maternal and Neonatal Pharmacokinetic Behavior of Ceftazidime. J. Clin. Pharmacol. 2019, 59, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; Fukunaga, K.; Kunii, K. Pharmacokinetic and clinical studies of ceftazidime in perinatal period. Jpn. J. Antibiot. 1986, 39, 2225–2246. [Google Scholar] [PubMed]
- Sengoku, K.; Mure, K.; Sagawa, T.; Yamashita, K.; Shimizu, T. Fundamental and clinical evaluation of ceftazidime in perinatal studies. Jpn. J. Antibiot. 1986, 39, 2214–2218. [Google Scholar] [PubMed]
- Fujimoto, S.; Akahane, M.; Sakuragi, N.; Sato, H.; Makinoda, S.; Ichinohe, K. Ceftazidime: Placental transfer and pharmacokinetic parameters in the third trimester pregnancy. Jpn. J. Antibiot. 1986, 39, 2219–2224. [Google Scholar]
- Yamamoto, T.; Yasuda, J.; Kanao, M.; Okada, H. Fundamental and clinical studies on ceftazidime in the perinatal period. Jpn. J. Antibiot. 1986, 39, 2263–2271. [Google Scholar] [PubMed]
- Mouton, J.W.; Horrevorts, A.M.; Mulder, P.G.; Prens, E.P.; Michel, M.F. Pharmacokinetics of ceftazidime in serum and suction blister fluid during continuous and intermittent infusions in healthy volunteers. Antimicrob. Agents Chemother. 1990, 34, 2307–2311. [Google Scholar] [CrossRef] [PubMed]
- Conil, J.M.; Georges, B.; Lavit, M.; Laguerre, J.; Samii, K.; Houin, G.; Saivin, S. A population pharmacokinetic approach to ceftazidime use in burn patients: Influence of glomerular filtration, gender and mechanical ventilation. Br. J. Clin. Pharmacol. 2007, 64, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Morisaki, N.; Piedvache, A.; Morokuma, S.; Nakahara, K.; Ogawa, M.; Kato, K.; Sanefuji, M.; Shibata, E.; Tsuji, M.; Shimono, M.; et al. Gestational Weight Gain Growth Charts Adapted to Japanese Pregnancies Using a Bayesian Approach in a Longitudinal Study: The Japan Environment and Children’s Study. J. Epidemiol. 2023, 33, 217–226. [Google Scholar] [CrossRef]
- Santos, S.; Eekhout, I.; Voerman, E.; Gaillard, R.; Barros, H.; Charles, M.A.; Chatzi, L.; Chevrier, C.; Chrousos, G.P.; Corpeleijn, E.; et al. Gestational weight gain charts for different body mass index groups for women in Europe, North America, and Oceania. BMC Med. 2018, 16, 201. [Google Scholar] [CrossRef]
- Cheikh Ismail, L.; Bishop, D.C.; Pang, R.; Ohuma, E.O.; Kac, G.; Abrams, B.; Rasmussen, K.; Barros, F.C.; Hirst, J.E.; Lambert, A.; et al. Gestational weight gain standards based on women enrolled in the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project: A prospective longitudinal cohort study. BMJ 2016, 352, i555. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, J.; Arakawa, K.; Nakamura, M.; Matsuoka, R.; Ichizuka, K.; Katsufumi, O.; Sekizawa, A.; Okai, T. Analysis of placental weight centiles is useful to estimate cause of fetal growth restriction. J. Obstet. Gynaecol. Res. 2011, 37, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Itabashi, K.; Miura, F.; Uehara, R.; Nakamura, Y. New Japanese neonatal anthropometric charts for gestational age at birth. Pediatr. Int. 2014, 56, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Drusano, G.L.; Standiford, H.C.; Fitzpatrick, B.; Leslie, J.; Tangtatsawasdi, P.; Ryan, P.; Tatem, B.; Moody, M.R.; Schimpff, S.C. Comparison of the pharmacokinetics of ceftazidime and moxalactam and their microbiological correlates in volunteers. Antimicrob. Agents Chemother. 1984, 26, 388–393. [Google Scholar] [CrossRef] [PubMed]
Clinical Study | AUC (h mg/L) | Cmax (mg/L) | Half-Life (h) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Dose | Population | Obs | Pred | Ratio | Obs | Pred | Ratio | Obs | Pred | Ratio |
0.5 g i.v. bolus | 4 M: 20–49 yr [21] | 71 | 74 ± 13 | 1.0 | 65.8 | 68.4 ± 8.5 | 1.0 | 1.5 | 1.7 ± 0.3 | 1.1 |
8 M: 20–49 yr [23] | 72 ± 5 | 1.0 | 57.6 ± 11 | 1.2 | 1.9 ± 0.6 | 0.89 | ||||
3 M: 31 yr [22] | 83.6 | 0.9 | 73.4 | 0.9 | 1.74 ± 0.4 | 0.98 | ||||
n = 14 [28] | NA | NA | NA | NA | 1.6 | 1.1 | ||||
1 g i.v. bolus | 4 M: 20–49 yr [21] | 144 | 148 ± 25 | 1.0 | 121 | 149 ± 19 | 1.2 | 1.80 | 1.7 ± 0.3 | 0.94 |
8 M: 20–49 yr [23] | 136 ± 27 | 1.1 | 119 ± 27 | 1.2 | 1.8 ± 0.3 | 0.94 | ||||
3 M: 31 yr [22] | 163 | 0.9 | 123 | 1.2 | 1.7 ± 0.3 | 1.0 | ||||
8 M: 22–24 yr [29] | 133 ± 27 | 1.1 | 139 ± 33 | 1.1 | 1.64 ± 0.1 | 1.0 | ||||
n = 29 [28] | NA | NA | NA | NA | 1.6 | 1.1 | ||||
1 g 20 min i.v. inf | 8 M: 20–49 yr [23] | 143 ± 13 | 148 ± 25 | 1.0 | 72.1 ± 3.6 | 75.6 ± 9.4 | 1.0 | 1.9 ± 0.3 | 1.7 ± 0.3 | 0.89 |
1 g i.v. inf for 1 h | 6 M: 20–23 yr [30] | 157 | 163 ± 23 | 1.0 | 66.3 ± 3.1 | 66.8 ± 5.1 | 1.0 | 1.62 ± 0.12 | 1.5 ± 0.2 | 0.94 |
3 M: 27–29 yr [22] | NA | NA | 80.6 | 0.8 | 1.95 ± 0.26 | 0.77 | ||||
n = 7 [28] | NA | NA | 69 | 1.0 | 1.64 | 0.91 | ||||
2 g/8 h i.v. inf 20 min * | 4 M/4 F: 20–30 yr [15] | 297 ± 45 | 267 ± 55 | 0.90 | 201 ± 21 | 168 ± 23 | 0.84 | 1.84 ± 0.3 | 1.4 ± 0.3 | 0.77 |
1 g/12 h i.v. bolus * | 3 M: 23–27 yr [22] | 180 | 162 ± 23 | 0.90 | 108 ± 6.0 | 110 ± 12 | 1.0 | 1.6 ± 0.1 | 1.5 ± 0.2 | 0.94 |
1 g i.v. bolus | 8 M/8 F: 20–45 yr [36] | 156 ± 11 | 134 ± 27 | 0.87 | 146 ± 9 | 158 ± 22 | 1.1 | 1.45 ± 0.4 | 1.42 ± 0.4 | 1.0 |
0.5 g i.m. | 8 M: 20–49 yr [23] | 79 ± 8 | 74 ± 13 | 0.94 | 17.4 ± 2.5 | 20.4 ± 3.1 | 1.2 | 2.2 ± 0.3 | 1.7 ± 0.3 | 0.77 |
3 M: 23–35 yr [22] | 83.2 | 0.89 | 23 | 0.89 | 1.61 ± 0.2 | 1.1 | ||||
1 g i.m. | 8 M: 20–49 yr [21] | 154.3 | 147 ± 25 | 0.95 | 37.2 | 40.7 ± 6.2 | 1.1 | 1.70 | 1.7 ± 0.3 | 1.0 |
8 M: 20–49 yr [23] | 175 ± 23 | 0.84 | 38.8 ± 4.5 | 1.0 | 2 ± 0.3 | 0.85 | ||||
8 M: 22–24 yr [29] | 120 ± 17 | 1.2 | 43.2 ± 11 | 0.94 | 1.65 ± 0.1 | 1.0 | ||||
1 g i.m. | 8 M/8 F: 20–45 yr [36] | 145 ± 9 | 133 ± 27 | 0.92 | 33.1 ± 1.6 | 42.4 ± 7.3 | 1.3 | 1.87 ± 0.4 | 1.4 ± 0.4 | 0.76 |
Available Study Design Details | GWs | AUC (mg/L × h) | Half-Life (h) | Cord/Maternal Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Obs | Pred | Ratio | Obs | Pred | Ratio | Obs | Pred | Ratio | |||
Maternal | 2 g bolus; n = 18: 18–26 yr [37] | 7–12 | 231.8 | 207 ± 34 | 0.89 | 1.4 | 1.1 ± 0.2 | 0.79 | NA | NA | NA |
1 g bolus; n = 12 F * [38] | 7–11 | NA | 110 ± 19 | NA | NA | 1.0 ± 0.2 | NA | NA | NA | NA | |
1 g bolus; n = 7 F * [39] | 7–11 | NA | 110 ± 19 | NA | NA | 1.0 ± 0.2 | NA | NA | NA | NA | |
1 g bolus/6 h; n = 10 [43] | 26–34 | 110 | 103 ± 23 | 0.90 | 1.78 | 1.2 ± 0.2 | 0.68 | NA | NA | NA | |
1 g bolus; n = 28: 20–41 yr [41] | 35–40 | 143 | 121 ± 46 | 0.85 | 1.37 | 2.0 ± 0.5 | 1.5 | NA | NA | NA | |
1 g bolus; n = 27: 20–41 yr [41] | At term | 151 | 109 ± 24 | 0.7 | 1.4 | 2.0 ± 0.5 | 1.4 | NA | NA | NA | |
1 g bolus; n = 156 [38] * | At term | 96.6 | 109 ± 24 | 1.1 | 1.44 | 2.0 ± 0.5 | 1.4 | NA | NA | NA | |
1 g 0.5 h inf.; n = 15 [38] * | At term | 77.3 | 109 ± 24 | 1.4 | 1.24 | 2.0 ± 0.5 | 1.6 | NA | NA | NA | |
2 g bolus; n = 62 [38] * | At term | 191 | 216 ± 48 | 1.1 | 1.4 | 2.0 ± 0.5 | 1.4 | NA | NA | NA | |
Umbilical | 1 g bolus/6 h; n = 10 [43] | 26–34 | 121 | 87 ± 20 | 0.72 | 1.89 | 1.6 ± 0.3 | 0.85 | 1.0 | 0.85 ± 0.03 | 0.85 |
1 g bolus; n = 27: 20–41 yr [41] | At term | 85.7 | 86 ± 19 | 1.0 | 1.37 | 5.5 ± 2.1 | 4.0 | 0.67 | 0.73 ± 0.1 | 1.1 | |
1 g bolus; n = 161 [38] * | At term | 95.4 | 86 ± 19 | 0.90 | 3.9 | 5.5 ± 2.1 | 1.4 | 0.99 | 0.73 ± 0.10 | 0.74 | |
1 g 0.5 h inf.; n = 15 [38] * | At term | 74.5 | 86 ± 19 | 1.15 | 3.3 | 5.5 ± 0.21 | 1.67 | 0.96 | 0.73 ± 0.1 | 0.76 | |
2 g bolus; n = 66 [38] * | At term | 143 | 173 ± 38 | 1.2 | 3.13 | 5.5 ± 2.1 | 1.75 | 0.75 | 0.73 ± 0.10 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abduljalil, K.; Gardner, I.; Jamei, M. An Application of a Physiologically Based Pharmacokinetic Approach to Predict Ceftazidime Pharmacokinetics in a Pregnant Population. Pharmaceutics 2024, 16, 474. https://doi.org/10.3390/pharmaceutics16040474
Abduljalil K, Gardner I, Jamei M. An Application of a Physiologically Based Pharmacokinetic Approach to Predict Ceftazidime Pharmacokinetics in a Pregnant Population. Pharmaceutics. 2024; 16(4):474. https://doi.org/10.3390/pharmaceutics16040474
Chicago/Turabian StyleAbduljalil, Khaled, Iain Gardner, and Masoud Jamei. 2024. "An Application of a Physiologically Based Pharmacokinetic Approach to Predict Ceftazidime Pharmacokinetics in a Pregnant Population" Pharmaceutics 16, no. 4: 474. https://doi.org/10.3390/pharmaceutics16040474
APA StyleAbduljalil, K., Gardner, I., & Jamei, M. (2024). An Application of a Physiologically Based Pharmacokinetic Approach to Predict Ceftazidime Pharmacokinetics in a Pregnant Population. Pharmaceutics, 16(4), 474. https://doi.org/10.3390/pharmaceutics16040474