Cerium End-Deposited Gold Nanorods-Based Photoimmunotherapy for Boosting Tumor Immunogenicity
<p>Schematic illustration of the combination therapy of photoimmunotherapy synergizes with PD-1 blockade in triple-negative breast cancer using CEG NRs. (<b>A</b>) Illustration of the synthesis process of CEG and CBG [<a href="#B14-pharmaceutics-15-01309" class="html-bibr">14</a>]. (<b>B</b>) NIR laser-activated charge carrier spatial separation to release heat and promote more ROS production for CEG than CBG. (<b>C</b>) CEG NRs displayed significant PDT and PTT effects to activate systemic immunity to destroy tumor cells together with α-PD-1 after intravenous administration to breast cancer-bearing mice.</p> "> Figure 2
<p>Physicochemical characterization of CEG and CBG NRs. (<b>A</b>–<b>C</b>) TEM images of GNRs, CEG, and CBG NRs, respectively. (<b>D</b>,<b>E</b>) STEM and EDS elemental mapping images of CEG and CBG NRs. (<b>F</b>) The XRD pattern of CEG and CBG NRs. (<b>G</b>) The UV-Vis-NIR absorption spectra of GNRs, CEG, and CBG.</p> "> Figure 3
<p>The photothermal and photodynamic performance of GNRs, CEG, and CBG NRs. (<b>A</b>) Heating and cooling curves and (<b>B</b>) infrared thermal images of GNRs, CEG, CBG NRs, and H<sub>2</sub>O. Total ROS, abiotic <sup>•</sup>OH, <sup>1</sup>O<sub>2</sub>, and O<sub>2</sub><sup>•−</sup> assessments of GNRs, CEG, and CBG NRs (OD = 1) upon 808 nm laser irradiation (1 W/cm<sup>2</sup>, 10 min) assessed by DCF (<b>C</b>), TA (<b>D</b>), SOSG (<b>E</b>) and superoxide anion assay (<b>F</b>), respectively.</p> "> Figure 4
<p>In vitro phototherapeutic efficacy of CEG in 4T1 cells. (<b>A</b>) Result of CCK-8 assay showing the cell viability of 4T1 cells following the treatment of CEG (OD = 0, 0.25, 0.5, 1, and 2) without or with 808 nm laser irradiation (1 W/cm<sup>2</sup>, 10 min). (<b>B</b>) Live/dead staining of 4T1 cells treated with CEG (OD = 0, 0.25, 0.5, 1, and 2) without or with 808 nm laser irradiation (1 W/cm<sup>2</sup>, 10 min). (<b>C</b>) Results of western blotting showing the expression levels of HSP-70 and HO-1 without or with NIR laser irradiation. (<b>D</b>) Flow cytometric analysis of intracellular ROS levels in 4T1 cells after the treatment of CEG upon 808 nm laser irradiation or not. CLSM images of (<b>E</b>) mitochondrial membrane depolarization (JC-1, green) and (<b>F</b>) superoxide production (Mitosox Red, red). DAPI staining for Cell nuclei (blue). (<b>G</b>) Analysis of flow cytometry for the apoptotic 4T1 cells induced by CEG upon 808 nm laser irradiation or not. Statistical differences were determined by Student’s t-test. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>In vivo photoimmunotherapy of CEG synergized with α-PD-1 in 4T1 tumor-bearing mice. (<b>A</b>) Therapeutic protocol illustration of 4T1 tumor mice. (<b>B</b>) Fluorescence images of mice after intravenous injection of CEG-Cy7 at 1, 12, and 24 h. (<b>C</b>) Infrared thermal images of 4T1 tumor-bearing mice at 24 h post-injection of PBS or CEG with 808 nm laser radiation (1 W/cm<sup>2</sup>, 10 min). (<b>D</b>) Tumor growth curves of different groups for 14 days after intravenous injection of CEG. (<b>E</b>) Tumor images of different groups at the end of treatment. (<b>F</b>,<b>G</b>) H&E and TUNEL staining for the tumor tissues in each group. (<b>H</b>) Immunofluorescence staining for CD3 T cells and CD8 T cells in tumors after different treatments. (<b>I</b>) Serum IgG, (<b>J</b>) TNF-α, and (<b>K</b>) IFN-γ levels of six groups after different treatments measured by ELISA. Data are presented as means ± s.d. (<span class="html-italic">n</span> = 3). Statistical differences were determined by Student’s <span class="html-italic">t</span>-test. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of Gold Nanorods (GNRs)
2.4. Synthesis of CEG and CBG NRs
2.5. Surface Modification of CEG NRs
2.6. Cy-7 Labeling of CEG NRs
2.7. Photothermal Test and Infrared Thermal Image of GNRs, CEG, and CBG NRs
2.8. Photodynamic Performance of GNRs, CEG, and CBG NRs
2.9. Cell Culture
2.10. Cell Viability Assessments by CCK-8 and Live/Dead Staining
2.11. Cellular ROS Detection
2.12. Analysis of Mitochondrial Membrane Potential and Superoxide Generation
2.13. HSP-70 and HO-1 Expression Analyzed by Western Blot
2.14. Cell Apoptosis Test by Flow Cytometry
2.15. In Vivo Fluorescence Imaging for Biodistribution Analysis
2.16. In Vivo Infrared Thermal Imaging
2.17. In Vivo Phototherapeutic Evaluation
2.18. Immunohistochemistry Analysis
2.19. Immunofluorescence Assay for T Cells
2.20. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of CEG and CBG NRs
3.2. Photothermal and Photodynamic Performance of CEG and CBG NRs
3.3. In Vitro Phototherapeutic Effect of CEG
3.4. In Vivo Photoimmunotherapy of CEG Synergized with α-PD-1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Twyman-Saint Victor, C.; Rech, A.J.; Maity, A.; Rengan, R.; Pauken, K.E.; Stelekati, E.; Benci, J.L.; Xu, B.; Dada, H.; Odorizzi, P.M.; et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015, 520, 373–377. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.-X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef]
- Lan, G.; Ni, K.; Xu, Z.; Veroneau, S.S.; Song, Y.; Lin, W. Nanoscale Metal–Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673. [Google Scholar] [CrossRef]
- Wang, C.; Xu, L.; Liang, C.; Xiang, J.; Peng, R.; Liu, Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154–8162. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Duan, X.; Guo, N.; Chan, C.; Poon, C.; Weichselbaum, R.R.; Lin, W. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 2016, 7, 12499. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Du, A.; Zhang, H.; Yang, J.; Jiang, R.; Wang, J.; Zhang, C.-Y. Site-Selective Growth of Crystalline Ceria with Oxygen Vacancies on Gold Nanocrystals for Near-Infrared Nitrogen Photofixation. J. Am. Chem. Soc. 2019, 141, 5083–5086. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Yoshiyuki, K.; Watanabe, Y.; Sogo, Y.; Ohno, T.; Tsuji, N.M.; Ito, A. Comprehensive Mechanism Analysis of Mesoporous-Silica-Nanoparticle-Induced Cancer Immunotherapy. Adv. Healthc. Mater. 2016, 5, 1169–1176. [Google Scholar] [CrossRef]
- Li, Q.; Shi, Z.; Zhang, F.; Zeng, W.; Zhu, D.; Mei, L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta. Pharm. Sin. B 2022, 12, 107–134. [Google Scholar] [CrossRef]
- Li, W.; Yang, J.; Luo, L.; Jiang, M.; Qin, B.; Yin, H.; Zhu, C.; Yuan, X.; Zhang, J.; Luo, Z.; et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349. [Google Scholar] [CrossRef]
- Li, B.; Hao, G.; Sun, B.; Gu, Z.; Xu, Z.P. Engineering a Therapy-Induced “Immunogenic Cancer Cell Death” Amplifier to Boost Systemic Tumor Elimination. Adv. Funct. Mater. 2020, 30, 1909745. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.; Jiang, Y.; He, S.; Zhang, Y.; Luo, Y.; Pu, K. Second Near-Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy. Adv. Mater. 2021, 33, 2003458. [Google Scholar] [CrossRef]
- Qi, J.; Jia, S.; Kang, X.; Wu, X.; Hong, Y.; Shan, K.; Kong, X.; Wang, Z.; Ding, D. Semiconducting Polymer Nanoparticles with Surface-Mimicking Protein Secondary Structure as Lysosome-Targeting Chimaeras for Self-Synergistic Cancer Immunotherapy. Adv. Mater. 2022, 34, 2203309. [Google Scholar] [CrossRef]
- Kobayashi, H.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer. Acc. Chem. Res. 2019, 52, 2332–2339. [Google Scholar] [CrossRef]
- Hu, X.; Wang, N.; Guo, X.; Liang, Z.; Sun, H.; Liao, H.; Xia, F.; Guan, Y.; Lee, J.; Ling, D.; et al. A Sub-Nanostructural Transformable Nanozyme for Tumor Photocatalytic Therapy. Nano-Micro Lett. 2022, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Wy, Y.; Jung, H.; Hong, J.W.; Han, S.W. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Acc. Chem. Res. 2022, 55, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G.D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251. [Google Scholar] [CrossRef]
- Seh, Z.W.; Liu, S.; Low, M.; Zhang, S.-Y.; Liu, Z.; Mlayah, A.; Han, M.-Y. Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation. Adv. Mater. 2012, 24, 2310–2314. [Google Scholar] [CrossRef] [PubMed]
- Pasparakis, G. Light-Induced Generation of Singlet Oxygen by Naked Gold Nanoparticles and its Implications to Cancer Cell Phototherapy. Small 2013, 9, 4130–4134. [Google Scholar] [CrossRef]
- Liang, G.; Ru, L.; Gao, F.; Wang, Y.; Jiang, X.; Gao, X. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 2014, 8, 7260–7271. [Google Scholar]
- Huang, X.H.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120. [Google Scholar] [CrossRef]
- Chang, Y.; Feng, Y.; Cheng, Y.; Zheng, R.; Wu, X.; Jian, H.; Zhang, D.; Tang, Z.; Wang, Z.; Hao, J.; et al. Anisotropic Plasmonic Metal Heterostructures as Theranostic Nanosystems for Near Infrared Light-Activated Fluorescence Amplification and Phototherapy. Adv. Sci. 2019, 6, 1900158. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Zhou, F.; Doughty, A.; Hoover, A.R.; Nordquist, R.E.; Chen, W.R. Nanotechnology-based photoimmunological therapies for cancer. Cancer Lett. 2019, 442, 429–438. [Google Scholar] [CrossRef]
- Feng, Y.; Chang, Y.; Sun, X.; Cheng, Y.; Zheng, R.; Wu, X.; Wang, L.; Ma, X.; Li, X.; Zhang, H. Differential photothermal and photodynamic performance behaviors of gold nanorods, nanoshells and nanocages under identical energy conditions. Biomater. Sci. 2019, 7, 1448–1462. [Google Scholar] [CrossRef] [PubMed]
- Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in chemo-, immuno-, and combined therapy: Review [Invited]. Biomed. Opt. Express 2019, 10, 3152–3182. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Yue, W.; Cai, S.; Tang, Q.; Lu, W.; Huang, L.; Qi, T.; Liao, J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front. Pharmacol. 2021, 12, 664123. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, M.; Geng, H.; Zhang, P.; Zheng, Z.; Zhou, Y.; He, W. NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing. Appl. Catal. B 2021, 295, 120317. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Cheng, Q.; Dou, S.X.; Du, Y. Near-Infrared-Driven Photocatalysts: Design, Construction, and Applications. Small 2021, 17, 1904107. [Google Scholar] [CrossRef]
- Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103. [Google Scholar] [CrossRef]
- Li, B.; Gu, T.; Ming, T.; Wang, J.; Wang, P.; Wang, J.; Yu, J.C. (Gold Core)@(Ceria Shell) Nanostructures for Plasmon-Enhanced Catalytic Reactions under Visible Light. ACS Nano 2014, 8, 8152–8162. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Feng, Y.; Li, X.; Cheng, Y.; Jian, H.; Ma, X.; Zheng, R.; Wu, X.; Xu, K.; et al. Nitric Oxide Stimulated Programmable Drug Release of Nanosystem for Multidrug Resistance Cancer Therapy. Nano Lett. 2019, 19, 6800–6811. [Google Scholar] [CrossRef]
- Rushton, E.K.; Jiang, J.; Leonard, S.S.; Eberly, S.; Castranova, V.; Biswas, P.; Elder, A.; Han, X.; Gelein, R.; Finkelstein, J.; et al. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J. Toxicol. Environ. Health Part A 2010, 73, 445–461. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Ning, X.; Li, A.; You, Q.; Su, W.; Wang, D.; Shi, J.; Zhou, L.; Cao, F.; et al. BaTiO3@Au nanoheterostructure suppresses triple-negative breast cancer by persistently disrupting mitochondrial energy metabolism. Nano Res. 2023, 16, 2775–2785. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, L.; You, Y.; Zheng, L.; Ren, J. An Enzyme-Mimicking Single-Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angew. Chem. 2020, 59, 5108–5115. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chang, Y.; Sun, X.; Liu, N.; Cheng, Y.; Feng, Y.; Zhang, H.; Li, X. Understanding the Property–Activity Relationships of Polyhedral Cuprous Oxide Nanocrystals in Terms of Reactive Crystallographic Facets. Toxicol. Sci. 2017, 156, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Moskaluk, C.A. Standardization of clinical immunohistochemistry: Why, how, and by whom? Am. J. Clin. Pathol. 2002, 118, 669–671. [Google Scholar] [CrossRef]
- Ni, W.; Kou, X.; Yang, Z.; Wang, J. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2008, 2, 677–686. [Google Scholar] [CrossRef]
- Nikoobakht, B.; El-Sayed, M.A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15, 1957–1962. [Google Scholar] [CrossRef]
- Song, S.; Li, K.; Pan, J.; Wang, F.; Li, J.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. Achieving the Trade-Off between Selectivity and Activity in Semihydrogenation of Alkynes by Fabrication of (Asymmetrical Pd@Ag Core)@(CeO(2) Shell) Nanocatalysts via Autoredox Reaction. Adv. Mater. 2017, 29, 1605332. [Google Scholar] [CrossRef]
- Roper, D.K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641. [Google Scholar] [CrossRef]
- Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: Life on the verge of death. Mol. Cell 2010, 40, 253–266. [Google Scholar] [CrossRef]
- Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef]
- Feng, Y.; Ning, X.; Wang, J.; Wen, Z.; Cao, F.; You, Q.; Zou, J.; Zhou, X.; Sun, T.; Cao, J. Mace-Like Plasmonic Au-Pd Heterostructures Boost Near-Infrared Photoimmunotherapy. Adv. Sci. 2023, 10, e2204842. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, R.I. Cells in stress: Transcriptional activation of heat shock genes. Science 1993, 259, 1409–1410. [Google Scholar] [CrossRef] [PubMed]
- Boon, T.; Coulie, P.G.; Van den Eynde, B.J.; van der Bruggen, P. Human T cell responses against melanoma. Annu. Rev. Immunol. 2006, 24, 175–208. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A. Progress in human tumour immunology and immunotherapy. Nature 2001, 411, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Deo, Y.M.; Graziano, R.F.; Repp, R.; van de Winkel, J.G.J. Clinical significance of IgG Fc receptors and FcγR-directed immunotherapies. Immunol. Today 1997, 18, 127–135. [Google Scholar] [CrossRef]
- van Horssen, R.; Ten Hagen, T.L.; Eggermont, A.M. TNF-alpha in cancer treatment: Molecular insights, antitumor effects, and clinical utility. Oncologist 2006, 11, 397–408. [Google Scholar] [CrossRef]
- Schoenborn, J.R.; Wilson, C.B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 2007, 96, 41–101. [Google Scholar] [CrossRef]
- Cai, X.; Jia, X.; Gao, W.; Zhang, K.; Ma, M.; Wang, S.; Zheng, Y.; Shi, J.; Chen, H. A Versatile Nanotheranostic Agent for Efficient Dual-Mode Imaging Guided Synergistic Chemo-Thermal Tumor Therapy. Adv. Funct. Mater. 2015, 25, 2520–2529. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Xu, Y.; Wen, Z.; Ning, X.; Wang, J.; Wang, D.; Cao, J.; Zhou, X. Cerium End-Deposited Gold Nanorods-Based Photoimmunotherapy for Boosting Tumor Immunogenicity. Pharmaceutics 2023, 15, 1309. https://doi.org/10.3390/pharmaceutics15041309
Feng Y, Xu Y, Wen Z, Ning X, Wang J, Wang D, Cao J, Zhou X. Cerium End-Deposited Gold Nanorods-Based Photoimmunotherapy for Boosting Tumor Immunogenicity. Pharmaceutics. 2023; 15(4):1309. https://doi.org/10.3390/pharmaceutics15041309
Chicago/Turabian StyleFeng, Yanlin, Yumei Xu, Zhaoyang Wen, Xin Ning, Jianlin Wang, Deping Wang, Jimin Cao, and Xin Zhou. 2023. "Cerium End-Deposited Gold Nanorods-Based Photoimmunotherapy for Boosting Tumor Immunogenicity" Pharmaceutics 15, no. 4: 1309. https://doi.org/10.3390/pharmaceutics15041309
APA StyleFeng, Y., Xu, Y., Wen, Z., Ning, X., Wang, J., Wang, D., Cao, J., & Zhou, X. (2023). Cerium End-Deposited Gold Nanorods-Based Photoimmunotherapy for Boosting Tumor Immunogenicity. Pharmaceutics, 15(4), 1309. https://doi.org/10.3390/pharmaceutics15041309