Modulation of the mTOR Pathway by Curcumin in the Heart of Septic Mice
"> Figure 1
<p>Characterization of murine sepsis by cecum ligation and puncture (CLP). In (<b>A</b>), find the body weight in percentage over the evaluation period. In (<b>B</b>), the temperature is observed in degrees Celsius (°C). The graph in (<b>C</b>) shows the values referring to the murine sepsis score evaluated daily. In (<b>D</b>), the data show the percentage of survival of the animals during 120 h. Animals were followed daily for 120 h after sepsis induction (n = 8 per group). <span class="html-italic">p</span> values * <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>Histopathology of myocardial tissue from mice subjected to cecal ligation and puncture (CLP) sepsis. The myocardium of the sham-operated animals without SHAM treatment and treated with free curcumin (SH + FC) or nanocurcumin (SH + NC) after 120 h did not show any histopathological changes. Analysis of the myocardium in the septic group shows the presence of accentuated and diffuse myocytolysis (black arrow) at 24 h, and at 120 h, foci of cytoplasmic vacuoles (white arrow), and multifocal myocytolysis (black arrow) associated with bands of contracture (arrowhead). In the septic group treated with free curcumin (CLP + FC), at 24 h the presence of mild focal myocytolysis is noted (black arrow); at 120 h, cytoplasmic vacuole foci are observed (white arrow). In the septic group treated with nanocurcumin (CLP + NC), at 24 h it is possible to observe mild focal myocytolysis (black arrow); at 120 h it is possible to notice that the cardiac tissue is preserved. Photomicrographs were obtained using a 40× objective (50 µm).</p> "> Figure 3
<p>Myocardial ultrastructural changes in CLP-induced sepsis. Assessment of the ventricular myocardium in the untreated CLP septic group after 120 h (<b>A</b>,<b>B</b>) reveals edema and mitochondrial lysis (blue arrow), in addition to interfibrillar edema (asterisk), myofibrillar rupture, and disorientation (black arrow in (<b>B</b>)). The treated groups CLP + FC (<b>C</b>,<b>D</b>) and CLP + NC (<b>E</b>,<b>F</b>) showed preserved mitochondria and myofibrils, with some lipid vacuoles (arrowhead). In (<b>A</b>,<b>C</b>,<b>E</b>) the bars indicate 2 µm, and in (<b>B</b>,<b>D</b>,<b>F</b>) 1 µm.</p> "> Figure 4
<p>Real-time PCR gene expression profile analysis of mTOCR1 and Raptor in the heart of curcumin-treated and non-treated septic animals. (<b>A</b>) Assessment of mTORC1 mRNA levels shows that the septic group (CLP) had a significant reduction (<span class="html-italic">p</span> < 0.001) compared to the control (SHAM) at 24 h and an increase at 120 h (<span class="html-italic">p</span> < 0.05). The group of septic animals when treated with nanocurcumin (CLP + NC) showed a reduction in mTORC1 when compared to (CLP) at 24 and 120 h (<span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.001, respectively). At 24 h, there was no difference in the septic group treated with free curcumin, but at 120 h there is a significant reduction (<span class="html-italic">p</span> < 0.001) compared to (CLP). (<b>B</b>) Raptor analysis shows that there was no difference between either group 24 h after sepsis induction. When comparing the levels of Raptor at 24 h with 120 h, it is noted that there was a significant increase in the (CLP) group (<span class="html-italic">p</span> < 0.01). At 120 h, there is a reduction in Raptor in the treated septic groups (CLP + FC and CLP + NC) compared with the untreated septic group (CLP) (<span class="html-italic">p</span> < 0.01 and <span class="html-italic">p</span> < 0.001, respectively). Results are expressed in arbitrary units (AU). <span class="html-italic">p</span> values * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>Real-time PCR gene expression profile analysis of mTOCR2 and Rictor in the heart of curcumin-treated and untreated septic animals. (<b>A</b>) The assessment of mTORC2 mRNA levels shows that the treated septic groups (CLP + FC and CLP + NC) had a significant increase (<span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.0001, respectively) compared to the untreated group (CLP) at 24 h. Analysis at 120 h showed that there was no significant change in the septic group (CLP), but there is a reduction in the treated septic groups (CLP + FC and CLP + NC) at 120 h when compared to the expression at 24 h (<span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.0001, respectively). (<b>B</b>) Rictor’s analysis shows that sepsis (CLP) induced a significant increase (<span class="html-italic">p</span> < 0.0001) in the expression of this gene at 24 h when compared to the control (SHAM). In the treated septic groups (CLP + FC and CLP + NC), there is a decreased expression (<span class="html-italic">p</span> < 0.0001 and <span class="html-italic">p</span> < 0.0001, respectively) of Rictor when compared to the untreated septic group (CLP) at 24 h. At 120 h, there was a reduction in the expression of this gene in the septic group (CLP) when compared to 24 h (<span class="html-italic">p</span> < 0.0001). Likewise, Rictor expression in the treated septic groups (CLP + FC and CLP + NC) decreased (<span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.01, respectively) compared to 24 h. Furthermore, the septic group treated with free curcumin (CLP + FC) showed a significant decrease (<span class="html-italic">p</span> < 0.001) compared to the group treated with nanocurcumin (CLP + NC). Results are expressed in arbitrary units (AU). <span class="html-italic">p</span> values * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 6
<p>Analysis of gene expression profile by real-time PCR and protein by Western blotting of mTOR in the heart. (<b>A</b>) At 24 h there is no change in mTOR gene expression in the (CLP) group when compared to the control (SHAM); however, in the treated septic groups (CLP + FC and CLP + NC) (<span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.001, respectively), there was a significant reduction compared to (CLP). After 120 h of sepsis induction, there was a significant reduction in mTOR in the (CLP) group (<span class="html-italic">p</span> < 0.01) compared to at 24 h; on the other hand, the treated groups (CLP + FC and CLP + NC) (<span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.05, respectively) increased. (<b>B</b>) No significant differences were found in the mTOR protein levels in the myocardium of the animals at 24 h. (<b>C</b>) At 120 h, there was a significant increase in the CLP group (<span class="html-italic">p</span> < 0.0001) compared to the control (SHAM) in the CLP + NC group (<span class="html-italic">p</span> < 0.05) in relation to the untreated septic group (CLP). At the bottom of (<b>B</b>,<b>C</b>), the autoradiograph resulting from western blot analysis of representative protein levels for mTOR and GAPDH of mouse hearts, subjected to sham operation (SHAM, SH + FC, and SH + NC) or sepsis induction (CLP, CLP + FC, and CLP + NC) 24 and 120 h after surgery. Results are expressed in arbitrary units (AU). <span class="html-italic">p</span> values * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Polymicrobial Sepsis (Cecal Ligation and Puncture—CLP Model)
2.3. Euthanasia and Collection
2.4. High-Resolution Microscopy
2.5. Transmission Electronic Microscopy
2.6. Western Blotting
2.7. RNA Isolation, Reverse Transcription, and RT-PCR
2.8. Statistical Analysis
3. Results
3.1. Characterization of Murine Sepsis Using the CLP Model
3.2. Effects of Curcumin on Cardiac Morphology
3.2.1. Histopathological Evaluation of the Heart
3.2.2. Ultrastructural Analysis of the Myocardium
3.3. Gene Expression of mTORC1 Complex Components
3.4. Gene Expression of mTORC2 Complex Components
3.5. Gene and Protein Expression of Total mTOR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Obtaining and Characterizing Nanocurcumin (NC)
References
- Burton, A.; Waisbren, M.D. Bacteremia due to gram-negative bacilli other than the salmonella. AMA Arch. Intern. Med. 1951, 88, 467–488. [Google Scholar] [CrossRef]
- Parrillo, J.E.; Parker, M.M.; Natanson, C.; Suffredini, A.F.; Danner, R.L.; Cunnion, R.E.; Ognibene, F.P. Septic Shock in Humans Advances in the Understanding of Pathogenesis, Cardiovascular. Ann. Intern. Med. 1990, 113, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Merx, M.W.; Weber, C. Sepsis and the Heart. Circulation 2007, 116, 793–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza Dantas, V.C.; Costa, E.L.V. A Look at the Diastolic Function in Severe Sepsis and Septic Shock. Rev. Bras. Ter. Intensiv. 2015, 27, 307–308. [Google Scholar]
- Celes, M.R.N.; Malvestio, L.M.; Suadicani, S.O.; Prado, C.M.; Figueiredo, M.J.; Campos, E.C.; Freitas, A.C.S.; Spray, D.C.; Tanowitz, H.B.; da Silva, J.S.; et al. Disruption of Calcium Homeostasis in Cardiomyocytes Underlies Cardiac Structural and Functional Changes in Severe Sepsis. PLoS ONE 2013, 8, e68809. [Google Scholar] [CrossRef]
- Celes, M.R.N.; Prado, C.M.; Rossi, M.A. Sepsis: Going to the Heart of the Matter. Pathobiology 2012, 80, 70–86. [Google Scholar] [CrossRef]
- Celes, M.R.N.; Torres-Dueñas, D.; Malvestio, L.M.; Blefari, V.; Campos, E.C.; Ramos, S.G.; Prado, C.M.; Cunha, F.Q.; Rossi, M.A. Disruption of Sarcolemmal Dystrophin and β-Dystroglycan May Be a Potential Mechanism for Myocardial Dysfunction in Severe Sepsis. Lab. Investig. 2010, 90, 531. [Google Scholar] [CrossRef] [Green Version]
- Rattis, B.A.C.; Freitas, A.C.; Oliveira, J.F.; Calandrini-Lima, J.L.A.; Figueiredo, M.J.; Soave, D.F.; Ramos, S.G.; Celes, M.R.N. Effect of Verapamil, an L-Type Calcium Channel Inhibitor, on Caveolin-3 Expression in Septic Mouse Hearts. Oxid. Med. Cell. Longev. 2021, 2021, 6667074. [Google Scholar] [CrossRef]
- Celes, M.R.N.; Torres-Dueñas, D.; Alves-Filho, J.C.; Duarte, D.B.; Cunha, F.Q.; Rossi, M.A. Reduction of Gap and Adherens Junction Proteins and Intercalated Disc Structural Remodeling in the Hearts of Mice Submitted to Severe Cecal Ligation and Puncture Sepsis. Crit. Care Med. 2007, 35, 2176–2185. [Google Scholar] [CrossRef]
- Rossi, M.A.; Celes, M.R.N.; Prado, C.M.; Saggioro, F.P. Myocardial Structural Changes in Long-Term Human Severe Sepsis/Septic Shock May Be Responsible for Cardiac Dysfunction. Shock 2007, 27, 10–18. [Google Scholar] [CrossRef]
- Freitas, A.C.S.; Figueiredo, M.J.; Campos, E.C.; Soave, D.F.; Ramos, S.G.; Tanowitz, H.B.; Celes, M.R.N. Activation of Both the Calpain and Ubiquitin-Proteasome Systems Contributes to Septic Cardiomyopathy through Dystrophin Loss/Disruption and mTOR Inhibition. PLoS ONE 2016, 11, e0166839. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. MTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walley, K.R. Sepsis-Induced Myocardial Dysfunction and Mammalian Target of Rapamycin Signalling Pathways. Can. J. Cardiol. 2019, 35, 809–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantus, D.; Rogers, N.M.; Grahammer, F.; Huber, T.B.; Thomson, A.W. Roles of mTOR Complexes in the Kidney: Implications for Renal Disease and Transplantation. Nat. Rev. Nephrol. 2016, 12, 587–609. [Google Scholar] [CrossRef] [PubMed]
- Saxton, R.A.; Sabatini, D.M. MTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.Y.; Sabatini, D.M. mTOR at the Nexus of Nutrition, Growth, Ageing, and Disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef]
- Cheng MM, W.; Long, Y.; Wang, H.; Han MM, W.; Zhang, J.; Cui, N. Role of the mTOR Signalling Pathway in Human Sepsis-Induced Myocardial Dysfunction. Can. J. Cardiol. 2019, 35, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.A.; Lang, C.H. MTOR Signaling in Skeletal Muscle during Sepsis and Inflammation: Where Does It All Go Wrong? Physiology 2011, 26, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Pålsson-McDermott, E.M.; O’Neill, L.A.J. Targeting Immunometabolism as an Anti-Inflammatory Strategy. Cell Res. 2020, 30, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Soltani, A.; Bahreyni, A.; Boroumand, N.; Roshan, M.K.; Khazaei, M.; Ryzhikov, M.; Soleimanpour, S.; Avan, A.; Hassanian, S.M. Therapeutic Potency of MTOR Signaling Pharmacological Inhibitors in the Treatment of Proinflammatory Diseases, Current Status, and Perspectives. J. Cell. Physiol. 2018, 233, 4783–4790. [Google Scholar] [CrossRef]
- Sciarretta, S.; Volpe, M.; Sadoshima, J. Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease. Circ. Res. 2014, 114, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yang, J.; Yang, L. Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. Oxid. Med. Cell. Longev. 2017, 2017, 6437467. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Wang, H.; Su, L.; Long, Y.; Cui, N.; Liu, D. Inhibition of the mTOR Pathway Exerts Cardioprotective Effects Partly through Autophagy in CLP Rats. Mediators Inflamm. 2018, 2018, 4798209. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of Curcumin, a Component of the Golden Spic, and Its Micraculous Biological Activities. Clin. Exp. Pharmacol. Physiol. 2012, 39, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Paciello, F.; Rita Fetoni, A.; Mezzogori, D.; Rolesi, R.; Di Pino, A.; Paludetti, G.; Grassi, C.; Troiani, D. The Dual Role of Curcumin and Ferulic Acid in Counteracting Chemoresistance and Cisplatin-Induced Ototoxicity. Sci. Rep. 2020, 10, 1063. [Google Scholar] [CrossRef] [Green Version]
- Rattis, B.A.C.; Ramos, S.G.; Celes, M.R.N. Curcumin as a Potential Treatment for COVID-19. Front. Pharmacol. 2021, 12, 2085–2087. [Google Scholar] [CrossRef]
- Johnson, S.M.; Gulhati, P.; Arrieta, I.; Wang, X.; Uchida, T.; Gao, T.; Evers, B.M. Curcumin Inhibits Proliferation of Colorectal Carcinoma by Modulating Akt/MTOR Signaling. Anticancer Res. 2009, 29, 3185–3190. [Google Scholar]
- Beevers, C.S.; Chen, L.; Liu, L.; Luo, Y.; Webster, N.J.G.; Huang, S. Curcumin Disrupts the Mammalian Target of Rapamycin-Raptor Complex. Cancer Res. 2009, 69, 1000–1008. [Google Scholar] [CrossRef] [Green Version]
- Wichterman, K.A.; Baue, A.E.; Chaudry, I.H. Sepsis and Septic Shock—A Review of Laboratory Models and a Proposal. J. Surg. Res. 1980, 29, 189–201. [Google Scholar] [CrossRef]
- Rittirsch, D.; Huber-Lang, M.S.; Flierl, M.A.; Ward, P.A. Immunodesign of Experimental Sepsis by Cecal Ligation and Puncture. Nat. Protoc. 2009, 4, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Mai, S.H.C.; Sharma, N.; Kwong, A.C.; Dwivedi, D.J.; Khan, M.; Grin, P.M.; Fox-Robichaud, A.E.; Liaw, P.C. Body Temperature and Mouse Scoring Systems as Surrogate Markers of Death in Cecal Ligation and Puncture Sepsis. Intensive Care Med. Exp. 2018, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.S.; Catalão, C.H.R.; Felippotti, T.T.; De Oliveira-Pelegrin, G.R.; Petenusci, S.; De Freitas, L.A.P.; Rocha, M.J.A. Curcumin Suppresses Inflammatory Cytokines and Heat Shock Protein 70 Release and Improves Metabolic Parameters during Experimental Sepsis. Pharm. Biol. 2017, 55, 269–276. [Google Scholar] [CrossRef]
- Xiao, X.; Yang, M.; Sun, D.; Sun, S. Curcumin Protects against Sepsis-Induced Acute Lung Injury in Rats. J. Surg. Res. 2012, 176, e31–e39. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Zhao, L.; Hu, L.; Qiu, Q.; Zhang, Z.; Li, M.; Hong, G.; Wu, B.; Zhao, G.; et al. Curcumin Attenuates Sepsis-Induced Acute Organ Dysfunction by Preventing Inflammation and Enhancing the Suppressive Function of Tregs. Int. Immunopharmacol. 2018, 61, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.M.; Cui, X.; Wu, R.; Dong, W.; Zhou, M.; Hu, M.; Simms, H.H.; Wang, P. The Anti-Inflammatory Effect of Curcumin in an Experimental Model of Sepsis Is Mediated by up-Regulation of Peroxisome Proliferator-Activated Receptor-γ. Crit. Care Med. 2006, 34, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Kakihana, Y.; Ito, T.; Nakahara, M.; Yamaguchi, K.; Yasuda, T. Sepsis-Induced Myocardial Dysfunction: Pathophysiology and Management. J. Intensive Care 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshad, L.; Areeful Haque, M.; Bukhari, S.N.A.; Jantan, I. An Overview of Structure-Activity Relationship Studies of Curcumin Analogs as Antioxidant and Anti-Inflammatory Agents. Future Med. Chem. 2017, 9, 605–626. [Google Scholar] [CrossRef]
- Lu, W.; Jiang, J.P.; Hu, J.; Wang, J.; Zheng, M.Z. Curcumin Protects against Lipopolysaccharide-Induced Vasoconstriction Dysfunction via Inhibition of Thrombospondin-1 and Transforming Growth Factor-SS1. Exp. Ther. Med. 2015, 9, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Karunaweera, N.; Raju, R.; Gyengesi, E.; Munch, G. Plant Polyphenols as Inhibitors of Nf-Kb Induced Cytokine Production—A Potential Anti-Inflammatory Treatment for Alzheimer’s Disease? Front. Mol. Neurosci. 2015, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Guo, Q.; Li, X.; Tang, T.; Li, C.; Wang, H.; Sun, Y.; Feng, Q.; Ma, C.; Gao, C.; et al. Curcumin Suppresses IL-1β Secretion and Prevents Inflammation through Inhibition of the NLRP3 Inflammasome. J. Immunol. 2018, 200, 2835–2846. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tang, Q.; Duan, P.; Yang, L. Curcumin as a Therapeutic Agent for Blocking NF-ΚB Activation in Ulcerative Colitis. Immunopharmacol. Immunotoxicol. 2018, 40, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Solt, L.A.; May, M.J. The IκB Kinase Complex: Master Regulator of NF-ΚB Signaling. Immunol. Res. 2008, 42, 3–18. [Google Scholar] [CrossRef]
- Mantzarlis, K.; Tsolaki, V.; Zakynthinos, E. Role of Oxidative Stress and Mitochondrial Dysfunction in Sepsis and Potential Therapies. Oxid. Med. Cell. Longev. 2017, 2017, 5985209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimse, S.B.; Pal, D. Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wu, K.; Li, S.; You, Q. Protective Effect of Curcumin against Cardiac Dysfunction in Sepsis Rats. Pharm. Biol. 2013, 51, 482–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priyadarsini, K.I.; Maity, D.K.; Naik, G.H.; Kumar, M.S.; Unnikrishnan, M.K.; Satav, J.G.; Mohan, H. Role of Phenolic O-H and Methylene Hydrogen on the Free Radical Reactions and Antioxidant Activity of Curcumin. Free Radic. Biol. Med. 2003, 35, 475–484. [Google Scholar] [CrossRef]
- Ahmadabady, S.; Beheshti, F.; Shahidpour, F.; Khordad, E.; Hosseini, M. A Protective Effect of Curcumin on Cardiovascular Oxidative Stress Indicators in Systemic Inflammation Induced by Lipopolysaccharide in Rats. Biochem. Biophys. Rep. 2021, 25, 100908. [Google Scholar] [CrossRef]
- Lin, H.; Wang, W.; Lee, M.; Meng, Q.; Ren, H. Current Status of Septic Cardiomyopathy: Basic Science and Clinical Progress. Front. Pharmacol. 2020, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Chong, Z.Z.; Shang, Y.C.; Maiese, K. Cardiovascular Disease and mTOR Signaling. Trends Cardiovasc. Med. 2011, 21, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Reis, F.; Mishra, P.K. MTOR Signaling in Cardiometabolic Disease, Cancer, and Aging 2018. Oxid. Med. Cell. Longev. 2019, 2019, 9692528. [Google Scholar] [CrossRef]
- Luck, C.; Demarco, V.G.; Mahmood, A.; Gavini, M.P.; Pulakat, L. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats. Oxid. Med. Cell. Longev. 2017, 2017, 5724046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Zhang, S.; Li, A.; Yu, J.; Li, N.; Huang, F.; Liu, B. The Role of Curcumin in Disruption of HIF-1α Accumulation to Alleviate Adipose Fibrosis via AMPK-Mediated MTOR Pathway in High-Fat Diet Fed Mice. J. Funct. Foods 2017, 33, 155–165. [Google Scholar] [CrossRef]
- Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-MTOR Pathways: Cross-Talk and Compensation. Trends Biochem. Sci. 2011, 36, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.; Jiang, J.; Guan, C.; Dong, C.; Wang, G.; Bai, L.; Sun, J.; Hu, C.; Bai, C. Curcumin Induces Autophagy via Activating the AMPK Signaling Pathway in Lung Adenocarcinoma Cells. J. Pharmacol. Sci. 2013, 123, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lu, S.; Nie, J.; Hu, X.; Luo, W.; Wu, X.; Liu, H.; Feng, Q.; Chang, Z.; Liu, Y.; et al. Phosphoinositide-Dependent Kinase 1 and MTORC2 Synergistically Maintain Postnatal Heart Growth and Heart Function in Mice. Mol. Cell. Biol. 2014, 34, 1966–1975. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.D.; Shao, Y.; Liu, D.; Liu, N.Y.; Zhu, D.Y. Rictor/MTORC2 Involves Mitochondrial Function in ES Cells Derived Cardiomyocytes via Mitochondrial Connexin 43. Acta Pharmacol. Sin. 2021, 42, 1790–1797. [Google Scholar] [CrossRef]
- Völkers, M.; Konstandin, M.H.; Doroudgar, S.; Toko, H.; Quijada, P.; Din, S.; Joyo, A.; Ornelas, L.; Samse, K.; Thuerauf, D.J.; et al. Mechanistic Target of Rapamycin Complex 2 Protects the Heart from Ischemic Damage. Circulation 2013, 128, 2132–2144. [Google Scholar] [CrossRef] [Green Version]
- Yano, T.; Ferlito, M.; Aponte, A.; Kuno, A.; Miura, T.; Murphy, E.; Steenbergen, C. Pivotal Role of MTORC2 and Involvement of Ribosomal Protein S6 in Cardioprotective Signaling. Circ. Res. 2014, 114, 1268–1280. [Google Scholar] [CrossRef]
Experimental Groups | |
---|---|
SHAM | group of sham-operated animals; |
SH + FC | group of sham-operated animals treated with free Curcumin; |
SH + NC | group of sham-operated animals treated with nanocurcumin; |
CLP | group of animals submitted to a severe septic stimulus; |
CLP + FC | group of animals submitted to severe septic stimulus treated with free Curcumin; |
CLP + NC | group of animals submitted to severe septic stimulus treated with nanocurcumin; |
Gene | Forward | Reverse |
---|---|---|
GAPDH | CTTTGTCAAGCTCATTTCCTGG | TCTTGCTCAGTGTCCTTGC |
mTORC1 | TCGATGAATGTGGGATTGTGG | TGCCTTCGCTGGAGAATATC |
mTORC2 | ATCTCCGTGTTTATGCTGTCC | CACCGTTTCTCCATTGAGAAC |
Raptor | GCAGAGCTGGAGAATGAAGG | GTCGAGGCTCTGCTTGTACC |
Rictor | ATGGAAATAAGGCGAGGTCTG | AAAGCCTCCAACTGTCCTG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rattis, B.A.C.; Piva, H.L.; Duarte, A.; Gomes, F.G.F.L.R.; Lellis, J.R.; Soave, D.F.; Ramos, S.G.; Tedesco, A.C.; Celes, M.R.N. Modulation of the mTOR Pathway by Curcumin in the Heart of Septic Mice. Pharmaceutics 2022, 14, 2277. https://doi.org/10.3390/pharmaceutics14112277
Rattis BAC, Piva HL, Duarte A, Gomes FGFLR, Lellis JR, Soave DF, Ramos SG, Tedesco AC, Celes MRN. Modulation of the mTOR Pathway by Curcumin in the Heart of Septic Mice. Pharmaceutics. 2022; 14(11):2277. https://doi.org/10.3390/pharmaceutics14112277
Chicago/Turabian StyleRattis, Bruna A. C., Henrique L. Piva, Andressa Duarte, Frederico G. F. L. R. Gomes, Janaína R. Lellis, Danilo F. Soave, Simone G. Ramos, Antonio C. Tedesco, and Mara R. N. Celes. 2022. "Modulation of the mTOR Pathway by Curcumin in the Heart of Septic Mice" Pharmaceutics 14, no. 11: 2277. https://doi.org/10.3390/pharmaceutics14112277
APA StyleRattis, B. A. C., Piva, H. L., Duarte, A., Gomes, F. G. F. L. R., Lellis, J. R., Soave, D. F., Ramos, S. G., Tedesco, A. C., & Celes, M. R. N. (2022). Modulation of the mTOR Pathway by Curcumin in the Heart of Septic Mice. Pharmaceutics, 14(11), 2277. https://doi.org/10.3390/pharmaceutics14112277