SIR-PID: A Proportional–Integral–Derivative Controller for COVID-19 Outbreak Containment
<p>Flow diagram of the proportional–integral–derivative controller (PID) controller. The time <span class="html-italic">t</span>-dependent error function, <math display="inline"><semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, is the difference between the set-point (SP) and a measured process variable (PV). The weighted average of the P, I, and D contributions determines the output control, <math display="inline"><semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, for the specific system to be controlled.</p> "> Figure 2
<p>Example of time-dependent susceptible–infectious–recovered (SIR) model prediction, in which the basic reproduction number decreases exponentially from the beginning of the disease epidemic outbreak. The initial susceptible population S (blue) is converted into infected I (red) according to the time-dependent basic reproduction number, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>0</mn> </msub> </semantics></math>. Finally, according to the strength of the recovery rate,<math display="inline"><semantics> <mi>γ</mi> </semantics></math>, population I is converted into removed R (green). The grey curve represents the sum of R+I, and is usually very well approximated by a logistic curve (the parameters used in these examples are <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>β</mi> <mo>∼</mo> <mn>2.5</mn> </mrow> </semantics></math> days, where <math display="inline"><semantics> <mi>β</mi> </semantics></math> is the transition rate, and <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>γ</mi> <mo>∼</mo> <mn>35</mn> </mrow> </semantics></math> days).</p> "> Figure 3
<p>Tuning example: simulation of a generic system responding respectively to a pure proportional control (red), a proportional corrected with the integral term (yellow) for removing the bias with the set-point (dashed black) and finally with oscillation damped by the integral term (violet). The values used here for the proportinal, derivative, and integral terms are <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">d</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">i</mi> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, respectively.</p> "> Figure 4
<p>Example of PID controller simulation. Behaviour of (<b>top</b>) the input basic reproduction number, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>0</mn> </msub> </semantics></math>, and (<b>bottom</b>) the output number of the infectious individuals, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">p</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">i</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi mathvariant="normal">d</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The dashed black line represents the set-point. A very strong proportional action only is not able to stabilize the system. This corresponds to the complete absence of restrictions at the beginning and a drastic lockdown when the threshold is reached, and this behaviour is repeated every time the set-point is reached, causing many out-of-control devastating epidemic waves.</p> "> Figure 5
<p>Example of PID controller simulation. Behaviour of (<b>top</b>) the input basic reproduction number, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>0</mn> </msub> </semantics></math>, and (<b>bottom</b>) the output number of the infectious individuals, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">p</mi> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">i</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi mathvariant="normal">d</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The dashed black line represents the set-point. A mild proportional term avoids a strong overshoot at the first reach of the set-point but is not sufficient for damping the system oscillation. This corresponds to a less drastic social restriction at the beginning and then a subsequent attempt to stabilize the rate with the mild and strong lockdowns.</p> "> Figure 6
<p>Example of PID controller simulation. Behaviour of (<b>top</b>) input basic reproduction number, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>0</mn> </msub> </semantics></math>, and (<b>bottom</b>) the output number of the infectious individuals, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, with tuned <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">p</mi> </msub> <mo>=</mo> <mn>2.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">i</mi> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi mathvariant="normal">d</mi> </msub> <mo>=</mo> <mn>0.004</mn> </mrow> </semantics></math>. The dashed black line represents the set-point. The optimal tuning, which includes the integral and derivative term, allows reaching the set-point smoothly. This corresponds to a mild lockdown at the beginning and a subsequent fine tuning of the restriction corresponding to the final social distancing that can remain unchanged.</p> "> Figure 7
<p><b>Top left</b>: Active cases in Italy during the first epidemic wave in 2020. The black curve represents its smoothing obtained with the local regression method (LOESS). The dashed horizontal line represents a hypothetical set-point of, e.g., 30,000 cases. <b>Top right</b>: (in arbitrary units) The error function <math display="inline"><semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (blue) of <math display="inline"><semantics> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> with respect to the chosen set-point and its integral (green) and derivative (red), corresponding to the proportional, the integral, and the derivative responses, respectively, as required by the PID method. All of the three functions are built from the smoothed <math display="inline"><semantics> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>. <b>Bottom left</b>: Daily new infections, <math display="inline"><semantics> <msub> <mi>I</mi> <mi>t</mi> </msub> </semantics></math>, with its LOESS smoothing (black). <b>Bottom right</b>: <math display="inline"><semantics> <msub> <mi>R</mi> <mn>0</mn> </msub> </semantics></math> evolution deduced from <math display="inline"><semantics> <msub> <mi>I</mi> <mi>t</mi> </msub> </semantics></math>; see text for details.</p> ">
Abstract
:1. Introduction
2. The PID Controller
3. The SIR-PID Model
4. SIR-PID Numerical Implementation
5. Tuning and Interpretation
6. Application on Epidemiological Datasets
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO): Coronavirus. Available online: https://www.who.int/health-topics/coronavirus/ (accessed on 25 June 2021).
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Delamater, P.L.; Street, E.J.; Leslie, T.F.; Yang, Y.; Jacobsen, K.H. Complexity of the basic reproduction number (R0). Emerg. Infect. Dis. 2019, 25, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Preliminary Estimate of Excess Mortality During the COVID-19 Outbreak—New York City, 11 March–1 May 2020. Morb. Mortal Wkly. Rep. (MMWR) 2020, 69, 603–605. [CrossRef]
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. Déirdre Hollingsworth. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef]
- Bontempi, E.; Vergalli, S.; Squazzoni, F. Understanding Covid-19 diffusion requires an interdisciplinary, multi-dimensional approach. Environ. Res. 2020, 188, 109814. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi, A.L.; Franco, E.; Mohler, G.; Short, M.B.; Sledge, D. The challenges of modeling and forecasting the spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 16732–16738. [Google Scholar] [CrossRef] [PubMed]
- Ledzewicz, U.; Schättle, H. On optimal singular controls for a general SIR-model with vaccination and treatment. Am. Inst. Math. Sci. Conf. Publ. 2011, 2011, 981–990. [Google Scholar]
- Alvarez, F.E.; Argente, D.; Lippi, F. A Simple Planning Problem for COVID-19 Lockdown; NBER Working Papers 26981; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Milani, F. COVID-19 outbreak, social response, and early economic effects: A Global VAR analysis of cross-country interdependencies. J. Popul. Econ. 2021, 34, 223–252. [Google Scholar] [CrossRef] [PubMed]
- WHO: Evaluation of COVID-19 Vaccine Effectiveness. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccine_effectiveness-measurement-2021.1 (accessed on 25 June 2021).
- WHO: Q&As on COVID-19 and Related Health Topics. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub (accessed on 25 June 2021).
- Feoli, A.; Iannella, A.L.; Benedetto, E. Spreading of COVID-19 in Italy as the spreading of a wave packet. Eur. Phys. J. Plus 2020, 135, 644. [Google Scholar] [CrossRef]
- Olney, A.M.; Smith, J.; Sen, S.; Thomas, F.; Unwin, H.J.T. Estimating the effect of social distancing interventions on COVID-19 in the United States. Am. J. Epidemiol. 2021, kwaa293. [Google Scholar] [CrossRef]
- Padhi, A.; Pradhan, S.; Sahoo, P.P.; Suresh, K.; Behera, B.K.; Panigrahi, P.K. Studying the effect of lockdown using epidemiological modelling of COVID-19 and a quantum computational approach using the Ising spin interaction. Sci. Rep. 2020, 10, 21741. [Google Scholar] [CrossRef]
- Yung, C.; Saffari, E.; Liew, C. Time to Rt < for COVID-19 public health lockdown measures. Epidemiol. Infect. 2020, 148, E301. [Google Scholar] [PubMed]
- Available online: https://www.worldometers.info/coronavirus/ (accessed on 25 June 2021).
- Stuart, B. A History of Control Engineering 1930–1955; Peter Peregrinus Ltd./IEE: London, UK, 1993; p. 48. Available online: https://www.scribd.com/document/490573330/A-History-of-Control-Engineering-1930-1955-Bennett-pdf (accessed on 25 June 2021).
- Borase, R.P.; Maghade, D.K.; Sondkar, S.Y.; Pawar, S.N. A review of PID control, tuning methods and applications. Int. J. Dyn. Control 2021, 9, 818–827. [Google Scholar] [CrossRef]
- Nicolas, M. Directional stability of automatically steered bodies. J. Am. Soc. Naval Eng. 1922, 34, 280–309. [Google Scholar] [CrossRef]
- Francis, M. A biomolecular proportional integral controller based on feedback regulations of protein level and activity. R. Soc. Open Sci. 2018, 5, 171966. [Google Scholar]
- Chevalier, M.; Gómez-Schiavon, M.; Ng, A.H.; El-Samad, H. Design and analysis of a proportional–integral–derivative controller with biological molecules. Cell Syst. 2019, 9, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Bansal, H.; Sharma, R.; Ponpathirkoottam, S. PID controller tuning techniques: A review. J. Control Eng. Technol. 2012, 2, 168–176. Available online: https://www.academia.edu/11729116/PID_Controller_Tuning_Techniques_A_Review (accessed on 25 June 2021).
- George, T.; Ganesan, V. Optimal tuning of PID controller in time delay system: A review on various optimization techniques. Chem. Prod. Process. Model. 2021, in press. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 1927, 115, 700–721. [Google Scholar]
- Cooper, I.; Mondal, A.; Antonopoulos, C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 2020, 139, 110057. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Rossi, N. Describing the COVID-19 outbreak during the lockdown: Fitting modified SIR models to data. Eur. Phys. J. Plus 2020, 135, 885. [Google Scholar] [CrossRef] [PubMed]
- Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic and implementation of population-wideinterventions in Italy. Nat. Med. 2020, 26, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Langfeld, K. Dynamics of epidemic diseases without guaranteed immunity. J. Math. Ind. 2021, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Runge, C. Ueber die numerische Auflösung von Differentialgleichungen. Math. Ann. 1895, 46, 167–178, Original paper. [Google Scholar] [CrossRef] [Green Version]
- Kutta, W. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 1901, 46, 435–453, Original paper. [Google Scholar]
- Euler, L. Institutionum Calculi Integralis; Original; PETROPOLI Impenfis Academiae Imperialis Scientiarum: St. Petersburg, Russian Empire, 1768; Volumes I–III, Available online: https://archive.org/details/institutionescal020326mbp/page/n33/mode/2up (accessed on 25 June 2021).
- Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control 1993, 115, 220–222. [Google Scholar] [CrossRef]
- Ang, K.H.; Chong, G.; Li, Y. PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 2005, 13, 559–576. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Richardson, L.F. The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 1911, 210, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Cori, A.; Cauchemez, S.; Ferguson, N.M.; Fraser, C.; Dahlqwist, E.; Demarsh, P.A.; Jombart, T.; Kamvar, Z.N.; Lessler, J.; Li, S.; et al. EpiEstim: Estimate Time Varying Reproduction Numbers from Epidemic Curves. Available online: https://cran.r-project.org/package=EpiEstim (accessed on 25 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ianni, A.; Rossi, N. SIR-PID: A Proportional–Integral–Derivative Controller for COVID-19 Outbreak Containment. Physics 2021, 3, 459-472. https://doi.org/10.3390/physics3030031
Ianni A, Rossi N. SIR-PID: A Proportional–Integral–Derivative Controller for COVID-19 Outbreak Containment. Physics. 2021; 3(3):459-472. https://doi.org/10.3390/physics3030031
Chicago/Turabian StyleIanni, Aldo, and Nicola Rossi. 2021. "SIR-PID: A Proportional–Integral–Derivative Controller for COVID-19 Outbreak Containment" Physics 3, no. 3: 459-472. https://doi.org/10.3390/physics3030031
APA StyleIanni, A., & Rossi, N. (2021). SIR-PID: A Proportional–Integral–Derivative Controller for COVID-19 Outbreak Containment. Physics, 3(3), 459-472. https://doi.org/10.3390/physics3030031