Single-Cell RNA Sequencing, Cell Communication, and Network Pharmacology Reveal the Potential Mechanism of Senecio scandens Buch.-Ham in Hepatocellular Carcinoma Inhibition
<p>Identification and analysis of targets for <span class="html-italic">Senecio scandens</span> Buch.-Ham (Climbing senecio). (<b>a</b>) Venn diagram of Climbing senecio targets across TCMSP, TargetNet, Binding DB, and SwissTargetPrediction. (<b>b</b>) Enrichment analysis of Climbing senecio targets using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. (<b>c</b>) Comprehensive Gene Ontology (GO) enrichment analysis for Climbing senecio, including categories of biological processes (BP), cellular components (CC), and molecular functions (MF).</p> "> Figure 2
<p>Differentially expressed genes (DEGs) in the GSE54238 dataset. (<b>a</b>) The heatmap displaying the expression profiles of DEGs. (<b>b</b>) Volcano plot illustrating the distribution of DEGs. (<b>c</b>,<b>d</b>) Gene set enrichment analysis (GSEA) based on KEGG pathways.</p> "> Figure 3
<p>Weighted gene co-expression network analysis (WGCNA) of enrichment values. (<b>a</b>) Soft threshold selection. (<b>b</b>) WGCNA cluster dendrogram. (<b>c</b>) Gene module separation and cluster dendrogram in WGCNA, with different colors representing different modules. (<b>d</b>) Inter-module correlation. (<b>e</b>) Module-trait relationship analysis diagram for 17 modules. (<b>f</b>) Relationship between gene significance and brown module memberships.</p> "> Figure 4
<p>Key target identification and functional analysis. (<b>a</b>) The intersection of Climbing senecio-related genes with DEGs and WGCNA brown module genes. (<b>b</b>) Intersection of drug targets with Climbing senecio-related genes. (<b>c</b>) The Climbing senecio–HCC protein interaction network generated in Cytoscape3.10.1 showing Climbing senecio-related genes and drug targets. Green and light pink indicate both Climbing senecio-related genes and drug targets; light green indicates drug targets; light pink indicates Climbing senecio-related genes. (<b>d</b>) KEGG pathway analysis of key genes. (<b>e</b>) GO analysis of the primary cluster.</p> "> Figure 5
<p>Single-cell overview in HCC. (<b>a</b>) Unified clustering into 17 clusters. (<b>b</b>) Bubble charts at each gene table level. (<b>c</b>) Identification of nine clusters. (<b>d</b>) Proposed pathway of Climbing senecio’s action on HCC.</p> "> Figure 6
<p>Expression and distribution of the key cluster with receiver operating characteristic (ROC) curve analysis. (<b>a</b>) A boxplot depicting the differential expression of pivotal genes between normal and control tissues within the GSE54238. (<b>b</b>) The crucial targets are determined by the overlap of key clusters with genes associated with Climbing senecio and targets linked to HCC. (<b>c</b>) ROC curve analysis of three crucial targets.</p> "> Figure 7
<p>Key pathways in intercellular communication analysis. (<b>a</b>) Cellular interaction network. (<b>b</b>) Interaction between cell types. (<b>c</b>) Network of TGF-β, IL-1, CXCL, and VEGF signaling pathways.</p> "> Figure 8
<p>Immune filtration analysis of <span class="html-italic">AKR1B1</span>, <span class="html-italic">CA2</span>, <span class="html-italic">FOS</span>, <span class="html-italic">CXCL2</span>, <span class="html-italic">SRC</span>, <span class="html-italic">ABCC1</span>, and <span class="html-italic">PLIN1</span>. (<b>a</b>) Stacked column diagram of 20 types of immune cell infiltration in the GSE54238 dataset. (<b>b</b>) A box diagram illustrating the variation in infiltration levels of different immune cell types between diseased and normal samples. The “ns” (not significant) means there is no statistically significant difference. (<b>c</b>) A heatmap depicting the correlations between immune cell infiltration and the expression levels of <span class="html-italic">AKR1B1</span>, <span class="html-italic">CA2</span>, <span class="html-italic">FOS</span>, <span class="html-italic">CXCl2</span>, <span class="html-italic">SRC</span>, <span class="html-italic">ABCC1</span>, and <span class="html-italic">PLIN1</span>.</p> "> Figure 9
<p>Molecular docking analysis of Climbing senecio’s active ingredients with target proteins. (<b>a</b>) Visual docking diagram of Climbing senecio–<span class="html-italic">SRC</span> interaction. (<b>b</b>) Visual docking diagram of Climbing senecio–<span class="html-italic">FOS</span>.</p> ">
Abstract
:1. Introduction
2. Results
2.1. General Components and Targets of Climbing senecio
2.2. Target Genes in HCC
2.3. Weighted Gene Co-Expression Network Analysis (WGCNA) Confirms Key Modules
2.4. Identification of Key Targets
2.5. Single-Cell RNA Sequencing Data Analysis
2.6. The Expression and Distribution of Key Targets
2.7. Cell Communication Analysis
2.8. Immune Infiltration Analysis
2.9. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Identification of Climbing Senecio’s Compounds and Targets
4.2. Identification of DEGs in HCC
4.3. Weighted Gene Co-Expression Network Analysis
4.4. Construction of Protein–Protein Interaction Networks and Recognization of Key Clusters
4.5. Transcriptome Difference Evaluation and ROC Curve Evaluation of Key Clusters
4.6. Analysis of Single-Cell RNA Sequencing Data and Identification of Genes Associated with HCC
4.7. Cell Communication Analysis
4.8. Immune Infiltration Analysis
4.9. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Climbing senecio | Senecio scandens Buch.-Ham |
HCC | hepatocellular carcinoma |
GEO | Gene Expression Omnibus |
HBV | hepatitis B |
HBC | hepatitis C |
TCMSP | Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform |
DEGs | differentially expressed genes |
WGCNA | weighted gene correlation network analysis |
PPI | protein–protein interaction |
STRING | Search Tool for the Retrieval of Interacting Genes/Protein |
GO | Gene Ontology |
BP | biological process |
CC | cellular component |
MF | molecular function |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
PDB | Protein Data Bank |
ROC | receiver operating characteristic curve |
TCM | traditional Chinese medicine |
MCODE | molecular complex detection |
TCGA | The Cancer Genome Atlas |
References
- Ganesan, P.; Kulik, L.M. Hepatocellular Carcinoma: New Developments. Clin. Liver Dis. 2023, 27, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; De Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313. [Google Scholar] [CrossRef] [PubMed]
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188314. [Google Scholar] [CrossRef]
- Foerster, F.; Gairing, S.J.; Müller, L.; Galle, P.R. NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options. J. Hepatol. 2022, 76, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, W.; Morgan, M.P.; Robson, T.; Annett, S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: Current status and therapeutic targets. Front. Endocrinol. 2023, 14, 1148934. [Google Scholar] [CrossRef] [PubMed]
- Dashtdar, M.; Dashtdar, M.R.; Dashtdar, B.; Kardi, K.; Shirazi, M.K. The Concept of Wind in Traditional Chinese Medicine. J. Pharmacopunct. 2016, 19, 293–302. [Google Scholar] [CrossRef]
- Ji, D.; Chen, Y.; Bi, J.; Shang, Q.; Liu, H.; Wang, J.B.; Tan, L.; Wang, J.; Chen, Y.; Li, Q.; et al. Entecavir plus Biejia-Ruangan compound reduces the risk of hepatocellular carcinoma in Chinese patients with chronic hepatitis B. J. Hepatol. 2022, 77, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Feng, Y.; Liu, Y.; Ye, X.; Ji, X.; Sun, L.; Gao, F.; Zhang, Q.; Li, Y.; Zhu, B.; et al. Fuzheng Jiedu Xiaoji formulation inhibits hepatocellular carcinoma progression in patients by targeting the AKT/CyclinD1/p21/p27 pathway. Phytomedicine 2021, 87, 153575. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Huang, L.; Chen, S. Senecio scandens Buch.-Ham.: A review on its ethnopharmacology, phytochemistry, pharmacology, and toxicity. J. Ethnopharmacol. 2013, 149, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Ping, J.; Zhang, Z.; Xu, D. Sequencing and comparative genomics analysis in Senecio scandens Buch.-Ham. Ex D. Don, based on full-length cDNA library. Biotechnol. Biotechnol. Equip. 2014, 28, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Walter, G.M.; Abbott, R.J.; Brennan, A.C.; Bridle, J.R.; Chapman, M.; Clark, J.; Filatov, D.; Nevado, B.; Ortiz-Barrientos, D.; Hiscock, S.J. Senecio as a model system for integrating studies of genotype, phenotype and fitness. New Phytol. 2020, 226, 326–344. [Google Scholar] [CrossRef]
- Wang, J.; Qin, F.; Wang, H.; Wang, L.; Li, C.; Sun, L. Exploring the gut microbiota mediated biotransformation of Senecio scandens Buch.-Ham.: Insights from metabolite spectrum with UHPLC-Q-Orbitrap HRMS and bioinformatics analysis of gut microbiota metabolites. J. Pharm. Biomed. Anal. 2024, 247, 116241. [Google Scholar] [CrossRef]
- Tata, C.M.; Sewani-Rusike, C.R.; Oyedeji, O.O.; Mahlakata, F.; Shauli, M.; Nkeh-Chungag, B.N. Senecio serratuloides extract prevents the development of hypertension, oxidative stress and dyslipidemia in nitric oxide-deficient rats. J. Complement. Integr. Med. 2020, 17, 20180073. [Google Scholar] [CrossRef]
- Deharo, E.; Bourdy, G.; Quenevo, C.; Muñoz, V.; Ruiz, G.; Sauvain, M. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians. J. Ethnopharmacol. 2001, 77, 91–98. [Google Scholar] [CrossRef]
- Faraone, I.; Rai, D.K.; Chiummiento, L.; Fernandez, E.; Choudhary, A.; Prinzo, F.; Milella, L. Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd. Molecules 2018, 23, 2497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, D.; Zhou, W.; Wang, L.; Wang, B.; Zhang, T.; Li, S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023, 25, bbad518. [Google Scholar] [CrossRef] [PubMed]
- Desert, R.; Chen, W.; Ge, X.; Viel, R.; Han, H.; Athavale, D.; Das, S.; Song, Z.; Lantvit, D.; Cano, L.; et al. Hepatocellular carcinomas, exhibiting intratumor fibrosis, express cancer-specific extracellular matrix remodeling and WNT/TGFB signatures, associated with poor outcome. Hepatology 2023, 78, 741–757. [Google Scholar] [CrossRef]
- Hartke, J.; Johnson, M.; Ghabril, M. The diagnosis and treatment of hepatocellular carcinoma. Semin. Diagn. Pathol. 2017, 34, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Marques, V.; Farah, A. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 2009, 113, 1370–1376. [Google Scholar] [CrossRef]
- Alawyia, B.; Constantinou, C. Hepatocellular Carcinoma: A Narrative Review on Current Knowledge and Future Prospects. Curr. Treat. Options Oncol. 2023, 24, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Niu, Q.; Shang, X.; Zhang, L.; Li, L.; Yang, H.; Gou, C.; Li, J.; Li, H.; Li, X. Impact of Traditional Chinese Medicine on Prognosis of Patients with Hepatocellular Carcinoma: A Retrospective Cohort Study. Integr. Cancer Ther. 2023, 22, 15347354231170536. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, L.; Liu, Q.; Mai, K.; Xu, M.; Zhou, Y.; Su, N.; Ye, C. Effects of dietary Senecio scandens buch-ham extracts on growth performance, plasma biochemical, histology and the expression of immune-related genes in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Fish Shellfish Immunol. 2020, 98, 681–690. [Google Scholar] [CrossRef]
- Macía, M.J.; García, E.; Vidaurre, P.J. An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. J. Ethnopharmacol. 2005, 97, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, D.; Lei, C.; Li, Y.; Sun, X.; Chen, M.; Wu, X.; Zheng, Y. Identification of crucial genes in abdominal aortic aneurysm by WGCNA. PeerJ 2019, 7, e7873. [Google Scholar] [CrossRef]
- Pinto, E.; Pelizzaro, F.; Cardin, R.; Battistel, M.; Palano, G.; Bertellini, F.; Kitenge, M.P.; Peserico, G.; Farinati, F.; Russo, F.P. HIF-1α and VEGF as prognostic biomarkers in hepatocellular carcinoma patients treated with transarterial chemoembolization. Dig. Liver Dis. 2024, 56, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Allaire, M.; Rudler, M.; Thabut, D. Portal hypertension and hepatocellular carcinoma: Des liaisons dangereuses…. Liver Int. 2021, 41, 1734–1743. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhou, Y.; Zhou, Z.; Zhang, P.; Yan, R.; Sun, L.; Ma, W.; Zhang, T.; Shen, S.; Liu, H.; et al. Secreted protease PRSS35 suppresses hepatocellular carcinoma by disabling CXCL2-mediated neutrophil extracellular traps. Nat. Commun. 2023, 14, 1513. [Google Scholar] [CrossRef]
- Patel, A.; Sabbineni, H.; Clarke, A.; Somanath, P.R. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 2016, 157, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Cordier, F.; Creytens, D. New kids on the block: FOS and FOSB gene. J. Clin. Pathol. 2023, 76, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Yuan, S.X.; Wang, J.; Yang, F.; Tao, Q.F.; Zhang, J.; Wang, L.L.; Yang, Y.; Liu, H.; Wang, Z.G.; Xu, Q.G.; et al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology 2016, 63, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Lv, J.H.; Hou, A.J.; Zhang, S.H.; Dong, J.J.; Kuang, H.X.; Yang, L.; Jiang, H. WGCNA combined with machine learning to find potential biomarkers of liver cancer. Medicine 2023, 102, e36536. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Obuchowski, N.A.; Bullen, J.A. Receiver operating characteristic (ROC) curves: Review of methods with applications in diagnostic medicine. Phys. Med. Biol. 2018, 63, 07tr01. [Google Scholar] [CrossRef]
- Zhu, G.Q.; Tang, Z.; Huang, R.; Qu, W.F.; Fang, Y.; Yang, R.; Tao, C.Y.; Gao, J.; Wu, X.L.; Sun, H.X.; et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 2023, 9, 25. [Google Scholar] [CrossRef]
- Mangiola, S.; Doyle, M.A.; Papenfuss, A.T. Interfacing Seurat with the R tidy universe. Bioinformatics 2021, 37, 4100–4107. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shen, N.; Shi, Y.; Shi, X.; Fu, X.; Li, S.; Zhu, B.; Yu, W.; Zhang, Y. Characterization of cancer-related fibroblasts (CAF) in hepatocellular carcinoma and construction of CAF-based risk signature based on single-cell RNA-seq and bulk RNA-seq data. Front. Immunol. 2022, 13, 1009789. [Google Scholar] [CrossRef]
- Su, J.; Song, Y.; Zhu, Z.; Huang, X.; Fan, J.; Qiao, J.; Mao, F. Cell-cell communication: New insights and clinical implications. Signal Transduct. Target. Ther. 2024, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol. Biol. 2018, 1711, 243–259. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE 2013, 8, e83922. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Wu, H.; Jiang, X.; Ou, Q.; Gan, Z.; Han, F.; Cai, Y. Single-Cell RNA Sequencing, Cell Communication, and Network Pharmacology Reveal the Potential Mechanism of Senecio scandens Buch.-Ham in Hepatocellular Carcinoma Inhibition. Pharmaceuticals 2024, 17, 1707. https://doi.org/10.3390/ph17121707
Jiang J, Wu H, Jiang X, Ou Q, Gan Z, Han F, Cai Y. Single-Cell RNA Sequencing, Cell Communication, and Network Pharmacology Reveal the Potential Mechanism of Senecio scandens Buch.-Ham in Hepatocellular Carcinoma Inhibition. Pharmaceuticals. 2024; 17(12):1707. https://doi.org/10.3390/ph17121707
Chicago/Turabian StyleJiang, Jiayi, Haitao Wu, Xikun Jiang, Qing Ou, Zhanpeng Gan, Fangfang Han, and Yongming Cai. 2024. "Single-Cell RNA Sequencing, Cell Communication, and Network Pharmacology Reveal the Potential Mechanism of Senecio scandens Buch.-Ham in Hepatocellular Carcinoma Inhibition" Pharmaceuticals 17, no. 12: 1707. https://doi.org/10.3390/ph17121707
APA StyleJiang, J., Wu, H., Jiang, X., Ou, Q., Gan, Z., Han, F., & Cai, Y. (2024). Single-Cell RNA Sequencing, Cell Communication, and Network Pharmacology Reveal the Potential Mechanism of Senecio scandens Buch.-Ham in Hepatocellular Carcinoma Inhibition. Pharmaceuticals, 17(12), 1707. https://doi.org/10.3390/ph17121707