Transcranial Magnetic Stimulation Enhances the Therapeutic Effect of IGF-Trap in Intracerebral Glioma Models
<p>Repeated low-frequency rTMS is safe. (<b>A</b>) shows a diagrammatic depiction of the experimental protocol. ((<b>B</b>)-<b>top</b>) shows T2-weighted (T2w) coronal rat brain MRI acquired after five consecutive days of repeated low-frequency rTMS (day 5, <b>left</b>) and three days later (day 8, <b>right</b>), overlaid with detection of hyper-intensified voxels; and ((<b>B</b>)-<b>bottom</b>) shows T1-weighted (T1w) coronal rat brain MRI at days 5 (<b>left</b>) and 8 (<b>right</b>), overlaid with detection of BBB dysfunction voxels (BBBD, blue). (<b>C</b>) shows the results of the analysis of MRI T2w and T1w scans (reflecting edema and BBBD, respectively) conducted in animals exposed to five consecutive days of repeated low-frequency rTMS or treated with sham rTMS. No significant differences were found between the two groups on either day 5 (<b>left</b>) or 8 (<b>right</b>), confirming the safety of rTMS. (<b>D</b>) shows the results of repeated neurological assessments performed on days 9–12 (red line indicates the integer level of 18, indicating proper function). No difference was detected in NSS between rTMS-exposed and sham-treated rats (<span class="html-italic">n</span> = 7) at any of the time points. Data in (<b>C</b>) are expressed as median and IQR, and in D as means ± standard error of the mean.</p> "> Figure 2
<p>Intracerebral C6 tumor growth in rats is partially inhibited by the combination of rTMS and systemically administered IGF-Trap. (<b>A</b>) shows a diagrammatic representation of the experimental protocol. (<b>B</b>) shows representative contrast-enhanced T1-weighted coronal rat brain MRI images acquired 7 days following intracranial injection of C6 cells to animals subjected to rTMS alone (c6-rTMS, <b>top</b>), sham animals stimulated and injected intravenously with IGF-Trap (c6-sham—IGFT, <b>middle</b>), and animals subjected to rTMS and intravenously injected with IGF-Trap (c6-rTMS-IGFT, <b>bottom</b>). On the left are raw images and on the right are images overlaid with detection of voxels with BBB dysfunction. (<b>C</b>) shows relative volumes of T2w hyper-intensity (<b>top</b>) and BBBD (<b>bottom</b>) on days 7 and 14 post-C6 injection, calculated for c6-rTMS (dark gray), c6-sham-IGFT (light gray) and c6-rTMS-IGFT (black) rats compared to naïve animals. While c6-rTMS and c6-sham-IGFT rats exhibited increased relative BBBD volumes on day 7 compared to naïve animals, BBBD was significantly lower in the c6-rTMS-IGFT group. (<b>E</b>) shows median tumor sizes as evaluated by a radiologist based on T1w-MRI scans acquired on day 7. The difference in tumor size in the different treatment groups was not significant at that time point. (<b>D</b>) shows survival plots. Due to mortality, parameter extraction for c6-sham-IGFT was not feasible on day 14. Data in (<b>C</b>,<b>E</b>) are expressed as median and IQR, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>Lack of effect of rTMS on intracerebral tumor growth. Shown in (<b>A</b>) is a diagrammatic representation of the experimental protocol. Shown in ((<b>B</b>)—<b>left</b>) are optical images acquired following intracranial injection of 10<sup>5</sup> GL261 cell, followed by bi-weekly rTMS administration from day 3 onward and (in (<b>B</b>)—<b>right</b>) the radiance per group (<span class="html-italic">n</span> = 5) expressed as median and IQR per treatment group.</p> "> Figure 4
<p>Systemic administration of IGF-Trap in conjunction with rTMS has a partial inhibitory effect on tumor growth and survival. GL261 (10<sup>5</sup> cells/mouse) were injected orthotopically into NSG male mice (<span class="html-italic">n</span> = 5–6). The mice were randomized on day 3, at which time treatment began and continued twice weekly up to 57 days post tumor cell injection. The mice were injected intravenously with 10 mg/kg IGF-Trap, preceded (or not) by 5 rounds of TMS (1min pulses at 1Hz). Control mice received intravenous injections of vehicle (PBS) only. (<b>A</b>) shows a diagrammatic representation of the experimental protocol. (<b>B</b>) shows optical images of mice brains where the intensity of the signal, as represented in the color scales on the right, corresponds to tumor size and (<b>C</b>) shows the radiance expressed as median and IQR per group. (<b>D</b>) shows a Kaplan–Meier survival curve. Arrows in (<b>B</b>) denote mice that did not develop detectable tumors until 63 and 140 days post injection, and survived for 81 and 168 days, respectively.</p> "> Figure 5
<p>Tumor growth is delayed in mice treated with TMS prior to systemic IGF-Trap administration. Mice (<span class="html-italic">n</span> = 5) were injected intra-cerebrally with 3 × 10<sup>4</sup> GL261v cells and randomized for treatment 3 days later. They received intravenous injections of 10 mg/kg IGF-Trap or vehicle (PBS) that were preceded (or not) with TMS administration 5 min earlier on day 3 and twice weekly thereafter until humane endpoint (morbidity). Tumor growth was monitored by optical imaging, performed once weekly following injection of luciferin. One mouse from the TMS/IGF-Trap treatment group was removed from the study due to a technical issue. For a diagrammatic depiction of the experimental protocol, see <a href="#pharmaceuticals-17-01607-f004" class="html-fig">Figure 4</a>. (<b>A</b>) shows representative mice from each treatment group, (<b>B</b>) shows the median and IQR for each group and (<b>C</b>) shows a Kaplan–Meier survival curve. * <span class="html-italic">p</span> < 0.05. as determined by the Mann–Whitney test (radiance) and the log-rank Mantel–Cox test (survival).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Repeated Low-Frequency rTMS Does Not Induce Brain Injury or Neurobehavioral Impairment
2.2. IGF-Trap Administration Coupled with rTMS Partially Inhibits C6-Glioma Tumor Progression
2.3. The rTMS Procedure Does Not Significantly Affect Intracerebral Tumor Growth in a Mouse Model of Glioma
2.4. rTMS When Combined with Systemic IGF-Trap Administration Partially Inhibited Tumor Growth
2.5. The Administration of IGF-Trap in Combination with rTMS Also Delays the Intracerebral Growth of a More Aggressive Variant of Glioma GL261
3. Discussion
4. Materials and Methods
4.1. Cells
4.2. Animals
4.3. The IGF-Trap
4.4. Intracerebral Tumor Cell Injections
4.5. MRI
4.6. Tumor Size Measurement
4.7. Neurological Severity Score (NSS)
4.8. Statistical Analysis
5. Conclusions
- Repetitive TMS could increase the anti-tumor effect of systemically administered IGF-Trap in rat and mouse orthotopic glioma models.
- The tumor growth inhibitory effect of IGF-Trap administered in combination with rTMS was transient and most evident in the early stages following intracerebral injection of glioma cells.
- Further optimization of the combinatorial treatment and the addition of chemotherapy and radiation may improve treatment outcome.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol. 2017, 35, 2402–2409. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.B.; Karpova, A.; Gritsenko, M.A.; Kyle, J.E.; Cao, S.; Li, Y.; Rykunov, D.; Colaprico, A.; Rothstein, J.H.; Hong, R.; et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 2021, 39, 509–528.e20. [Google Scholar] [CrossRef] [PubMed]
- Crespo, I.; Vital, A.L.; Gonzalez-Tablas, M.; Patino Mdel, C.; Otero, A.; Lopes, M.C.; de Oliveira, C.; Domingues, P.; Orfao, A.; Tabernero, M.D. Molecular and Genomic Alterations in Glioblastoma Multiforme. Am. J. Pathol. 2015, 185, 1820–1833. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.R.D.; Regad, T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target. Ther. 2017, 2, 17040. [Google Scholar] [CrossRef]
- Maris, C.; D’Haene, N.; Trépant, A.L.; Le Mercier, M.; Sauvage, S.; Allard, J.; Rorive, S.; Demetter, P.; Decaestecker, C.; Salmon, I. IGF-IR: A new prognostic biomarker for human glioblastoma. Br. J. Cancer 2015, 113, 729–737. [Google Scholar] [CrossRef]
- Tirro, E.; Massimino, M.; Romano, C.; Martorana, F.; Pennisi, M.S.; Stella, S.; Pavone, G.; Di Gregorio, S.; Puma, A.; Tomarchio, C.; et al. Prognostic and Therapeutic Roles of the Insulin Growth Factor System in Glioblastoma. Front. Oncol. 2020, 10, 612385. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, N.; Thompson, R.C.; Mobley, B.C.; Clark, S.W.; Sarkaria, J.N.; Wang, J. InsR/IGF1R Pathway Mediates Resistance to EGFR Inhibitors in Glioblastoma. Clin. Cancer Res. 2016, 22, 1767–1776. [Google Scholar] [CrossRef]
- Song, K.; Yuan, Y.; Lin, Y.; Wang, Y.X.; Zhou, J.; Gai, Q.J.; Zhang, L.; Mao, M.; Yao, X.X.; Qin, Y.; et al. ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. Am. J. Cancer Res. 2018, 8, 792–809. [Google Scholar]
- Samani, A.A.; Yakar, S.; LeRoith, D.; Brodt, P. The role of the IGF system in cancer growth and metastasis: Overview and recent insights. Endocr. Rev. 2007, 28, 20–47. [Google Scholar] [CrossRef]
- Seccareccia, E.; Brodt, P. The role of the insulin-like growth factor-I receptor in malignancy: An update. Growth Horm. IGF Res. 2012, 22, 193–199. [Google Scholar] [CrossRef]
- Baserga, R. The insulin-like growth factor-I receptor as a target for cancer therapy. Expert. Opin. Ther. Targets 2005, 9, 753–768. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Leibovitch, M.; Zeinieh, M.; Jabado, N.; Brodt, P. Targeting the IGF-Axis in Cultured Pediatric High-Grade Glioma Cells Inhibits Cell Cycle Progression and Survival. Pharmaceuticals 2023, 16, 297. [Google Scholar] [CrossRef] [PubMed]
- Samani, A.A.; Nalbantoglu, J.; Brodt, P. Glioma Cells with Genetically Engineered IGF-I Receptor Downregulation Can Persist in the Brain in a Dormant State. Front. Oncol. 2020, 10, 555945. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Qi, S.; Perrino, S.; Hashimoto, M.; Brodt, P. Targeting the IGF-Axis for Cancer Therapy: Development and Validation of an IGF-Trap as a Potential Drug. Cells 2020, 9, 1098. [Google Scholar] [CrossRef]
- Wang, N.; Rayes, R.F.; Elahi, S.M.; Lu, Y.; Hancock, M.A.; Massie, B.; Rowe, G.E.; Aomari, H.; Hossain, S.; Durocher, Y. The IGF-Trap: Novel inhibitor of carcinoma growth and metastasis. Mol. Cancer Ther. 2015, 14, 982–993. [Google Scholar] [CrossRef]
- Vaniotis, G.; Moffett, S.; Sulea, T.; Wang, N.; Elahi, S.M.; Lessard, E.; Baardsnes, J.; Perrino, S.; Durocher, Y.; Frystyk, J.; et al. Enhanced anti-metastatic bioactivity of an IGF-TRAP re-engineered to improve physicochemical properties. Sci. Rep. 2018, 8, 17361. [Google Scholar] [CrossRef]
- Dong, X. Current Strategies for Brain Drug Delivery. Theranostics 2018, 8, 1481–1493. [Google Scholar] [CrossRef]
- Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972. [Google Scholar] [CrossRef]
- Rapoport, S.I. Osmotic opening of the blood-brain barrier: Principles, mechanism, and therapeutic applications. Cell Mol. Neurobiol. 2000, 20, 217–230. [Google Scholar] [CrossRef]
- van Vliet, E.A.; da Costa Araujo, S.; Redeker, S.; van Schaik, R.; Aronica, E.; Gorter, J.A. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007, 130, 521–534. [Google Scholar] [CrossRef]
- Hynynen, K.; McDannold, N.; Vykhodtseva, N.; Raymond, S.; Weissleder, R.; Jolesz, F.A.; Sheikov, N. Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: A method for molecular imaging and targeted drug delivery. J. Neurosurg. 2006, 105, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; McDannold, N.; Jolesz, F.A.; Hynynen, K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc. Natl. Acad. Sci. USA 2006, 103, 11719–11723. [Google Scholar] [CrossRef] [PubMed]
- McDannold, N.; Vykhodtseva, N.; Hynynen, K. Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity. Phys. Med. Biol. 2006, 51, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Abrahao, A.; Meng, Y.; Llinas, M.; Huang, Y.; Hamani, C.; Mainprize, T.; Aubert, I.; Heyn, C.; Black, S.E.; Hynynen, K.; et al. First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 2019, 10, 4373. [Google Scholar] [CrossRef]
- Rezai, A.R.; Ranjan, M.; D’Haese, P.F.; Haut, M.W.; Carpenter, J.; Najib, U.; Mehta, R.I.; Chazen, J.L.; Zibly, Z.; Yates, J.R.; et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc. Natl. Acad. Sci. USA 2020, 117, 9180–9182. [Google Scholar] [CrossRef]
- Cho, E.E.; Drazic, J.; Ganguly, M.; Stefanovic, B.; Hynynen, K. Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening. J. Cereb. Blood Flow Metab. 2011, 31, 1852–1862. [Google Scholar] [CrossRef]
- Kovacs, Z.I.; Kim, S.; Jikaria, N.; Qureshi, F.; Milo, B.; Lewis, B.K.; Bresler, M.; Burks, S.R.; Frank, J.A. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl. Acad. Sci. USA 2017, 114, E75–E84. [Google Scholar] [CrossRef]
- Zangen, A.; Roth, Y.; Voller, B.; Hallett, M. Transcranial magnetic stimulation of deep brain regions: Evidence for efficacy of the H-coil. Clin. Neurophysiol. 2005, 116, 775–779. [Google Scholar] [CrossRef]
- Levkovitz, Y.; Isserles, M.; Padberg, F.; Lisanby, S.H.; Bystritsky, A.; Xia, G.; Tendler, A.; Daskalakis, Z.J.; Winston, J.L.; Dannon, P.; et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: A prospective multicenter randomized controlled trial. World Psychiatry 2015, 14, 64–73. [Google Scholar] [CrossRef]
- Pell, G.S.; Harmelech, T.; Zibman, S.; Roth, Y.; Tendler, A.; Zangen, A. Efficacy of Deep TMS with the H1 Coil for Anxious Depression. J. Clin. Med. 2022, 11, 1015. [Google Scholar] [CrossRef]
- Carmi, L.; Tendler, A.; Bystritsky, A.; Hollander, E.; Blumberger, D.M.; Daskalakis, J.; Ward, H.; Lapidus, K.; Goodman, W.; Casuto, L.; et al. Efficacy and Safety of Deep Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Prospective Multicenter Randomized Double-Blind Placebo-Controlled Trial. Am. J. Psychiatry 2019, 176, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Zangen, A.; Moshe, H.; Martinez, D.; Barnea-Ygael, N.; Vapnik, T.; Bystritsky, A.; Duffy, W.; Toder, D.; Casuto, L.; Grosz, M.L.; et al. Repetitive transcranial magnetic stimulation for smoking cessation: A pivotal multicenter double-blind randomized controlled trial. World Psychiatry 2021, 20, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Vazana, U.; Veksler, R.; Pell, G.S.; Prager, O.; Fassler, M.; Chassidim, Y.; Roth, Y.; Shahar, H.; Zangen, A.; Raccah, R.; et al. Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery. J. Neurosci. 2016, 36, 7727–7739. [Google Scholar] [CrossRef] [PubMed]
- Vazana, U.; Schori, L.; Monsonego, U.; Swissa, E.; Pell, G.S.; Roth, Y.; Brodt, P.; Friedman, A.; Prager, O. TMS-Induced Controlled BBB Opening: Preclinical Characterization and Implications for Treatment of Brain Cancer. Pharmaceutics 2020, 12, 946. [Google Scholar] [CrossRef]
- McClintock, S.M.; Reti, I.M.; Carpenter, L.L.; McDonald, W.M.; Dubin, M.; Taylor, S.F.; Cook, I.A.; O’Reardon, J.; Husain, M.M.; Wall, C.; et al. Consensus Recommendations for the Clinical Application of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Depression. J. Clin. Psychiatry 2018, 79, 3651. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipovic, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Zangen, A.; Hyodo, K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. Neuroreport 2002, 13, 2401–2405. [Google Scholar] [CrossRef]
- Tsui, J.; Qi, S.; Perrino, S.; Leibovitch, M.; Brodt, P. Identification of a Resistance Mechanism to IGF-IR Targeting in Human Triple Negative MDA-MB-231 Breast Cancer Cells. Biomolecules 2021, 11, 527. [Google Scholar] [CrossRef]
- Sontheimer, H. A role for glutamate in growth and invasion of primary brain tumors. J. Neurochem. 2008, 105, 287–295. [Google Scholar] [CrossRef]
- Provenzale, J.M.; Mukundan, S.; Dewhirst, M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am. J. Roentgenol. 2005, 185, 763–767. [Google Scholar] [CrossRef]
- Grobben, B.; De Deyn, P.P.; Slegers, H. Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res. 2002, 310, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Huszthy, P.C.; Daphu, I.; Niclou, S.P.; Stieber, D.; Nigro, J.M.; Sakariassen, P.O.; Miletic, H.; Thorsen, F.; Bjerkvig, R. In vivo models of primary brain tumors: Pitfalls and perspectives. Neuro Oncol. 2012, 14, 979–993. [Google Scholar] [CrossRef] [PubMed]
- Gieryng, A.; Pszczolkowska, D.; Bocian, K.; Dabrowski, M.; Rajan, W.D.; Kloss, M.; Mieczkowski, J.; Kaminska, B. Immune microenvironment of experimental rat C6 gliomas resembles human glioblastomas. Sci. Rep. 2017, 7, 17556. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, V.L.; Valdes, P.A.; Hickey, W.F.; De Leo, J.A. Current review of in vivo GBM rodent models: Emphasis on the CNS-1 tumour model. ASN Neuro 2011, 3, e00063. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, S.; Zhang, J.; Wu, Z.; Lin, S.; Wang, Y. Clinical outcome of gliosarcoma compared with glioblastoma multiforme: A clinical study in Chinese patients. J. Neuro-Oncol. 2016, 127, 355–362. [Google Scholar] [CrossRef]
- Connolly, K.R.; Helmer, A.; Cristancho, M.A.; Cristancho, P.; O’Reardon, J.P. Effectiveness of transcranial magnetic stimulation in clinical practice post-FDA approval in the United States: Results observed with the first 100 consecutive cases of depression at an academic medical center. J. Clin. Psychiatry 2012, 73, e567–e573. [Google Scholar] [CrossRef]
- Einstein, E.H.; Dadario, N.B.; Khilji, H.; Silverstein, J.W.; Sughrue, M.E.; D’Amico, R.S. Transcranial magnetic stimulation for post-operative neurorehabilitation in neuro-oncology: A review of the literature and future directions. J. Neuro-Oncol. 2022, 157, 435–443. [Google Scholar] [CrossRef]
- Ille, S.; Kelm, A.; Schroeder, A.; Albers, L.E.; Negwer, C.; Butenschoen, V.M.; Sollmann, N.; Picht, T.; Vajkoczy, P.; Meyer, B.; et al. Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients—A randomized, double-blinded trial. Brain Stimul. 2021, 14, 780–787. [Google Scholar] [CrossRef]
- Haddad, A.F.; Young, J.S.; Amara, D.; Berger, M.S.; Raleigh, D.R.; Aghi, M.K.; Butowski, N.A. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neuro-Oncol. Adv. 2021, 3, vdab100. [Google Scholar] [CrossRef]
- van Solinge, T.S.; Friis, K.P.; O’Brien, K.; Verschoor, R.L.; van Aarle, J.; Koekman, A.; Breakefield, X.O.; Vader, P.; Schiffelers, R.; Broekman, M. Heparin interferes with the uptake of liposomes in glioma. Int. J. Pharm. X 2023, 6, 100191. [Google Scholar] [CrossRef]
- Daniel, P.; Meehan, B.; Sabri, S.; Jamali, F.; Sarkaria, J.N.; Choi, D.; Garnier, D.; Kitange, G.; Glennon, K.I.; Paccard, A.; et al. Detection of temozolomide-induced hypermutation and response to PD-1 checkpoint inhibitor in recurrent glioblastoma. Neuro-Oncol. Adv. 2022, 4, vdac076. [Google Scholar] [CrossRef] [PubMed]
- Bar-Klein, G.; Lublinsky, S.; Kamintsky, L.; Noyman, I.; Veksler, R.; Dalipaj, H.; Senatorov, V.V., Jr.; Swissa, E.; Rosenbach, D.; Elazary, N.; et al. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 2017, 140, 1692–1705. [Google Scholar] [CrossRef] [PubMed]
- Lippmann, K.; Kamintsky, L.; Kim, S.Y.; Lublinsky, S.; Prager, O.; Nichtweiss, J.F.; Salar, S.; Kaufer, D.; Heinemann, U.; Friedman, A. Epileptiform activity and spreading depolarization in the blood-brain barrier-disrupted peri-infarct hippocampus are associated with impaired GABAergic inhibition and synaptic plasticity. J. Cereb. Blood Flow Metab. 2017, 37, 1803–1819. [Google Scholar] [CrossRef] [PubMed]
- Chassidim, Y.; Veksler, R.; Lublinsky, S.; Pell, G.S.; Friedman, A.; Shelef, I. Quantitative imaging assessment of blood-brain barrier permeability in humans. Fluids Barriers CNS 2013, 10, 9. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158. [Google Scholar] [CrossRef]
- Teichberg, V.I.; Cohen-Kashi-Malina, K.; Cooper, I.; Zlotnik, A. Homeostasis of glutamate in brain fluids: An accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 2009, 158, 301–308. [Google Scholar] [CrossRef]
- Goel, M.K.; Khanna, P.; Kishore, J. Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res. 2010, 1, 274–278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrino, S.; Vazana, U.; Prager, O.; Schori, L.; Ben-Arie, G.; Minarik, A.; Chen, Y.M.; Haçariz, O.; Hashimoto, M.; Roth, Y.; et al. Transcranial Magnetic Stimulation Enhances the Therapeutic Effect of IGF-Trap in Intracerebral Glioma Models. Pharmaceuticals 2024, 17, 1607. https://doi.org/10.3390/ph17121607
Perrino S, Vazana U, Prager O, Schori L, Ben-Arie G, Minarik A, Chen YM, Haçariz O, Hashimoto M, Roth Y, et al. Transcranial Magnetic Stimulation Enhances the Therapeutic Effect of IGF-Trap in Intracerebral Glioma Models. Pharmaceuticals. 2024; 17(12):1607. https://doi.org/10.3390/ph17121607
Chicago/Turabian StylePerrino, Stephanie, Udi Vazana, Ofer Prager, Lior Schori, Gal Ben-Arie, Anna Minarik, Yinhsuan Michely Chen, Orçun Haçariz, Masakazu Hashimoto, Yiftach Roth, and et al. 2024. "Transcranial Magnetic Stimulation Enhances the Therapeutic Effect of IGF-Trap in Intracerebral Glioma Models" Pharmaceuticals 17, no. 12: 1607. https://doi.org/10.3390/ph17121607
APA StylePerrino, S., Vazana, U., Prager, O., Schori, L., Ben-Arie, G., Minarik, A., Chen, Y. M., Haçariz, O., Hashimoto, M., Roth, Y., Pell, G. S., Friedman, A., & Brodt, P. (2024). Transcranial Magnetic Stimulation Enhances the Therapeutic Effect of IGF-Trap in Intracerebral Glioma Models. Pharmaceuticals, 17(12), 1607. https://doi.org/10.3390/ph17121607