Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice
<p>Blood glucose level and body weight. All data were presented as means ± SD. *: Compared to week 0, <span class="html-italic">p</span> < 0.05. (<b>A</b>) blood glucose fast of 5 h; (<b>B</b>) blood glucose levels during IPGTT at baseline; (<b>C</b>) blood glucose levels during IPGTT at the end of study; (<b>D</b>) area under the curve (AUC) for the blood glucose levels during IPGTT; (<b>E</b>) change in body weight.</p> "> Figure 2
<p>Change of bone turnover. All data are presented as means ± SD. *: Compared to week 0, <span class="html-italic">p</span> < 0.05. (<b>A</b>) levels of CTX; (<b>B</b>) levels of P1NP.</p> "> Figure 3
<p>Micro-CT assessment of trabecular and cortical bone of femur from mice 4 weeks post-treatment. The constructed 3D images of trabecular bone and cortical bone of the femurs. The skeletal parameters included bone volume fraction (BV/TV), trabecular bone mineral density (Tb.BMD), trabecular thickness (Tb.Th), separation (Tb.Sp), and number (Tb.N), cortical BMD (Ct.BMD), cortical area (Ct.Ar), cortical thickness (Ct.Th), and total cross-sectional area (Tt.Ar). All data are presented as means ± SD. *: Compared to saline-treated diabetic mice, <span class="html-italic">p</span> < 0.05; ns, non-significant.</p> "> Figure 4
<p>Maximum load and ultimate displacement determined by the load displacement curve. All data are presented as means ± SD. *: Compared to saline-treated diabetic mice, <span class="html-italic">p</span> < 0.05; ns, non-significant. (<b>A</b>) maximum load; (<b>B</b>) ultimate displacement.</p> "> Figure 5
<p>Osteocalcin (OCN) staining and tartrate-resistant acid phosphatase (TRAP) staining of femur. All data are presented as means ± SD. ns, non-significant. (<b>A</b>) osteoclast number per bone perimeter; (<b>B</b>) osteoclast number per bone area; (<b>C</b>) osteoblast number per bone perimeter; (<b>D</b>) osteoblast number per bone area.</p> "> Figure 6
<p>Results of real-time quantitative polymerase chain reaction. All data are presented as means ± SD. *: Compared to saline-treated diabetic mice, <span class="html-italic">p</span> < 0.05; ns, non-significant. (<b>A</b>) <span class="html-italic">Col1</span> mRNA; (<b>B</b>) <span class="html-italic">OPG</span> mRNA; (<b>C</b>) <span class="html-italic">RANKL</span> mRNA; (<b>D</b>) <span class="html-italic">RUNX2</span> mRNA; (<b>E</b>) <span class="html-italic">OPG/RANKL</span>.</p> "> Figure 7
<p>Schematic of the experimental design for animal study. At 13 weeks of age, mice were subcutaneously injected with either saline, semaglutide, or tirzepatide until 17 weeks of age (4 week treatment period).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Semaglutide and Tirzepatide Treatment on Blood Glucose Level and Body Weight
2.2. Semaglutide and Tirzepatide Treatment on Bone Turnover
2.3. Semaglutide and Tirzepatide Treatment on Bone Microarchitecture
2.4. Semaglutide and Tirzepatide Treatment on Bone Strength and Bone Histological Parameters
2.5. Semaglutide and Tirzepatide Treatment on Expression of Bone Metabolism-Related Genes
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Biochemical Analyses
4.3. Micro-Computed Tomography (Micro-CT) Analysis
4.4. Biomechanical Testing
4.5. Bone Histomorphometric Analysis
4.6. Quantitative Real-Time PCR (RT-PCR)
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Napoli, N.; Chandran, M.; Pierroz, D.D.; Abrahamsen, B.; Schwartz, A.V.; Ferrari, S.L.; IOF Bone and Diabetes Working Group. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 2017, 13, 208–219. [Google Scholar] [CrossRef]
- Janghorbani, M.; Van Dam, R.M.; Willett, W.C.; Hu, F.B. Systematic Review of Type 1 and Type 2 Diabetes Mellitus and Risk of Fracture. Am. J. Epidemiol. 2007, 166, 495–505. [Google Scholar] [CrossRef]
- Khosla, S.; Samakkarnthai, P.; Monroe, D.G.; Farr, J.N. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2021, 17, 685–697. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes–2024. Diabetes Care 2024, 47, S145–S157. [Google Scholar] [CrossRef]
- Zhao, Q.; Khedkar, S.V.; Johnson, K.C. Weight Loss Interventions and Skeletal Health in Persons with Diabetes. Curr. Osteoporos. Rep. 2022, 20, 240–248. [Google Scholar] [CrossRef]
- Mabilleau, G.; Chappard, D.; Flatt, P.R.; Irwin, N. Effects of anti-diabetic drugs on bone metabolism. Expert Rev. Endocrinol. Metab. 2015, 10, 663–675. [Google Scholar] [CrossRef]
- Palermo, A.; D’onofrio, L.; Eastell, R.; Schwartz, A.V.; Pozzilli, P.; Napoli, N. Oral anti-diabetic drugs and fracture risk, cut to the bone: Safe or dangerous? A narrative review. Osteoporos. Int. 2015, 26, 2073–2089. [Google Scholar] [CrossRef]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K.; SURPASS-2 Investigators. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef]
- Ceccarelli, E.; Guarino, E.G.; Merlotti, D.; Patti, A.; Gennari, L.; Nuti, R.; Dotta, F. Beyond Glycemic Control in Diabetes Mellitus: Effects of Incretin-Based Therapies on Bone Metabolism. Front. Endocrinol. 2013, 4, 73. [Google Scholar] [CrossRef]
- Cheng, L.; Hu, Y.; Li, Y.; Cao, X.; Bai, N.; Lu, T.; Li, G.; Li, N.; Wang, A.; Mao, X. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetes/Metab. Res. Rev. 2019, 35, e3168. [Google Scholar] [CrossRef]
- Wang, B.; Vashishth, D. Advanced glycation and glycoxidation end products in bone. Bone 2023, 176, 116880. [Google Scholar] [CrossRef] [PubMed]
- Jackuliak, P.; Payer, J. Osteoporosis, Fractures, and Diabetes. Int. J. Endocrinol. 2014, 2014, 820615. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Czernik, B.; Rosen, C.J. Energy Excess, Glucose Utilization, and Skeletal Remodeling: New Insights. J. Bone Miner. Res. 2015, 30, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Shapses, S.A.; Sukumar, D. Bone Metabolism in Obesity and Weight Loss. Annu. Rev. Nutr. 2012, 32, 287–309. [Google Scholar] [CrossRef] [PubMed]
- Rinonapoli, G.; Pace, V.; Ruggiero, C.; Ceccarini, P.; Bisaccia, M.; Meccariello, L.; Caraffa, A. Obesity and Bone: A Complex Relationship. Int. J. Mol. Sci. 2021, 22, 13662. [Google Scholar] [CrossRef]
- Lespessailles, E.; Paccou, J.; Javier, R.-M.; Thomas, T.; Cortet, B. GRIO Scientific Committee Obesity, Bariatric Surgery, and Fractures. J. Clin. Endocrinol. Metab. 2019, 104, 4756–4768. [Google Scholar] [CrossRef]
- Mabilleau, G.; Gobron, B.; Bouvard, B.; Chappard, D. Incretin-based therapy for the treatment of bone fragility in diabetes mellitus. Peptides 2018, 100, 108–113. [Google Scholar] [CrossRef]
- Mieczkowska, A.; Irwin, N.; Flatt, P.R.; Chappard, D.; Mabilleau, G. Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone 2013, 56, 337–342. [Google Scholar] [CrossRef]
- Yamada, C.; Yamada, Y.; Tsukiyama, K.; Yamada, K.; Udagawa, N.; Takahashi, N.; Tanaka, K.; Drucker, D.J.; Seino, Y.; Inagaki, N. The Murine Glucagon-Like Peptide-1 Receptor Is Essential for Control of Bone Resorption. Endocrinology 2008, 149, 574–579. [Google Scholar] [CrossRef]
- Mieczkowska, A.; Mansur, S.; Bouvard, B.; Flatt, P.R.; Thorens, B.; Irwin, N.; Chappard, D.; Mabilleau, G. Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical micromorphology and bone strength. Osteoporos. Int. 2015, 26, 209–218. [Google Scholar] [CrossRef]
- Ma, X.; Meng, J.; Jia, M.; Bi, L.; Zhou, Y.; Wang, Y.; Hu, J.; He, G.; Luo, X. Exendin-4, a Glucagon-Like Peptide-1 Receptor Agonist, Prevents Osteopenia by Promoting Bone Formation and Suppressing Bone Resorption in Aged Ovariectomized Rats. J. Bone Miner. Res. 2013, 28, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Jeyabalan, J.; Jørgensen, C.; Hopkinson, M.; Al-Jazzar, A.; Roux, J.; Chavassieux, P.; Orriss, I.; Cleasby, M.; Chenu, C. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 2015, 81, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Sun, H.; Yu, J.; Wang, X.; Liu, D.; Zhao, L.; Sun, L.; Zhao, H.; Tao, B.; Liu, J. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PLoS ONE 2015, 10, e0132744. [Google Scholar] [CrossRef] [PubMed]
- Hygum, K.; Harsløf, T.; Jørgensen, N.R.; Rungby, J.; Pedersen, S.B.; Langdahl, B.L. Bone resorption is unchanged by liraglutide in type 2 diabetes patients: A randomised controlled trial. Bone 2020, 132, 115197. [Google Scholar] [CrossRef]
- Cai, T.-T.; Li, H.-Q.; Jiang, L.-L.; Wang, H.-Y.; Luo, M.-H.; Su, X.-F.; Ma, J.-H. Effects of GLP-1 Receptor Agonists on Bone Mineral Density in Patients with Type 2 Diabetes Mellitus: A 52-Week Clinical Study. BioMed Res. Int. 2021, 2021, 3361309. [Google Scholar] [CrossRef]
- Reis-Barbosa, P.H.; Marcondes-De-Castro, I.A.; Marinho, T.d.S.; Aguila, M.B.; Mandarim-De-Lacerda, C.A. The mTORC1/AMPK pathway plays a role in the beneficial effects of semaglutide (GLP-1 receptor agonist) on the liver of obese mice. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101922. [Google Scholar] [CrossRef]
- Samms, R.J.; Christe, M.E.; Collins, K.A.; Pirro, V.; Droz, B.A.; Holland, A.K.; Friedrich, J.L.; Wojnicki, S.; Konkol, D.L.; Cosgrove, R.; et al. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J. Clin. Investig. 2021, 131, e146353. [Google Scholar] [CrossRef]
- Pereira, M.; Gohin, S.; Roux, J.-P.; Fisher, A.; Cleasby, M.E.; Mabilleau, G.; Chenu, C. Exenatide Improves Bone Quality in a Murine Model of Genetically Inherited Type 2 Diabetes Mellitus. Front. Endocrinol. 2017, 8, 327. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef]
Gene | Primer Sequence (50–30) | Product Length (bp) | |
---|---|---|---|
COL1 | F | TCAGCTGCATACACAATGGC | 117 |
R | CATTGCATTGCACGTCATCG | ||
OPG | F | TGGTGCTCCTGGACATCATT | 142 |
R | CTCACTGTGCAGTGCTGTTT | ||
RANKL | F | AGCGCAGATGGATCCTAACA | 130 |
R | GCAGGAGTCAGGTAGTGTGT | ||
RUNX2 | F | CTCTGGCCTTCCTCTCTCAG | 150 |
R | GTAGGTAAAGGTGGCTGGGT | ||
GAPDH | F | GGTGAAGGTCGGTGTGAACG | 233 |
R | CTCGCTCCTGGAAGATGGTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, F.; Cai, X.; Lin, C.; Yang, W.; Ji, L. Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice. Pharmaceuticals 2024, 17, 1655. https://doi.org/10.3390/ph17121655
Lv F, Cai X, Lin C, Yang W, Ji L. Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice. Pharmaceuticals. 2024; 17(12):1655. https://doi.org/10.3390/ph17121655
Chicago/Turabian StyleLv, Fang, Xiaoling Cai, Chu Lin, Wenjia Yang, and Linong Ji. 2024. "Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice" Pharmaceuticals 17, no. 12: 1655. https://doi.org/10.3390/ph17121655
APA StyleLv, F., Cai, X., Lin, C., Yang, W., & Ji, L. (2024). Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice. Pharmaceuticals, 17(12), 1655. https://doi.org/10.3390/ph17121655