mRNA-Loaded Lipid Nanoparticles Targeting Immune Cells in the Spleen for Use as Cancer Vaccines
<p>Luciferase activity in vivo. (<b>A</b>) Luciferase activity of DODAP-LNP prepared with or without DOPE. The LNP that was injected contained 0.1 mRNA mg/kg and luciferase activity was measured 24 h after injection. Luciferase activity is expressed as relative light unit (RLU) per mg of total protein (** <span class="html-italic">p</span> < 0.01, NS: not significant, two-tailed unpaired <span class="html-italic">t</span> test). (<b>B</b>–<b>D</b>) Optimization of the lipid composition in vivo. (<b>B</b>) The ratio of DODAP and cholesterol (DOPE and DMG-PEG were fixed at 50 and 1.5 mol% of total lipid, respectively. (<b>C</b>) The ratio of DOPE and DODAP (Chol and DMG-PEG were fixed at 10 and 1.5 mo% of total lipid, respectively). (<b>D</b>) The ratio of the amount of total lipid to 10 µg mRNA. (<b>E</b>) The luciferase activity measured 24 h after injection of 0.1 and 0.8 mg/kg. (<b>F</b>) The luciferase activity 24 h after injection of DODAP-LNP and RNA-LPX loading Nluc-IRES-RFP mRNA (** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05, NS: not significant, two-tailed unpaired Student’s <span class="html-italic">t</span>-test). Each bar represents the mean +/− SD of at least 3 different experiments).</p> "> Figure 2
<p>The cellular uptake and gene expression in splenocytes. Different LNPs were prepared by the ethanol dilution method and labeled with 1 mol% DiD. Splenocytes were isolated at 24 h after the injection of 400 µL LNPs. (<b>A</b>) DiD positive cells (%) in each cell type, *** <span class="html-italic">p</span> < 0.001, Tukey-Kramer test. (<b>B</b>) Geo-mean fluorescence intensity in each cell type, *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, Tukey-Kramer test. (<b>C</b>) Luciferase activity per 3000 cells, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, NS: not significant, Student <span class="html-italic">t</span> test.</p> "> Figure 3
<p>Prophylactic anti-tumor effect. C57BL/6J mice were treated with PBS, naked OVA-encoding mRNA (naked OVA-mRNA), LNP encapsulating luciferase-encoding pDNA (Luc-pDNA LNP), and LNP encapsulating OVA-encoding mRNA (OVA-mRNA LNP) at 7 days before tumor inoculation. The mice were inoculated with E.G7-OVA cells and tumor volume was monitored. The plots represent the mean +/− SEM (total of 5 mice/group, * <span class="html-italic">p</span> < 0.05, Tukey-Kramer test).</p> "> Figure 4
<p>CTL analysis after administration of different doses of mRNA formulations using different routes of administration. (<b>A</b>) OVA-specific CTL activity measured after treatment with different doses of OVA-mRNA LNP. LNP encapsulating luciferase gene (Fluc-LNP) or naked OVA mRNA were used as controls at a dose of 0.8 mg/kg (*** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, vs. PBS, Fluc-mRNA LNP and naked OVA-mRNA, Tukey-Kramer). (<b>B</b>) Comparison of OVA-specific CTL activity between OVA-mRNA LNP and RNA-LPX using different dose. (<b>C</b>) Comparison of OVA-specific CTL activity between IV and IM injection of OVA-mRNA LNP and RNA-LPX. The administered dose was 0.075 mg/kg.</p> "> Figure 5
<p>Therapeutic anti-tumor effect. C57BL/6J mice were inoculated with E.G7-OVA cells. The mice were treated with different solutions at 8, 11, and 14 days after tumor inoculation and tumor volume was monitored. Mice groups were treated with PBS, naked OVA-encoding mRNA (naked OVA-mRNA), LNP encapsulating luciferase-encoding mRNA (Luc-mRNA LNP), LNP encapsulating OVA-encoding mRNA (OVA-mRNA LNP), and RNA-LPX loading OVA-encoding mRNA (RNA-LPX). The plots represent the mean +/− SEM (total of 5 mice/group, NS: not significant, Tukey-Kramer test).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Role of Helper Lipid DOPE
2.2. Optimization of mRNA Delivery to the Spleen
2.3. Cellular Uptake and Gene Expression in Splenocytes
2.4. Prophylactic Anti-Tumor Effect
2.5. Induction of Cytotoxic T Cells
2.6. Therapeutic Anti-Tumor Effect
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Preparation of LNP
4.4. Characterization of LNPs
4.5. Preparation of RNA-LPX
4.6. Gene Expression In Vivo
4.7. Gene Expression by Cell Type in the Spleen
4.8. E.G-7 OVA Cell Cultures
4.9. Anti-Tumor Prophylactic and Therapeutic Experiments
4.10. Antigen-Specific Cytotoxic Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APCs | antigen-presenting cells |
ApoE | apolipoprotein E |
BCG | Bacillus Calmette–Guérin |
CFSE | carboxyfluorescein succinimidyl ester |
Chol | cholesterol |
CTL | cytotoxic T lymphocyte |
DCs | dendritic cells |
DiD | 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine |
DMEM | Dulbecco’s modified eagle medium |
DMG-PEG2k | Dimyristoyl-methoxypolyethylene glycol 2000 |
DODAP | 1,2-dioleoyl-3-dimethylammonium propane |
DOPE | dioleoylphosphatidylethanolamine |
DOTMA | 1,2-di-O-octadecenyl-3-trimethylammonium propane |
DPPC | dipalmitoyl phosphatidylcholine |
EE | encapsulation efficiency |
FBS | fetal bovine serum |
FDA | US Food and Drug Administration |
FITC | fluorescein isothiocyanate |
Fluc-mRNA LNP | LNPs encapsulating firefly luciferase-encoding mRNA |
hATTR | hereditary transthyretin-mediated amyloidosis |
IM | Intramuscular |
IV | intravenous |
LNPs | lipid nanoparticles |
MHC | major histocompatibility complex |
mRNA | messenger RNA |
N/P | nitrogen/phosphate |
Nluc | Nanoluc |
OVA | Ovalbumin |
OVA-mRNA LNP | Lipid nanoparticles encapsulating the antigen OVA-encoding mRNA |
PBS | phosphate-buffered saline |
pDNA | plasmid DNA |
PE | Phycoerythrin |
PEG | polyethylene glycol |
RLU | relative light unit |
RNAi | RNA interference |
RNA-LPX | RNA-lipoplexes |
RPMI | Roswell Park Memorial Institute medium |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
siRNA | small interfering RNA |
TTR | transthyretin |
TLR7/8 | toll like receptor 7/8 |
References
- Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017, 24, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, K.J.; Webber, M.; Anderson, D.G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release 2016, 240, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Krishnan, S.; Lenzen, G.; Magné, R.; Gomard, E.; Guillet, J.-G.; Lévy, J.-P.; Meulien, P. Induction of virus-specific cytotoxic T lymphocytesin vivo by liposome-entrapped mRNA. Eur. J. Immunol. 1993, 23, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.-C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Patisiran: First Global Approval. Drugs 2018, 78, 1625–1631. [Google Scholar] [CrossRef]
- Van Haute, D.; Berlin, J.M. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: Lessons from gold nanoparticles. Ther. Deliv. 2017, 8, 763–774. [Google Scholar] [CrossRef]
- Semple, S.C.; Chonn, A.; Cullis, P.R. Influence of Cholesterol on the Association of Plasma Proteins with Liposomes. Biochemistry 1996, 35, 2521–2525. [Google Scholar] [CrossRef]
- Senior, J.; Gregoriadis, G. Stability of small unilamellar liposomes in serum and clearance from the circulation: The effect of the phospholipid and cholesterol components. Life Sci. 1982, 30, 2123–2136. [Google Scholar] [CrossRef]
- Schroeder, A.; Levins, C.G.; Cortez, C.; Langer, R.; Anderson, D.G. Lipid-based nanotherapeutics for siRNA delivery. J. Intern. Med. 2009, 267, 9–21. [Google Scholar] [CrossRef]
- Mui, B.L.; Tam, Y.K.; Jayaraman, M.; Ansell, S.M.; Du, X.; Tam, Y.Y.C.; Lin, P.J.; Chen, S.; Narayanannair, J.K.; Rajeev, K.G.; et al. Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles. Mol. Ther-Nucleic Acids 2013, 2, e139. [Google Scholar] [CrossRef]
- Kimura, S.; Khalil, I.A.; Elewa, Y.H.; Harashima, H. Novel lipid combination for delivery of plasmid DNA to immune cells in the spleen. J. Control. Release 2021, 330, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef]
- Broos, K.; Van der Jeught, K.; Puttemans, J.; Goyvaerts, C.; Heirman, C.; Dewitte, H.; Verbeke, R.; Lentacker, I.; Thielemans, K.; Breckpot, K. Particle-mediated Intravenous Delivery of Antigen mRNA Results in Strong Antigen-specific T-cell Responses Despite the Induction of Type I Interferon. Mol. Ther-Nucleic Acids 2016, 5, e326. [Google Scholar] [CrossRef] [PubMed]
- Darrah, P.A.; Zeppa, J.J.; Maiello, P.; Hackney, J.A.; Ii, M.H.W.; Hughes, T.K.; Pokkali, S.; Ii, P.A.S.; Grant, N.L.; Rodgers, M.A.; et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 2020, 577, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Lee, R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016, 99, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; El-Mayta, R.; Murdoch, T.J.; Warzecha, C.C.; Billingsley, M.M.; Shepherd, S.J.; Gong, N.; Wang, L.; Wilson, J.M.; Lee, D.; et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater. Sci. 2020, 9, 1449–1463. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.L.; Cullis, P.R. Modulation of Membrane Fusion by Asymmetric Transbilayer Distributions of Amino Lipids. Biochemistry 1994, 33, 12573–12580. [Google Scholar] [CrossRef]
- Sato, Y.; Hatakeyama, H.; Sakurai, Y.; Hyodo, M.; Akita, H.; Harashima, H. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J. Control. Release 2012, 163, 267–276. [Google Scholar] [CrossRef]
- Jayaraman, M.; Ansell, S.M.; Mui, B.L.; Tam, Y.K.; Chen, J.; Du, X.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J.K.; et al. Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo. Angew. Chem. Int. Ed. 2012, 51, 8529–8533. [Google Scholar] [CrossRef]
- Semple, S.C.; Akinc, A.; Chen, J.; Sandhu, A.P.; Mui, B.L.; Cho, C.K.; Sah, D.W.Y.; Stebbing, D.; Crosley, E.J.; Yaworski, E.; et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176. [Google Scholar] [CrossRef]
- Rietwyk, S.; Peer, D. Next-Generation Lipids in RNA Interference Therapeutics. ACS Nano 2017, 11, 7572–7586. [Google Scholar] [CrossRef] [PubMed]
- Fornaguera, C.; Guerra-Rebollo, M.; Lazaro, M.A.; Castells-Sala, C.; Meca-Cortés, O.; Ramos-Pérez, V.; Cascante, A.; Rubio, N.; Blanco, J.; Borrós, S. mRNA Delivery System for Targeting Antigen-Presenting Cells In Vivo. Adv. Health Mater. 2018, 7, e1800335. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Lindgren, G.; Lin, A.; Thompson, E.A.; Ols, S.; Röhss, J.; John, S.; Hassett, K.; Yuzhakov, O.; Bahl, K.; et al. Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Mol. Ther. 2017, 25, 2635–2647. [Google Scholar] [CrossRef] [PubMed]
- Fenton, O.S.; Kauffman, K.J.; Kaczmarek, J.C.; McClellan, R.L.; Jhunjhunwala, S.; Tibbitt, M.W.; Zeng, M.D.; Appel, E.A.; Dorkin, J.R.; Mir, F.F.; et al. Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes. Adv. Mater. 2017, 29, 1606944. [Google Scholar] [CrossRef] [PubMed]
- Oberli, M.A.; Reichmuth, A.M.; Dorkin, J.R.; Mitchell, M.; Fenton, O.S.; Jaklenec, A.; Anderson, D.G.; Langer, R.; Blankschtein, D. Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. Nano Lett. 2016, 17, 1326–1335. [Google Scholar] [CrossRef]
- Rui, Y.; Wilson, D.R.; Tzeng, S.Y.; Yamagata, H.M.; Sudhakar, D.; Conge, M.; Berlinicke, C.A.; Zack, D.J.; Tuesca, A.; Green, J.J. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Sci. Adv. 2022, 8, eabj1584. [Google Scholar] [CrossRef]
LNP 2 | Size (nm) | PDI | ζ-Potential (mV) | EE (%) |
---|---|---|---|---|
DODAP | 186 ± 16 | 0.240 ± 0.083 | −9.8 ± 17 | 49.4 ± 7.4 |
DODAP/DOPE | 125 ± 22 | 0.013 ± 0.045 | −10 ± 8.6 | 83.3 ± 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimosakai, R.; Khalil, I.A.; Kimura, S.; Harashima, H. mRNA-Loaded Lipid Nanoparticles Targeting Immune Cells in the Spleen for Use as Cancer Vaccines. Pharmaceuticals 2022, 15, 1017. https://doi.org/10.3390/ph15081017
Shimosakai R, Khalil IA, Kimura S, Harashima H. mRNA-Loaded Lipid Nanoparticles Targeting Immune Cells in the Spleen for Use as Cancer Vaccines. Pharmaceuticals. 2022; 15(8):1017. https://doi.org/10.3390/ph15081017
Chicago/Turabian StyleShimosakai, Ryoya, Ikramy A. Khalil, Seigo Kimura, and Hideyoshi Harashima. 2022. "mRNA-Loaded Lipid Nanoparticles Targeting Immune Cells in the Spleen for Use as Cancer Vaccines" Pharmaceuticals 15, no. 8: 1017. https://doi.org/10.3390/ph15081017
APA StyleShimosakai, R., Khalil, I. A., Kimura, S., & Harashima, H. (2022). mRNA-Loaded Lipid Nanoparticles Targeting Immune Cells in the Spleen for Use as Cancer Vaccines. Pharmaceuticals, 15(8), 1017. https://doi.org/10.3390/ph15081017