Curcumin and (−)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells against Iron Toxicity and Erastin-Induced Ferroptosis
"> Figure 1
<p>Protective effects of different polyphenols against iron-mediated toxicity and ferroptosis. MIN6 cells were treated with 20 μM curcumin, quercetin, rutin, EGCG, tannic acid or phytic acid for 24 h and supplemented with (<b>A</b>) Fenton Substrates (FS), (<b>B</b>) 8HQ+FAC for 2 h and (<b>C</b>) MIN6 cells were treated overnight with 20 μM erastin, in the absence or presence of quercetin, rutin, curcumin, tannic acid, phytic acid and EGCG. The percentage of cell viability is relative to control cell samples. Curcumin and EGCG inhibited erastin-induced cell death in a dose-dependent manner. Curcumin and EGCG had a protective effect against ferroptosis at 20 μM in MIN6 for 24 h, with a valuable statistical difference between erastin and cell treated with erastin + 20 μM curcumin or EGCG. All the values are expressed with the mean ± SEM, <span class="html-italic">n =</span> 8. <sup>#</sup><span class="html-italic">p</span> < 0.05 control vs. treatment groups, <span class="html-italic">**p</span> < 0.01 and <span class="html-italic">****p</span> < 0.0001 compared with FS and 8HQ+FAC group only. (<b>C</b>) <sup>#</sup><span class="html-italic">p</span> < 0.05 control vs. treatment groups, <span class="html-italic">****p</span> < 0.0001 vs. erastin only. One-way ANOVA, Tukey post-hoc test.</p> "> Figure 2
<p>Anti-ferroptosis activity of curcumin and EGCG in MIN6 cells. Cells were treated overnight with 20 μM erastin in the absence or presence of curcumin or EGCG. The percentage of cell viability is relative to control cell samples. Curcumin and EGCG inhibited erastin-induced cell death in a dose-dependent manner. Curcumin (<b>A</b>) and EGCG (<b>B</b>) had a protective effect against ferroptosis at 20 μM in MIN6 for 24 h, with valuable statistical difference between erastin and cell treated with erastin + 20 μM curcumin or EGCG. Curcumin (<b>C</b>) and EGCG (<b>D</b>) inhibited erastin-induced cell death in a time-dependent manner in MIN6 with valuable statistical difference between erastin and cell treated with erastin + 20 μM curcumin or EGCG. All the values are expressed with the mean ± SEM, <span class="html-italic">n =</span> 8, <sup>#</sup><span class="html-italic">p</span> < 0.05 control vs. treatment groups, *<span class="html-italic">p</span> < 0.05 and ****<span class="html-italic">p</span> < 0.0001 vs. erastin only. One-way ANOVA, Tukey post-hoc test.</p> "> Figure 3
<p>Curcumin and EGCG suppress iron and lipid accumulation in pancreatic cells. (<b>A</b>) Cells were treated overnight with 20 μM erastin in the absence or presence of curcumin or EGCG. Percentage of Fe<sup>2+</sup> is relative to control cell samples. Curcumin and EGCG decreased erastin-induced iron accumulation at 20 μM in MIN6 for 24 h, with significant statistical difference between erastin and cell treated with erastin + 20 μM curcumin or EGCG. (<b>B</b>) Percentage of MDA is relative to control cell samples. Curcumin and EGCG decreased erastin-induced lipid peroxidation at 20 μM in MIN6 for 24 h, with valuable statistical difference between erastin and cell treated with erastin + 20 μM curcumin or EGCG. All the values are expressed with the mean ± SEM, <span class="html-italic">n =</span> 3, <span class="html-italic"><sup>#</sup>p</span> < 0.05 control vs. treatment groups, <span class="html-italic">**p</span> < 0.01 and ****<span class="html-italic">p</span> < 0.0001 vs. erastin only. One-way ANOVA, Tukey post-hoc test.</p> "> Figure 4
<p>Curcumin and EGCG inhibit GSH depletion in pancreatic cells. Cells were treated overnight with 20 μM erastin in the absence or presence of curcumin or EGCG. Percentage GSH level is relative to control cell samples. (<b>A</b>) Curcumin and EGCG decreased erastin-induced GSH level. (<b>B</b>) Western blot analysis showed that curcumin alone significantly suppressed erastin-induced GPX4 level in MIN6 for 24 h. (<b>C</b>) Densitometry of Western blots GPX4 protein bands of GPX4. All the values are expressed with the mean ± SEM, <span class="html-italic">n =</span> 3, <span class="html-italic"><sup>#</sup> p</span> < 0.05 control vs. treatment groups, <span class="html-italic">*p</span> < 0.05 and <span class="html-italic">**p</span> < 0.01 vs. erastin only. One-way ANOVA, Tukey post-hoc test.</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Protective Effects of Polyphenols on Iron-Induced Oxidative Stress
2.2. Protective Function of Curcumin and EGCG against Ferroptosis
2.3. Dose-Response Effects of Curcumin and EGCG against Erastin-Induced Ferroptosis
2.4. Time Course Effects of Curcumin and EGCG against Erastin-Induced Ferroptosis
2.5. Curcumin and EGCG Limit Iron Accumulation and Lipid Peroxidation in Ferroptosis
2.6. Curcumin and EGCG Decrease Glutathione (GSH) Depletion and Glutathione Peroxidase 4 (GPX4) Degradation
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture
4.3. Cell Viability Assay
4.4. Fenton Reaction Oxidative Stress
4.5. Iron-Induced Stress on Pancreatic Cells
4.6. Cellular Iron Levels
4.7. Lipid Peroxidation Assay
4.8. Glutathione Assay
4.9. Western Blot
4.10. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kang, R.; Tang, D. Autophagy and ferroptosis—What is the connection? Curr. Pathobiol. Rep. 2017, 5, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Long, Y.C. Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis. Sci. Rep. 2016, 6, 30033. [Google Scholar] [CrossRef] [PubMed]
- Latunde-Dada, G.O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta Gen. Subj. 2017, 8, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Rajpathak, S.N.; Crandall, J.P.; Wylie-Rosett, J.; Kabat, G.C.; Rohan, T.E.; Hu, F.B. The role of iron in type 2 diabetes in humans. Biochim. Biophys. Acta Gen. Subj. 2009, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zong, G.; Pan, A.; Ye, X.; Li, H.; Yu, Z.; Zhao, Y.; Zou, S.; Yu, D.; Jin, Q.; Hu, F.B. Elevated plasma ferritin is associated with increased incidence of type 2 diabetes in middle-aged and elderly Chinese adults. J. Nutr. 2013, 143, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Basuli, D.; Stevens, R.G.; Torti, F.M.; Torti, S.V. Epidemiological associations between iron and cardiovascular disease and diabetes. Front. Pharmacol. 2014, 5, 117. [Google Scholar] [PubMed]
- Silva, M.; Freitas Bonomo, L.; Paula Oliveira, R.; Lima, W.G.; Silva, M.E.; Pedrosa, M.L. Effects of the interaction of diabetes and iron supplementation on hepatic and pancreatic tissues, oxidative stress markers, and liver peroxisome proliferator-activated receptor-α expression. J. Clin. Biochem. Nutr. 2011, 49, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Madiseh, M.; Malekpour-Tehrani, A.; Bahmani, M.; Rafieian-Kopaei, M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pacific Journal of Tropical Medicine 2016, 9, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Hmidene, A.B.; Hanaki, M.; Murakami, K.; Irie, K.; Isoda, H.; Shigemori, H. Inhibitory activities of antioxidant flavonoids from tamarix gallica on amyloid aggregation related to alzheimer’s and type 2 diabetes diseases. Biol. Pharm. Bull. 2017, 40, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res. 2005, 51, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.Á.; Fernández-Millán, E.; Ramos, S.; Bravo, L.; Goya, L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol. Nutr. Food Res. 2014, 58, 447–456. [Google Scholar]
- Jiao, Y.; Wilkinson, J.; Pietsch, E.C.; Buss, J.L.; Wang, W.; Planalp, R.; Torti, F.M.; Torti, S.V. Iron chelation in the biological activity of curcumin. Free Radic. Biol. Med. 2006, 40, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Messner, D.J.; Sivam, G.; Kowdley, K.V. Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells. Liver Int. 2009, 29, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, R.L. Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events. Med. Hypotheses 2017, 101, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Rashidi, A.; Kirkwood, T.B.; Shanley, D.P. On the surprising weakness of pancreatic beta-cell antioxidant defences: An evolutionary perspective. In Evolutionary Biology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 109–125. ISBN 978-3-642-00952-5. [Google Scholar]
- Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.; Amit, T.; Bar-Am, O.; Youdim, M.B. Iron dysregulation in alzheimer’s disease: Multimodal brain permeable iron chelating drugs, possessing neuroprotective-neuro rescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog. Neurobiol. 2007, 82, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Dairam, A.; Fogel, R.; Daya, S.; Limson, J.L. Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate. J. Agric. Food Chem. 2008, 56, 3350–3356. [Google Scholar] [CrossRef] [PubMed]
- Reznichenko, L.; Amit, T.; Zheng, H.; Avramovich-Tirosh, Y.; Youdim, M.B.H.; Weinreb, O.; Mandel, S. Reduction of iron-regulated amyloid precursor protein and β-amyloid peptide by (–)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease. J. Neurochem. 2006, 97, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Badria, F.A.; Ibrahim, A.S.; Badria, A.F.; Elmarakby, A.A. Curcumin attenuates iron accumulation and oxidative stress in the liver and spleen of chronic iron-overloaded rats. PLoS ONE 2015, 10, e0134156. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pantopoulos, K. Regulation of cellular iron metabolism. Biochem. J. 2011, 434, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Song, X.; Sun, X.; Huang, J.; Zhong, M.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun. 2016, 473, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.Y.; Dixon, S.J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 2016, 73, 2195–2209. [Google Scholar] [CrossRef] [PubMed]
- Casanova, E.; Baselga-Escudero, L.; Ribas-Latre, A.; Arola-Arnal, A.; Bladé, C.; Arola, L.; Salvadó, M.J. Epigallocatechin gallate counteracts oxidative stress in docosahexaenoxic acid-treated myocytes. Biochim. Biophys. Acta-Bioenerg. 2014, 1837, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 2016, 26, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Seiler, A.; Schneider, M.; Förster, H.; Roth, S.; Wirth, E.K.; Culmsee, C.; Plesnila, N.; Kremmer, E.; Rådmark, O.; Wurst, W.; Bornkamm, G.W. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab. 2008, 8, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 2014, 16, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, J.I.; Araki, K.; Yamato, E.; Ikegami, H.; Asano, T.; Shibasaki, Y.; Oka, Y.; Yamamura, K.I. Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: Special reference to expression of glucose transporter isoforms. Endocrinology 1990, 127, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ntasis, E.; Kabtni, S.; Van den born, J.; Navis, G.; Bakker, S.J.; Krämer, B.K.; Yard, B.A.; Hauske, S.J. Hyperglycemia does not affect iron mediated toxicity of cultured endothelial and renal tubular epithelial cells: Influence of l-carnosine. J. Diabetes Res. 2016, 8710432. [Google Scholar] [CrossRef] [PubMed]
- Karbownik-Lewińska, M.; Stępniak, J.; Lewiński, A. High level of oxidized nucleosides in thyroid mitochondrial DNA; damaging effects of Fenton reaction substrates. J. Diabetes Res. 2012, 5, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Messner, D.J.; Rhieu, B.H.; Kowdley, K.V. Iron overload causes oxidative stress and impaired insulin signaling in AML-12 hepatocytes. Dig. Dis. Sci. 2013, 58, 1899–18908. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kose, T.; Vera-Aviles, M.; Sharp, P.A.; Latunde-Dada, G.O. Curcumin and (−)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells against Iron Toxicity and Erastin-Induced Ferroptosis. Pharmaceuticals 2019, 12, 26. https://doi.org/10.3390/ph12010026
Kose T, Vera-Aviles M, Sharp PA, Latunde-Dada GO. Curcumin and (−)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells against Iron Toxicity and Erastin-Induced Ferroptosis. Pharmaceuticals. 2019; 12(1):26. https://doi.org/10.3390/ph12010026
Chicago/Turabian StyleKose, Tugba, Mayra Vera-Aviles, Paul A. Sharp, and Gladys O. Latunde-Dada. 2019. "Curcumin and (−)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells against Iron Toxicity and Erastin-Induced Ferroptosis" Pharmaceuticals 12, no. 1: 26. https://doi.org/10.3390/ph12010026
APA StyleKose, T., Vera-Aviles, M., Sharp, P. A., & Latunde-Dada, G. O. (2019). Curcumin and (−)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells against Iron Toxicity and Erastin-Induced Ferroptosis. Pharmaceuticals, 12(1), 26. https://doi.org/10.3390/ph12010026