Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection
<p>Schematic illustrating how <span class="html-italic">Chlamydia</span> infections can activate neutrophils, which can contribute to pathology and host tissue damage. Top: Epithelial cells are infected with <span class="html-italic">Chlamydia</span>, which causes the release of pro-inflammatory cytokines and chemokines such as IL-8, IL-6, GM-CSF, and CXCL1. These cytokines and chemokines promote the adhesion of circulating neutrophils to endothelial cells. The circulating neutrophils then undergo conformational change that allows them to exit the bloodstream and enter the site of <span class="html-italic">Chlamydia</span> infection. The cytokines also promote the activation and survival of present neutrophils. These activated neutrophils increase production of ROS, which can cause directly oxidative damage to host cells. ROS can also damage host cells by promoting neutrophil phagocytosis, degranulation, and NET release. (<b>A</b>) Neutrophil degranulation can damage host cells by releasing of MMPs, such as MMP-9, which can disrupt the basal lamina that the FRT epithelial cells are anchored to. This can cause the epithelial cells to disseminate, potentially allowing spread of the infection. In addition, degradation of the basal lamina by MMPs can promote fibrosis during tissue repair. MMPs are also able to regulate different chemokines and cytokines, which can increase neutrophil recruitment to the site of infection. (<b>B</b>) <span class="html-italic">Chlamydia</span> can survive in neutrophils for several hours; therefore, neutrophil phagocytosis can contribute to pathology by allowing <span class="html-italic">Chlamydia</span> to disseminate to other areas of the FRT by utilizing neutrophils as a method of transportation and protection against immune surveillance. Infected neutrophils can also die in response to infection, thus releasing DAMPs that promote macrophage activation and cytokine release. Several of these macrophage-secreted cytokines can promote neutrophil recruitment, thus triggering a positive feedback loop. (<b>C</b>) NET release can directly and indirectly damage host cells. NET release causes histones and anti-microbial products to be released into the extracellular space, where they can be cytotoxic to other cells and/or function as DAMPs to promote a pro-inflammatory environment. Macrophages also release pro-inflammatory cytokines in response to NETs, promoting neutrophil influx.</p> "> Figure 2
<p>Schematic illustrating neutrophil-mediated mechanisms of protection against <span class="html-italic">Chlamydia</span>. Neutrophils can provide protection by three main mechanisms: degranulation, phagocytosis, and NET release. (<b>A</b>) During degranulation, neutrophils can release human cathelicidin LL-37, which has strong anti-<span class="html-italic">Chlamydia</span> activity. Lactoferrin is also released during degranulation, which can block entry of <span class="html-italic">Chlamydia</span> into host cells and decrease the secretion of pro-inflammatory cytokines during infection, potentially reducing tissue damage. (<b>B</b>) Neutrophils can also provide protection against <span class="html-italic">Chlamydia</span> infection by phagocytosing and killing the engulfed bacteria in the presence of IFN-γ and <span class="html-italic">Chlamydia</span>-specific antibodies. (<b>C</b>) NET release, which can directly kill and/or prevent the dissemination of pathogens, is another way that neutrophils might provide protection.</p> "> Figure 3
<p>Schematic illustrating how <span class="html-italic">Chlamydia</span> can disrupt neutrophil-mediated protection. (<b>A</b>) CPAF can cleave the FPR2 receptor on the surface of neutrophils, which disrupts PI3K and MAPK signaling. The disruption of these signaling pathways can prevent neutrophils from degranulating or performing NET release. Another mechanism of anti-neutrophil activity by CPAF is the degradation of LL-37. This prevents LL-37 from being able to perform anti-<span class="html-italic">Chlamydia</span> functions, enhancing host cell infection. (<b>B</b>) Pgp3 can form a stable complex with LL-37, limiting the anti-<span class="html-italic">Chlamydia</span> functions of LL-37. The presence of Pgp3 can directly interfere with LL-37’s ability to prevent <span class="html-italic">Chlamydia</span> infection in host cells, and Pgp3/LL-37 complexes can delay neutrophil migration to the site of infection. Pgp3, free or complexed with LL-37, promotes the release of the pro-inflammatory cytokines IL-6 and IL-8 by neutrophils, which can contribute to the pro-inflammatory environment at the site of infection. (<b>C</b>) CT135 can destroy neutrophils that have taken up <span class="html-italic">Chlamydia</span> EBs. The presence of CT135 can trigger neutrophil cell death through TLR2/MyD88 signaling, which triggers the NLRP3 inflammasome. This results in the release of pro-inflammatory cytokines, such as IL-1β, and DAMPs, such as extracellular ATP. Macrophages can recognize the presence of extracellular ATP through the P2X7 receptor, which results in inflammasome activation and the release of pro-inflammatory cytokines, such as IL-1β. (<b>D</b>) cHtrA can cleave LL-37, thus preventing the anti-<span class="html-italic">Chlamydia</span> functions of LL-37. In addition, cHtrA can also degrade ECM components, which could promote <span class="html-italic">Chlamydia</span> spreading as infected cells are released and travel through the FRT.</p> ">
Abstract
:1. Introduction
2. Neutrophil Functions in Host Response to Pathogens
2.1. Phagocytosis
2.2. NETosis
2.3. Degranulation
3. Contributions of Neutrophils to Chlamydia-Associated Pathology
3.1. Increased Neutrophil Recruitment, Activation, and Survival Can Promote Chlamydia-Associated Pathology
3.2. The Release of ROS by Neutrophils as a Contributor to Immunopathology
3.3. Neutrophil Degranulation as a Contributor to Immunopathology
3.4. Neutrophil Phagocytosis as a Contributor to Immunopathology
3.5. NET Release as a Contributor to Immunopathology
4. Protective Roles of Neutrophils Against Chlamydia Infection
4.1. Neutrophil Degranulation as a Contributor to Immune-Mediated Protection
4.2. Neutrophil Phagocytosis as a Contributor to Immune-Mediated Protection
4.3. NET Release as a Contributor to Immune-Mediated Protection
5. Modulation of Neutrophils by Chlamydia Proteins
5.1. Chlamydial Protease-like Activity Factor (CPAF)
5.2. Plasmid Gene Protein 3 (Pgp3)
5.3. Chlamydia High-Temperature Requirement Protein A (cHtrA)
5.4. CT135
6. Future Directions for Research and Implications for Chlamydia Vaccine Development
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elwell, C.; Mirrashidi, K.; Engel, J. Chlamydia Cell Biology and Pathogenesis. Nat. Rev. Microbiol. 2016, 14, 385–400. [Google Scholar] [CrossRef]
- Tamura, A.; Matsumoto, A.; Manire, G.P.; Higashi, N. Electron Microscopic Observations on the Structure of the Envelopes of Mature Elementary Bodies and Developmental Reticulate Forms of Chlamydia psittaci. J. Bacteriol. 1971, 105, 355–360. [Google Scholar] [CrossRef]
- Rihl, M. Persistent Infection of Chlamydia in Reactive Arthritis. Ann. Rheum. Dis. 2006, 65, 281–284. [Google Scholar] [CrossRef]
- Stirling, P.; Richmond, S. The Developmental Cycle of Chlamydia trachomatis in McCoy Cells Treated with Cytochalasin B. J. Gen. Microbiol. 1977, 100, 31–42. [Google Scholar] [CrossRef]
- Campbell, S.; Richmond, S.J.; Yates, P. The Development of Chlamydia trachomatis Inclusions within the Host Eukaryotic Cell during Interphase and Mitosis. Microbiology 1989, 135, 1153–1165. [Google Scholar] [CrossRef]
- Mackern-Oberti, J.P.; Maccioni, M.; Breser, M.L.; Eley, A.; Miethke, T.; Rivero, V.E. Innate Immunity in the Male Genital Tract: Chlamydia trachomatis Induces Keratinocyte-Derived Chemokine Production in Prostate, Seminal Vesicle and Epididymis/Vas Deferens Primary Cultures. J. Med. Microbiol. 2011, 60, 307–316. [Google Scholar] [CrossRef]
- Collar, A.L.; Linville, A.C.; Core, S.B.; Wheeler, C.M.; Geisler, W.M.; Peabody, D.S.; Chackerian, B.; Frietze, K.M. Antibodies to Variable Domain 4 Linear Epitopes of the Chlamydia trachomatis Major Outer Membrane Protein Are Not Associated with Chlamydia Resolution or Reinfection in Women. mSphere 2020, 5, e00654-20. [Google Scholar] [CrossRef]
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, Gonorrhoea, Trichomoniasis and Syphilis: Global Prevalence and Incidence Estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562P. [Google Scholar] [CrossRef]
- Sinka, K. The Global Burden of Sexually Transmitted Infections. Clin. Dermatol. 2024, 42, 110–118. [Google Scholar] [CrossRef]
- Collar, A.L.; Linville, A.C.; Core, S.B.; Frietze, K.M. Epitope-Based Vaccines against the Chlamydia trachomatis Major Outer Membrane Protein Variable Domain 4 Elicit Protection in Mice. Vaccines 2022, 10, 875. [Google Scholar] [CrossRef]
- Hosenfeld, C.B.; Workowski, K.A.; Berman, S.; Zaidi, A.; Dyson, J.; Mosure, D.; Bolan, G.; Bauer, H.M. Repeat Infection With Chlamydia and Gonorrhea Among Females: A Systematic Review of the Literature. Sex. Transm. Dis. 2009, 36, 478–489. [Google Scholar] [CrossRef]
- Gaydos, C.A.; Wright, C.; Wood, B.J.; Waterfield, G.; Hobson, S.; Quinn, T.C. Chlamydia trachomatis Reinfection Rates Among Female Adolescents Seeking Rescreening in School-Based Health Centers. Sex. Transm. Dis. 2008, 35, 233–237. [Google Scholar] [CrossRef]
- de la Maza, L.M.; Darville, T.L.; Pal, S. Chlamydia trachomatis Vaccines for Genital Infections: Where Are We and How Far Is There to Go? Expert. Rev. Vaccines 2021, 20, 421–435. [Google Scholar] [CrossRef]
- Vasilevsky, S.; Greub, G.; Nardelli-Haefliger, D.; Baud, D. Genital Chlamydia trachomatis: Understanding the Roles of Innate and Adaptive Immunity in Vaccine Research. Clin. Microbiol. Rev. 2014, 27, 346–370. [Google Scholar] [CrossRef]
- Farley, T.A.; Cohen, D.A.; Elkins, W. Asymptomatic Sexually Transmitted Diseases: The Case for Screening. Prev. Med. 2003, 36, 502–509. [Google Scholar] [CrossRef]
- Abraham, S.; Juel, H.B.; Bang, P.; Cheeseman, H.M.; Dohn, R.B.; Cole, T.; Kristiansen, M.P.; Korsholm, K.S.; Lewis, D.; Olsen, A.W.; et al. Safety and Immunogenicity of the Chlamydia Vaccine Candidate CTH522 Adjuvanted with CAF01 Liposomes or Aluminium Hydroxide: A First-in-Human, Randomised, Double-Blind, Placebo-Controlled, Phase 1 Trial. Lancet Infect. Dis. 2019, 19, 1091–1100. [Google Scholar] [CrossRef]
- Morrison, S.G.; Su, H.; Caldwell, H.D.; Morrison, R.P. Immunity to Murine Chlamydia Trachomatis Genital Tract Reinfection Involves B Cells and CD4+ T Cells but Not CD8+ T Cells. Infect. Immun. 2000, 68, 6979–6987. [Google Scholar] [CrossRef]
- Morrison, S.G.; Morrison, R.P. A Predominant Role for Antibody in Acquired Immunity to Chlamydial Genital Tract Reinfection. J. Immunol. 2005, 175, 7536–7542. [Google Scholar] [CrossRef]
- Farris, C.M.; Morrison, S.G.; Morrison, R.P. CD4+ T Cells and Antibody Are Required for Optimal Major Outer Membrane Protein Vaccine-Induced Immunity to Chlamydia Muridarum Genital Infection. Infect. Immun. 2010, 78, 4374–4383. [Google Scholar] [CrossRef]
- Olsen, A.W.; Follmann, F.; Erneholm, K.; Rosenkrands, I.; Andersen, P. Protection Against Chlamydia trachomatis Infection and Upper Genital Tract Pathological Changes by Vaccine-Promoted Neutralizing Antibodies Directed to the VD4 of the Major Outer Membrane Protein. J. Infect. Dis. 2015, 212, 978–989. [Google Scholar] [CrossRef]
- Redgrove, K.A.; McLaughlin, E.A. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front. Immunol. 2014, 5, 534. [Google Scholar] [CrossRef] [PubMed]
- Darville, T.; Albritton, H.L.; Zhong, W.; Dong, L.; O’Connell, C.M.; Poston, T.B.; Quayle, A.J.; Goonetilleke, N.; Wiesenfeld, H.C.; Hillier, S.L.; et al. Anti-chlamydia IgG and IgA Are Insufficient to Prevent Endometrial Chlamydia Infection in Women, and Increased Anti-chlamydia IgG Is Associated with Enhanced Risk for Incident Infection. Am. J. Rep. Immunol. 2019, 81, e13103. [Google Scholar] [CrossRef]
- Frazer, L.C.; O’Connell, C.M.; Andrews, C.W.; Zurenski, M.A.; Darville, T. Enhanced Neutrophil Longevity and Recruitment Contribute to the Severity of Oviduct Pathology during Chlamydia muridarum Infection. Infect. Immun. 2011, 79, 4029–4041. [Google Scholar] [CrossRef]
- Moore-Connors, J.M.; Fraser, R.; Halperin, S.A.; Wang, J. CD4+ CD25+ Foxp3+ Regulatory T Cells Promote Th17 Responses and Genital Tract Inflammation upon Intracellular Chlamydia muridarum Infection. J. Immunol. 2013, 191, 3430–3439. [Google Scholar] [CrossRef]
- Jendro, M.C.; Deutsch, T.; Körber, B.; Köhler, L.; Kuipers, J.G.; Krausse-Opatz, B.; Westermann, J.; Raum, E.; Zeidler, H. Infection of Human Monocyte-Derived Macrophages with Chlamydia trachomatis Induces Apoptosis of T Cells: A Potential Mechanism for Persistent Infection. Infect. Immun. 2000, 68, 6704–6711. [Google Scholar] [CrossRef]
- Zuck, M.; Ellis, T.; Venida, A.; Hybiske, K. Extrusions Are Phagocytosed and Promote Chlamydia Survival within Macrophages: Extrusions Are Phagocytosed and Promote Chlamydia Survival within Macrophages. Cell. Microbiol. 2017, 19, e12683. [Google Scholar] [CrossRef]
- Murthy, A.K.; Li, W.; Chaganty, B.K.R.; Kamalakaran, S.; Guentzel, M.N.; Seshu, J.; Forsthuber, T.G.; Zhong, G.; Arulanandam, B.P. Tumor Necrosis Factor Alpha Production from CD8+ T Cells Mediates Oviduct Pathological Sequelae Following Primary Genital Chlamydia muridarum Infection. Infect. Immun. 2011, 79, 2928–2935. [Google Scholar] [CrossRef]
- Labuda, J.C.; McSorley, S.J. Diversity in the T Cell Response to Chlamydia-Sum Are Better than One. Immunol. Lett. 2018, 202, 59–64. [Google Scholar] [CrossRef]
- Register, K.B.; Morgan, P.A.; Wyrick, P.B. Interaction between Chlamydia spp. and Human Polymorphonuclear Leukocytes in Vitro. Infect. Immun. 1986, 52, 664–670. [Google Scholar] [CrossRef]
- Gierlikowska, B.; Stachura, A.; Gierlikowski, W.; Demkow, U. Phagocytosis, Degranulation and Extracellular Traps Release by Neutrophils—The Current Knowledge, Pharmacological Modulation and Future Prospects. Front. Pharmacol. 2021, 12, 666732. [Google Scholar] [CrossRef]
- Metzler, K.D.; Goosmann, C.; Lubojemska, A.; Zychlinsky, A.; Papayannopoulos, V. A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase Release and Actin Dynamics during NETosis. Cell Rep. 2014, 8, 883–896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Aiyasiding, X.; Li, W.; Liao, H.; Tang, Q. Neutrophil Degranulation and Myocardial Infarction. Cell Commun. Signal 2022, 20, 50. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.A.; Natarajan, S.; Ruther, P.; Wisse, A.; Chang, M.H.; Ault, K.A. Chlamydia trachomatis Infection Induces Mucosal Addressin Cell Adhesion Molecule–1 and Vascular Cell Adhesion Molecule–1, Providing an Immunologic Link between the Fallopian Tube and Other Mucosal Tissues. J. Infect. Dis. 2001, 184, 885–891. [Google Scholar] [CrossRef] [PubMed]
- McEver, R.P. Rolling Back Neutrophil Adhesion. Nat. Immunol. 2010, 11, 282–284. [Google Scholar] [CrossRef]
- Lee, J.; Sohn, J.; Ryu, S.Y.; Hong, C.; Moon, K.D.; Park, J. A Novel Human Anti- VCAM -1 Monoclonal Antibody Ameliorates Airway Inflammation and Remodelling. J. Cell. Mol. Med. 2013, 17, 1271–1281. [Google Scholar] [CrossRef]
- Rosales, C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol. 2018, 9, 113. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil Extracellular Traps in Immunity and Disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Lee, W.L.; Harrison, R.E.; Grinstein, S. Phagocytosis by Neutrophils. Microbes Infect. 2003, 5, 1299–1306. [Google Scholar] [CrossRef]
- Manfredi, A.A.; Ramirez, G.A.; Rovere-Querini, P.; Maugeri, N. The Neutrophil’s Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front. Immunol. 2018, 9, 288. [Google Scholar] [CrossRef]
- Herant, M.; Heinrich, V.; Dembo, M. Mechanics of Neutrophil Phagocytosis: Experiments and Quantitative Models. J. Cell Sci. 2006, 119, 1903–1913. [Google Scholar] [CrossRef]
- Jaconi, M.E.; Lew, D.P.; Carpentier, J.L.; Magnusson, K.E.; Sjögren, M.; Stendahl, O. Cytosolic Free Calcium Elevation Mediates the Phagosome-Lysosome Fusion during Phagocytosis in Human Neutrophils. J. Cell Biol. 1990, 110, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.Y.; Miralda, I.; Armstrong, C.L.; Uriarte, S.M.; Bagaitkar, J. The Roles of NADPH Oxidase in Modulating Neutrophil Effector Responses. Mol. Oral Microbiol. 2019, 34, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Belostocki, K.; Park, M.-S.; Redecha, P.B.; Masuda, E.; Salmon, J.E.; Pricop, L. FcγRIIa Is a Target for Modulation by TNFα in Human Neutrophils. Clin. Immunol. 2005, 117, 78–86. [Google Scholar] [CrossRef]
- Moxey-Mims, M.M.; Simms, H.H.; Frank, M.M.; Lin, E.Y.; Gaither, T.A. The Effects of IL-1, IL-2, and Tumor Necrosis Factor on Polymorphonuclear Leukocyte Fc Gamma Receptor-Mediated Phagocytosis. IL-2 down-Regulates the Effect of Tumor Necrosis Factor. J. Immunol. 1991, 147, 1823–1830. [Google Scholar] [CrossRef]
- Boero, E.; Gorham, R.D.; Francis, E.A.; Brand, J.; Teng, L.H.; Doorduijn, D.J.; Ruyken, M.; Muts, R.M.; Lehmann, C.; Verschoor, A.; et al. Purified Complement C3b Triggers Phagocytosis and Activation of Human Neutrophils via Complement Receptor 1. Sci. Rep. 2023, 13, 274. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Gigon, L.; Fettrelet, T.; Miholic, M.; McLeish, K.R.; Yousefi, S.; Stojkov, D.; Simon, H.-U. Syntaxin-4 and SNAP23 Are Involved in Neutrophil Degranulation, but Not in the Release of Mitochondrial DNA during NET Formation. Front. Immunol. 2023, 14, 1272699. [Google Scholar] [CrossRef]
- Vorobjeva, N.V. Neutrophil Extracellular Traps: New Aspects. Mosc. Univ. Biol. Sci. Bull. 2020, 75, 173–188. [Google Scholar] [CrossRef]
- Rochael, N.C.; Guimarães-Costa, A.B.; Nascimento, M.T.C.; DeSouza-Vieira, T.S.; Oliveira, M.P.; Garcia e Souza, L.F.; Oliveira, M.F.; Saraiva, E.M. Classical ROS-Dependent and Early/Rapid ROS-Independent Release of Neutrophil Extracellular Traps Triggered by Leishmania Parasites. Sci. Rep. 2015, 5, 18302. [Google Scholar] [CrossRef]
- Pilsczek, F.H.; Salina, D.; Poon, K.K.H.; Fahey, C.; Yipp, B.G.; Sibley, C.D.; Robbins, S.M.; Green, F.H.Y.; Surette, M.G.; Sugai, M.; et al. A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus. J. Immunol. 2010, 185, 7413–7425. [Google Scholar] [CrossRef]
- Yipp, B.G.; Petri, B.; Salina, D.; Jenne, C.N.; Scott, B.N.V.; Zbytnuik, L.D.; Pittman, K.; Asaduzzaman, M.; Wu, K.; Meijndert, H.C.; et al. Infection-Induced NETosis Is a Dynamic Process Involving Neutrophil Multitasking in Vivo. Nat. Med. 2012, 18, 1386–1393. [Google Scholar] [CrossRef] [PubMed]
- Eichelberger, K.R.; Goldman, W.E. Manipulating Neutrophil Degranulation as a Bacterial Virulence Strategy. PLoS Pathog. 2020, 16, e1009054. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yabluchanskiy, A.; Lindsey, M.L. Neutrophil Roles in Left Ventricular Remodeling Following Myocardial Infarction. Fibrogenesis Tissue Repair. 2013, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Curciarello, R.; Sobande, T.; Jones, S.; Giuffrida, P.; Di Sabatino, A.; Docena, G.H.; MacDonald, T.T.; Kok, K. Human Neutrophil Elastase Proteolytic Activity in Ulcerative Colitis Favors the Loss of Function of Therapeutic Monoclonal Antibodies. JIR 2020, 13, 233–243. [Google Scholar] [CrossRef]
- Genschmer, K.R.; Russell, D.W.; Lal, C.; Szul, T.; Bratcher, P.E.; Noerager, B.D.; Abdul Roda, M.; Xu, X.; Rezonzew, G.; Viera, L.; et al. Activated PMN Exosomes: Pathogenic Entities Causing Matrix Destruction and Disease in the Lung. Cell 2019, 176, 113–126.e15. [Google Scholar] [CrossRef]
- Wang, J.; Sjöberg, S.; Tang, T.-T.; Öörni, K.; Wu, W.; Liu, C.; Secco, B.; Tia, V.; Sukhova, G.K.; Fernandes, C.; et al. Cathepsin G Activity Lowers Plasma LDL and Reduces Atherosclerosis. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 2174–2183. [Google Scholar] [CrossRef]
- Lee, H.Y.; Schripsema, J.H.; Sigar, I.M.; Murray, C.M.; Lacy, S.R.; Ramsey, K.H. A Link between Neutrophils and Chronic Disease Manifestations of Chlamydia muridarum Urogenital Infection of Mice. FEMS Immunol. Med. Microbiol. 2010, 59, 108–116. [Google Scholar] [CrossRef]
- Lijek, R.S.; Helble, J.D.; Olive, A.J.; Seiger, K.W.; Starnbach, M.N. Pathology after Chlamydia trachomatis Infection Is Driven by Nonprotective Immune Cells That Are Distinct from Protective Populations. Proc. Natl. Acad. Sci. USA 2018, 115, 2216–2221. [Google Scholar] [CrossRef]
- Lacy, H.M.; Bowlin, A.K.; Hennings, L.; Scurlock, A.M.; Nagarajan, U.M.; Rank, R.G. Essential Role for Neutrophils in Pathogenesis and Adaptive Immunity in Chlamydia Caviae Ocular Infections. Infect. Immun. 2011, 79, 1889–1897. [Google Scholar] [CrossRef]
- Lundy, S.R.; Abney, K.; Ellerson, D.; Igietseme, J.U.; Carroll, D.; Eko, F.O.; Omosun, Y.O. MiR-378b Modulates Chlamydia-Induced Upper Genital Tract Pathology. Pathogens 2021, 10, 566. [Google Scholar] [CrossRef]
- Brunham, R.C.; Rey-Ladino, J. Immunology of Chlamydia Infection: Implications for a Chlamydia trachomatis Vaccine. Nat. Rev. Immunol. 2005, 5, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Lehr, S.; Vier, J.; Häcker, G.; Kirschnek, S. Activation of Neutrophils by Chlamydia trachomatis-Infected Epithelial Cells Is Modulated by the Chlamydial Plasmid. Microbes Infect. 2018, 20, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Schripsema, J.H.; Sigar, I.M.; Lacy, S.R.; Kasimos, J.N.; Murray, C.M.; Ramsey, K.H. A Role for CXC Chemokine Receptor-2 in the Pathogenesis of Urogenital Chlamydia muridarum Infection in Mice: CXCR2 and Mouse Urogenital Chlamydial Disease. FEMS Immunol. Med. Microbiol. 2010, 60, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Metzemaekers, M.; Gouwy, M.; Proost, P. Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords. Cell Mol. Immunol. 2020, 17, 433–450. [Google Scholar] [CrossRef]
- Wiesenfeld, H.C.; Heine, R.P.; Krohn, M.A.; Hillier, S.L.; Amortegui, A.A.; Nicolazzo, M.; Sweet, R.L. Association between Elevated Neutrophil Defensin Levels and Endometritis. J. Infect. Dis. 2002, 186, 792–797. [Google Scholar] [CrossRef]
- Fox, S.; Leitch, A.E.; Duffin, R.; Haslett, C.; Rossi, A.G. Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease. J. Innate Immun. 2010, 2, 216–227. [Google Scholar] [CrossRef]
- Greenlee-Wacker, M.C. Clearance of Apoptotic Neutrophils and Resolution of Inflammation. Immunol. Rev. 2016, 273, 357–370. [Google Scholar] [CrossRef]
- Singhal, A.; Kumar, S. Neutrophil and Remnant Clearance in Immunity and Inflammation. Immunology 2022, 165, 22–43. [Google Scholar] [CrossRef]
- Reot, L.; Adapen, C.; Cannou, C.; Nunez, N.; Lakoum, S.; Pimienta, C.; Lacroix, L.; Binois, O.; Frydman, N.; Nugeyre, M.-T.; et al. Seminal Plasma Inhibits Chlamydia trachomatis Infection in Vitro, and May Have Consequences on Mucosal Immunity. Sci. Rep. 2024, 14, 21050. [Google Scholar] [CrossRef]
- Boncompain, G.; Schneider, B.; Delevoye, C.; Kellermann, O.; Dautry-Varsat, A.; Subtil, A. Production of Reactive Oxygen Species Is Turned On and Rapidly Shut Down in Epithelial Cells Infected with Chlamydia trachomatis. Infect. Immun. 2010, 78, 80–87. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Fang, C.; Li, Z. Insights into Innate Immune Cell Evasion by Chlamydia trachomatis. Front. Immunol. 2024, 15, 1289644. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.T.; Green, E.R.; Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell. Infect. Microbiol. 2017, 7, 373. [Google Scholar] [CrossRef] [PubMed]
- Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology 2013, 28, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.H.; Sigar, I.M.; Rana, S.V.; Gupta, J.; Holland, S.M.; Byrne, G.I. Role for Inducible Nitric Oxide Synthase in Protection from Chronic Chlamydia trachomatis Urogenital Disease in Mice and Its Regulation by Oxygen Free Radicals. Infect. Immun. 2001, 69, 7374–7379. [Google Scholar] [CrossRef]
- Imtiaz, M.T.; Schripsema, J.H.; Sigar, I.M.; Kasimos, J.N.; Ramsey, K.H. Inhibition of Matrix Metalloproteinases Protects Mice from Ascending Infection and Chronic Disease Manifestations Resulting from Urogenital Chlamydia muridarum Infection. Infect. Immun. 2006, 74, 5513–5521. [Google Scholar] [CrossRef]
- Imtiaz, M.T.; Distelhorst, J.T.; Schripsema, J.H.; Sigar, I.M.; Kasimos, J.N.; Lacy, S.R.; Ramsey, K.H. A Role for Matrix Metalloproteinase-9 in Pathogenesis of Urogenital Chlamydia muridarum Infection in Mice. Microbes Infect. 2007, 9, 1561–1566. [Google Scholar] [CrossRef]
- Gaide Chevronnay, H.P.; Selvais, C.; Emonard, H.; Galant, C.; Marbaix, E.; Henriet, P. Regulation of Matrix Metalloproteinases Activity Studied in Human Endometrium as a Paradigm of Cyclic Tissue Breakdown and Regeneration. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2012, 1824, 146–156. [Google Scholar] [CrossRef]
- Ramsey, K.H.; Sigar, I.M.; Schripsema, J.H.; Shaba, N.; Cohoon, K.P. Expression of Matrix Metalloproteinases Subsequent to Urogenital Chlamydia muridarum Infection of Mice. Infect. Immun. 2005, 73, 6962–6973. [Google Scholar] [CrossRef]
- Song, J.; Wu, C.; Zhang, X.; Sorokin, L.M. In Vivo Processing of CXCL5 (LIX) by Matrix Metalloproteinase (MMP)-2 and MMP-9 Promotes Early Neutrophil Recruitment in IL-1β–Induced Peritonitis. J. Immunol. 2013, 190, 401–410. [Google Scholar] [CrossRef]
- Schönbeck, U.; Mach, F.; Libby, P. Generation of Biologically Active IL-1β by Matrix Metalloproteinases: A Novel Caspase-1-Independent Pathway of IL-1β Processing. J. Immunol. 1998, 161, 3340–3346. [Google Scholar] [CrossRef]
- Ault, K.A.; Kelly, K.A.; Ruther, P.E.; Izzo, A.A.; Izzo, L.S.; Sigar, I.M.; Ramsey, K.H. Chlamydia trachomatis Enhances the Expression of Matrix Metalloproteinases in an in Vitro Model of the Human Fallopian Tube Infection. Am. J. Obstet. Gynecol. 2002, 187, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Shamamian, P.; Schwartz, J.D.; Pocock, B.J.Z.; Monea, S.; Whiting, D.; Marcus, S.G.; Mignatti, P. Activation of Progelatinase A (MMP-2) by Neutrophil Elastase, Cathepsin G, and Proteinase-3: A Role for Inflammatory Cells in Tumor Invasion and Angiogenesis. J. Cell. Physiol. 2001, 189, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Grasse, M.; Rosenkrands, I.; Olsen, A.; Follmann, F.; Dietrich, J. A Flow Cytometry-based Assay to Determine the Phagocytic Activity of Both Clinical and Nonclinical Antibody Samples against Chlamydia trachomatis. Cytometry 2018, 93, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Naglak, E.K.; Morrison, S.G.; Morrison, R.P. Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia. Infect. Immun. 2017, 85, e00409-17. [Google Scholar] [CrossRef]
- Yu, H.; Geisler, W.M.; Dai, C.; Gupta, K.; Cutter, G.; Brunham, R.C. Antibody Responses to Chlamydia trachomatis Vaccine Candidate Antigens in Chlamydia-Infected Women and Correlation with Antibody-Mediated Phagocytosis of Elementary Bodies. Front. Cell. Infect. Microbiol. 2024, 14, 1342621. [Google Scholar] [CrossRef]
- Yang, C.; Lei, L.; Collins, J.W.M.; Briones, M.; Ma, L.; Sturdevant, G.L.; Su, H.; Kashyap, A.K.; Dorward, D.; Bock, K.W.; et al. Chlamydia Evasion of Neutrophil Host Defense Results in NLRP3 Dependent Myeloid-Mediated Sterile Inflammation through the Purinergic P2X7 Receptor. Nat. Commun. 2021, 12, 5454. [Google Scholar] [CrossRef]
- Silk, E.; Zhao, H.; Weng, H.; Ma, D. The Role of Extracellular Histone in Organ Injury. Cell Death Dis. 2017, 8, e2812. [Google Scholar] [CrossRef]
- Chen, H.; Peng, B.; Yang, C.; Xie, L.; Zhong, S.; Sun, Z.; Li, Z.; Wang, C.; Liu, X.; Tang, X.; et al. The Role of an Enzymatically Inactive CPAF Mutant Vaccination in Chlamydia muridarum Genital Tract Infection. Microb. Pathog. 2021, 160, 105137. [Google Scholar] [CrossRef]
- Warnatsch, A.; Ioannou, M.; Wang, Q.; Papayannopoulos, V. Neutrophil Extracellular Traps License Macrophages for Cytokine Production in Atherosclerosis. Science 2015, 349, 316–320. [Google Scholar] [CrossRef]
- Vicetti Miguel, R.D.; Quispe Calla, N.E.; Pavelko, S.D.; Cherpes, T.L. Intravaginal Chlamydia trachomatis Challenge Infection Elicits TH1 and TH17 Immune Responses in Mice That Promote Pathogen Clearance and Genital Tract Damage. PLoS ONE 2016, 11, e0162445. [Google Scholar] [CrossRef]
- Andrew, D.W.; Cochrane, M.; Schripsema, J.H.; Ramsey, K.H.; Dando, S.J.; O’Meara, C.P.; Timms, P.; Beagley, K.W. The Duration of Chlamydia muridarum Genital Tract Infection and Associated Chronic Pathological Changes Are Reduced in IL-17 Knockout Mice but Protection Is Not Increased Further by Immunization. PLoS ONE 2013, 8, e76664. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, K.; Brown, N.; Kaye, P.M.; Lacey, C.J. Cervico-Vaginal Immunoglobulin G Levels Increase Post-Ovulation Independently of Neutrophils. PLoS ONE 2014, 9, e114824. [Google Scholar] [CrossRef] [PubMed]
- Barteneva, N.; Theodor, I.; Peterson, E.M.; de la Maza, L.M. Role of Neutrophils in Controlling Early Stages of a Chlamydia trachomatis Infection. Infect. Immun. 1996, 64, 4830–4833. [Google Scholar] [CrossRef] [PubMed]
- Lepanto, M.S.; Rosa, L.; Paesano, R.; Valenti, P.; Cutone, A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019, 24, 1323. [Google Scholar] [CrossRef]
- Filardo, S.; Di Pietro, M.; Tranquilli, G.; Latino, M.A.; Recine, N.; Porpora, M.G.; Sessa, R. Selected Immunological Mediators and Cervical Microbial Signatures in Women with Chlamydia trachomatis Infection. mSystems 2019, 4, e00094-19. [Google Scholar] [CrossRef]
- Sessa, R.; Di Pietro, M.; Filardo, S.; Bressan, A.; Rosa, L.; Cutone, A.; Frioni, A.; Berlutti, F.; Paesano, R.; Valenti, P. Effect of Bovine Lactoferrin on Chlamydia trachomatis Infection and Inflammation. Biochem. Cell Biol. 2017, 95, 34–40. [Google Scholar] [CrossRef]
- Lang, J.; Yang, N.; Deng, J.; Liu, K.; Yang, P.; Zhang, G.; Jiang, C. Inhibition of SARS Pseudovirus Cell Entry by Lactoferrin Binding to Heparan Sulfate Proteoglycans. PLoS ONE 2011, 6, e23710. [Google Scholar] [CrossRef]
- Di Pietro, M.; Filardo, S.; Romano, S.; Sessa, R. Chlamydia trachomatis and Chlamydia Pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019, 7, 140. [Google Scholar] [CrossRef]
- Tang, L.; Chen, J.; Zhou, Z.; Yu, P.; Yang, Z.; Zhong, G. Chlamydia-Secreted Protease CPAF Degrades Host Antimicrobial Peptides. Microbes Infect. 2015, 17, 402–408. [Google Scholar] [CrossRef]
- Scott, A.; Weldon, S.; Buchanan, P.J.; Schock, B.; Ernst, R.K.; McAuley, D.F.; Tunney, M.M.; Irwin, C.R.; Elborn, J.S.; Taggart, C.C. Evaluation of the Ability of LL-37 to Neutralise LPS In Vitro and Ex Vivo. PLoS ONE 2011, 6, e26525. [Google Scholar] [CrossRef]
- Hybiske, K.; Paktinat, S.; Newman, K.; Patton, D.; Khosropour, C.; Roxby, A.C.; Mugo, N.R.; Oluoch, L.; Ngure, K.; Suchland, R.; et al. Antibodies from Chlamydia-Infected Individuals Facilitate Phagocytosis via Fc Receptors. Infect. Immun. 2024, 92, e00503-23. [Google Scholar] [CrossRef] [PubMed]
- Ellis, T.N.; Beaman, B.L. Interferon-γ Activation of Polymorphonuclear Neutrophil Function. Immunology 2004, 112, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jönsson, F. Expression, Role, and Regulation of Neutrophil Fcγ Receptors. Front. Immunol. 2019, 10, 1958. [Google Scholar] [CrossRef] [PubMed]
- Rajeeve, K.; Das, S.; Prusty, B.K.; Rudel, T. Chlamydia trachomatis Paralyses Neutrophils to Evade the Host Innate Immune Response. Nat. Microbiol. 2018, 3, 824–835. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, L.; Shao, L.; Zhang, Y.; Zhang, T.; Schenken, R.; Valdivia, R.; Zhong, G. The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract. Infect. Immun. 2016, 84, 2697–2702. [Google Scholar] [CrossRef]
- Cong, Y.; Jupelli, M.; Guentzel, M.N.; Zhong, G.; Murthy, A.K.; Arulanandam, B.P. Intranasal Immunization with Chlamydial Protease-like Activity Factor and CpG Deoxynucleotides Enhances Protective Immunity against Genital Chlamydia muridarum Infection. Vaccine 2007, 25, 3773–3780. [Google Scholar] [CrossRef]
- Jorgensen, I.; Bednar, M.M.; Amin, V.; Davis, B.K.; Ting, J.P.Y.; McCafferty, D.G.; Valdivia, R.H. The Chlamydia Protease CPAF Regulates Host and Bacterial Proteins to Maintain Pathogen Vacuole Integrity and Promote Virulence. Cell Host Microbe 2011, 10, 21–32. [Google Scholar] [CrossRef]
- Zhong, G.; Fan, P.; Ji, H.; Dong, F.; Huang, Y. Identification of a Chlamydial Protease–Like Activity Factor Responsible for the Degradation of Host Transcription Factors. J. Exp. Med. 2001, 193, 935–942. [Google Scholar] [CrossRef]
- Christian, J.; Vier, J.; Paschen, S.A.; Häcker, G. Cleavage of the NF-κB Family Protein P65/RelA by the Chlamydial Protease-like Activity Factor (CPAF) Impairs Proinflammatory Signaling in Cells Infected with Chlamydiae. J. Biol. Chem. 2010, 285, 41320–41327. [Google Scholar] [CrossRef]
- Grimes, D.; Johnson, R.; Pashos, M.; Cummings, C.; Kang, C.; Sampedro, G.R.; Tycksen, E.; McBride, H.J.; Sah, R.; Lowell, C.A.; et al. ORAI1 and ORAI2 Modulate Murine Neutrophil Calcium Signaling, Cellular Activation, and Host Defense. Proc. Natl. Acad. Sci. USA 2020, 117, 24403–24414. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, J.-L.; Chen, K.; Yoshimura, T.; Liang, W.; Gong, W.; Li, X.; Huang, J.; McDermott, D.H.; Murphy, P.M.; et al. A Critical Role of Formyl Peptide Receptors in Host Defense against Escherichia coli. J. Immunol. 2020, 204, 2464–2473. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, W.; Hou, J.; Ma, M.; Zhu, C.; Wang, H.; Hou, S. Chlamydial-Secreted Protease Chlamydia High Temperature Requirement Protein A (cHtrA) Degrades Human Cathelicidin LL-37 and Suppresses Its Anti-Chlamydial Activity. Med. Sci. Monit. 2020, 26, e923909-1. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Sun, X.; Dong, X.; Lin, H.; Tang, L.; Xue, M.; Zhong, G. Chlamydial Plasmid-Encoded Virulence Factor Pgp3 Interacts with Human Cathelicidin Peptide LL-37 to Modulate Immune Response. Microbes Infect. 2019, 21, 50–55. [Google Scholar] [CrossRef]
- Hou, S.; Dong, X.; Yang, Z.; Li, Z.; Liu, Q.; Zhong, G. Chlamydial Plasmid-Encoded Virulence Factor Pgp3 Neutralizes the Antichlamydial Activity of Human Cathelicidin LL-37. Infect. Immun. 2015, 83, 4701–4709. [Google Scholar] [CrossRef]
- Zhou, Z.; Tian, Q.; Wang, L.; Zhong, G. Chlamydia Deficient in Plasmid-Encoded Glycoprotein 3 (pGP3) as an Attenuated Live Oral Vaccine. Infect. Immun. 2022, 90, e00472-21. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lei, L.; Gong, S.; Chen, D.; Flores, R.; Zhong, G. The Chlamydial Periplasmic Stress Response Serine Protease cHtrA Is Secreted into Host Cell Cytosol. BMC Microbiol. 2011, 11, 87. [Google Scholar] [CrossRef]
- Afford, S.C.; Pongracz, J.; Stockley, R.A.; Crocker, J.; Burnett, D. The Induction by Human Interleukin-6 of Apoptosis in the Promonocytic Cell Line U937 and Human Neutrophils. J. Biol. Chem. 1992, 267, 21612–21616. [Google Scholar] [CrossRef]
- Iula, L.; Keitelman, I.A.; Sabbione, F.; Fuentes, F.; Guzman, M.; Galletti, J.G.; Gerber, P.P.; Ostrowski, M.; Geffner, J.R.; Jancic, C.C.; et al. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils. Front. Immunol. 2018, 9, 269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilton, Z.E.R.; Jamus, A.N.; Core, S.B.; Frietze, K.M. Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection. Pathogens 2025, 14, 112. https://doi.org/10.3390/pathogens14020112
Wilton ZER, Jamus AN, Core SB, Frietze KM. Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection. Pathogens. 2025; 14(2):112. https://doi.org/10.3390/pathogens14020112
Chicago/Turabian StyleWilton, Zoe E. R., Andzoa N. Jamus, Susan B. Core, and Kathryn M. Frietze. 2025. "Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection" Pathogens 14, no. 2: 112. https://doi.org/10.3390/pathogens14020112
APA StyleWilton, Z. E. R., Jamus, A. N., Core, S. B., & Frietze, K. M. (2025). Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection. Pathogens, 14(2), 112. https://doi.org/10.3390/pathogens14020112