Ninoa T. cruzi Strain Modifies the Expression of microRNAs in Cardiac Tissue and Plasma During Chagas Disease Infection
<p>Infection and histology. (<b>a</b>) Histological section of regular mouse cardiac tissue. (<b>b</b>) Histological section of cardiac tissue during the acute phase. The presence of mature lymphocytes derived from amastigote nests is observed. (<b>c</b>) Histological section of cardiac tissue during the indeterminate phase. The arrow indicates amastigotes nests, and the square brackets highlight the inflammatory process.</p> "> Figure 2
<p>miRNA expression levels during the acute phase. (<b>a</b>) Expression levels in cardiac tissue infected with the Ninoa strain. (<b>b</b>) Expression levels in plasma from mice infected with the Ninoa strain. Cardiac tissue samples were normalized to U6, and plasma samples were normalized to cel-miR-39.</p> "> Figure 3
<p>miRNA expression levels during the indeterminate phase. (<b>a</b>) Expression levels in cardiac tissue infected with the Ninoa strain. (<b>b</b>) Expression levels in plasma from mice infected with the Ninoa strain. Cardiac tissue samples were normalized to U6, and plasma samples were normalized to cel-miR-39.</p> "> Figure 4
<p>miRNA expression levels in EVs. (<b>a</b>) Expression levels in plasma from mice infected with the Ninoa strain during the acute phase. (<b>b</b>) Expression levels in plasma from mice infected with the Ninoa strain during the indeterminate phase. Cardiac tissue samples were normalized to U6, and plasma samples were normalized to cel-miR-39.</p> "> Figure 5
<p>Bioinformatic analysis (<b>a</b>) Volcano plot showing underexpressed and overexpressed genes, with a fold-change less than −1 or greater than 1 and a <span class="html-italic">p</span>-value < 0.05. (<b>b</b>) Venn diagram illustrating the overlap of putative target genes for miR-1, miR-16, miR-208, and miR-208b from humans and mice, along with differentially expressed genes from Mouse Genome 430A 2.0 microarrays from the Affymetrix platform. (<b>c</b>) Enrichment pathways identified using ShinyGO v0.741 software and the number of participating genes in each pathway.</p> "> Figure 6
<p>miRNA-Target gene interaction network. Interaction network of miR-1, miR-16, miR-208, and miR-208b with 26 potential target genes involved in enriched signaling pathways. These genes are associated with inflammatory processes and <span class="html-italic">T. cruzi</span> virulence. Key genes include Nuclear Factor of Activated T cells 1 (NFATc1), Nuclear Factor of Activated T cells 5 (NFAT5), cAMP Responsive Element Binding Protein 1 (CREB1), B-cell lymphoma 2 (BCL2), and Glycogen Synthase Kinase 3 beta (GSK3B).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parasites and Mice
2.2. Experimental Infections by T. cruzi
2.3. Sample Collection
2.4. Histological Study of Ninoa TcI-Infected Mice
2.5. Isolation of Total RNA Enriched for miRNAs from Heart, Plasma, and Plasma EVs
2.6. Identification of Cardiac miRNAs by RT-qPCR
2.7. Bioinformatic Analysis
2.7.1. Target Gene Prediction for Each miRNA
2.7.2. Expression Microarray Analysis
2.7.3. Data Processing and Differentially Expressed Genes
2.7.4. Selection of Potential Candidate Genes
2.8. Statistical Analysis
3. Results
3.1. Histopathology Study
3.2. Cardiac-Specific miRNAs and miR-16 Expression in Ninoa TcI-Infected Mice
3.3. Expression of miRNAs in Plasma EVs from Ninoa TcI-Infected Mice
3.4. Prediction of miRNA Target Genes Associated with T. cruzi
3.5. Analysis of Interaction Networks
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinhaus, A.J.; Roberts, K.P. Anatomy of the Human Heart. In Handbook of Cardiac Anatomy, Physiology, and Devices; Iaizzo, P.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Ciarambino, T.; Menna, G.; Sansone, G.; Giordano, M. Cardiomyopathies: An Overview. Int. J. Mol. Sci. 2021, 22, 7722. [Google Scholar] [CrossRef]
- Tschöpe, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hübner, N.; et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Lannou, S.; Mansencal, N.; Couchoud, C.; Lassalle, M.; Dubourg, O.; Stengel, B.; Jacquelinet, C.; Charron, P. The Public Health Burden of Cardiomyopathies: Insights from a Nationwide Inpatient Study. J. Clin. Med. 2020, 9, 920. [Google Scholar] [CrossRef]
- Cecchi, F.; Tomberli, B.; Olivotto, I. Clinical and molecular classification of cardiomyopathies. Glob. Cardiol. Sci. Pract. 2012, 2012, 4. [Google Scholar] [CrossRef]
- Schultheiss, H.P.; Kühl, U.; Cooper, L.T. The management of myocarditis. Eur. Heart J. 2011, 32, 2616–2625. [Google Scholar] [CrossRef]
- Tanowitz, H.B.; Kirchhoff, L.V.; Simon, D.; Morris, S.A.; Weiss, L.M.; Wittner, M. Chagas’ disease. Clin. Microbiol. Rev. 1992, 5, 400–419. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 4 April 2024).
- Benziger, C.P.; do Carmo, G.A.L.; Ribeiro, A.L.P. Chagas Cardiomyopathy: Clinical Presentation and Management in the Americas. Cardiol. Clin. 2017, 35, 31–47. [Google Scholar] [CrossRef]
- Schijman, A.G.; Bisio, M.; Orellana, L.; Sued, M.; Duffy, T.; Mejia Jaramillo, A.M.; Cura, C.; Auter, F.; Veron, V.; Qvarnstrom, Y.; et al. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl. Trop. Dis. 2011, 5, e931. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.L.; Sabino, E.C.; Marcolino, M.S.; Salemi, V.M.; Ianni, B.M.; Fernandes, F.; Nastari, L.; Antunes, A.; Menezes, M.; Oliveira, C.D.; et al. Electrocardiographic abnormalities in Trypanosoma cruzi seropositive and seronegative former blood donors. PLoS Negl. Trop. Dis. 2013, 7, e2078. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Román, R.; Siles-Lucas, M. MicroRNAs in parasitic diseases: Potential for diagnosis and targeting. Mol. Biochem. Parasitol. 2012, 186, 81–86. [Google Scholar] [CrossRef]
- Naqvi, A.R.; Islam, M.N.; Choudhury, N.R.; Haq, Q.M. The fascinating world of RNA interference. Int. J. Biol. Sci. 2009, 5, 97–117. [Google Scholar] [CrossRef] [PubMed]
- Turchinovich, A.; Samatov, T.R.; Tonevitsky, A.G.; Burwinkel, B. Circulating miRNAs: Cell-cell communication function? Front. Genet. 2013, 4, 119. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.R.; Frade, A.F.; Santos, R.H.; Teixeira, P.C.; Baron, M.A.; Navarro, I.C.; Benvenuti, L.A.; Fiorelli, A.I.; Bocchi, E.A.; Stolf, N.A.; et al. MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy. Int. J. Cardiol. 2014, 175, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Linhares-Lacerda, L.; Granato, A.; Gomes-Neto, J.F.; Conde, L.; Freire-de-Lima, L.; de Freitas, E.O.; Freire-de-Lima, C.G.; Coutinho Barroso, S.P.; Jorge de Alcântara Guerra, R.; Pedrosa, R.C.; et al. Circulating Plasma MicroRNA-208a as Potential Biomarker of Chronic Indeterminate Phase of Chagas Disease. Front. Microbiol. 2018, 9, 269. [Google Scholar] [CrossRef]
- Bayer-Santos, E.; Aguilar-Bonavides, C.; Rodrigues, S.P.; Cordero, E.M.; Marques, A.F.; Varela-Ramirez, A.; Choi, H.; Yoshida, N.; da Silveira, J.F.; Almeida, I.C. Proteomic analysis of Trypanosoma cruzi secretome: Characterization of two populations of extracellular vesicles and soluble proteins. J. Proteome Res. 2013, 12, 883–897. [Google Scholar] [CrossRef]
- Ballinas-Verdugo, M.A.; Jiménez-Ortega, R.F.; Martínez-Martínez, E.; Rivas, N.; Contreras-López, E.A.; Carbó, R.; Sánchez, F.; Bojalil, R.; Márquez-Velasco, R.; Sánchez-Muñoz, F.; et al. Circulating miR-146a as a possible candidate biomarker in the indeterminate phase of Chagas disease. Biol. Res. 2021, 54, 21. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Chiguer, D.L.; Márquez-Navarro, A.; Nogueda-Torres, B.; de la Luz León-Ávila, G.; Pérez-Villanueva, J.; Hernández-Campos, A.; Castillo, R.; Ambrosio, J.R.; Nieto-Meneses, R.; Yépez-Mulia, L.; et al. In vitro and in vivo trypanocidal activity of some benzimidazole derivatives against two strains of Trypanosoma cruzi. Acta Trop. 2012, 122, 108–112. [Google Scholar] [CrossRef]
- Silva, G.K.; Costa, R.S.; Silveira, T.N.; Caetano, B.C.; Horta, C.V.; Gutierrez, F.R.; Guedes, P.M.; Andrade, W.A.; De Niz, M.; Gazzinelli, R.T.; et al. Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1β response and host resistance to Trypanosoma cruzi infection. J. Immunol. 2013, 191, 3373–3383. [Google Scholar] [CrossRef] [PubMed]
- Herreros-Cabello, A.; Callejas-Hernández, F.; Gironès, N.; Fresno, M. Trypanosoma cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes 2020, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.; Espinosa-Álvarez, O.; Ortiz, P.A.; Trejo-Varón, J.A.; Carranza, J.C.; Pinto, C.M.; Serrano, M.G.; Buck, G.A.; Camargo, E.P.; Teixeira, M.M. Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trop. 2015, 151, 166–177. [Google Scholar] [CrossRef]
- Brenière, S.F.; Waleckx, E.; Barnabé, C. Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory. PLoS Negl. Trop. Dis. 2016, 10, e0004792. [Google Scholar] [CrossRef]
- Ruíz-Sánchez, R.; León, M.P.; Matta, V.; Reyes, P.A.; López, R.; Jay, D.; Monteón, V.M. Trypanosoma cruzi isolates from Mexican and Guatemalan acute and chronic chagasic cardiopathy patients belong to Trypanosoma cruzi I. Mem. Inst. Oswaldo Cruz. 2005, 100, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Bosseno, M.F.; Barnabé, C.; Magallón Gastélum, E.; Lozano Kasten, F.; Ramsey, J.; Espinoza, B.; Brenière, S.F. Predominance of Trypanosoma cruzi lineage I in Mexico. J. Clin. Microbiol. 2002, 40, 627–632. [Google Scholar] [CrossRef]
- Bosseno, M.F.; Barnabé, C.; Sierra, M.J.; Kengne, P.; Guerrero, S.; Lozano, F.; Ezequiel, K.; Gastélum, M.; Brenière, S.F. Wild ecotopes and food habits of Triatoma longipennis infected by Trypanosoma cruzi lineages I and II in Mexico. Am. J. Trop. Med. Hyg. 2009, 80, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Cervantes, G.; Martínez-Ibarra, A.; Nogueda-Torres, B.; López-Orduña, E.; Alonso, A.L.; Perea, C.; Maldonado, T.; Hernández, J.M.; León-Avila, G. Identification by Q-PCR of Trypanosoma cruzi lineage and determination of blood meal sources in triatomine gut samples in Mexico. Parasitol. Int. 2013, 62, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Vizcaíno-Castillo, A.; Jiménez-Marín, A.; Espinoza, B. Exacerbated skeletal muscle inflammation and calcification in the acute phase of infection by Mexican Trypanosoma cruzi DTUI strain. BioMed Res. Int. 2014, 2014, 450389. [Google Scholar] [CrossRef] [PubMed]
- Dehesa-Rodríguez, G.; Martínez, I.; Bastida-Jaime, C.; Espinoza, B. Trypanosoma cruzi blood trypomastigotes induce intense skeletal and cardiac muscle damage and Th1/Th2 immune response in the acute phase of mice infected by the oral route. Acta Trop. 2022, 234, 106605. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, B.; Rico, T.; Sosa, S.; Oaxaca, E.; Vizcaino-Castillo, A.; Caballero, M.L.; Martínez, I. Mexican Trypanosoma cruzi T. cruzi I strains with different degrees of virulence induce diverse humoral and cellular immune responses in a murine experimental infection model. J. Biomed. Biotechnol. 2010, 2010, 890672. [Google Scholar] [CrossRef]
- Zhou, Q.; Schötterl, S.; Backes, D.; Brunner, E.; Hahn, J.K.; Ionesi, E.; Aidery, P.; Sticht, C.; Labeit, S.; Kandolf, R.; et al. Inhibition of miR-208b improves cardiac function in titin-based dilated cardiomyopathy. Int. J. Cardiol. 2017, 230, 634–641. [Google Scholar] [CrossRef]
- Callis, T.E.; Pandya, K.; Seok, H.Y.; Tang, R.H.; Tatsuguchi, M.; Huang, Z.P.; Chen, J.F.; Deng, Z.; Gunn, B.; Shumate, J.; et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Investig. 2009, 119, 2772–2786. [Google Scholar] [CrossRef]
- de Melo-Jorge, M.; PereiraPerrin, M. The Chagas’ disease parasite Trypanosoma cruzi exploits nerve growth factor receptor TrkA to infect mammalian hosts. Cell Host Microbe 2007, 1, 251–261. [Google Scholar] [CrossRef]
- Weinkauf, C.; Pereiraperrin, M. Trypanosoma cruzi promotes neuronal and glial cell survival through the neurotrophic receptor TrkC. Infect. Immun. 2009, 77, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, C.K.V.; Macêdo, C.T.; Cavalcante, B.R.R.; Alcântara, A.C.; Silva, D.N.; Bezerra, M.D.R.; Caria, A.C.I.; Tavora, F.R.F.; Neto, J.D.S.; Noya-Rabelo, M.M.; et al. Circulating miRNAs as Potential Biomarkers Associated with Cardiac Remodeling and Fibrosis in Chagas Disease Cardiomyopathy. Int. J. Mol. Sci. 2019, 20, 4064. [Google Scholar] [CrossRef]
- Wu, J.; Cao, J.; Fan, Y.; Li, C.; Hu, X. Comprehensive analysis of miRNA-mRNA regulatory network and potential drugs in chronic chagasic cardiomyopathy across human and mouse. BMC Med. Genom. 2021, 14, 283. [Google Scholar] [CrossRef]
- Gomes, J.A.S.; de Araújo, F.F.; Vitelli-Avelar, D.M.; Sathler-Avelar, R.; Lage, P.S.; Wendling, A.P.B.; do Vale, I.N.P.C.; Dias, J.C.P.; Elói-Santos, S.M.; Teixeira-Carvalho, A.; et al. Systems Biology Reveals Relevant Gaps in Fc-γR Expression, Impaired Regulatory Cytokine Microenvironment Interfaced With Anti-Trypanosoma cruzi IgG Reactivity in Cardiac Chagas Disease Patients. Front. Microbiol. 2018, 9, 1608. [Google Scholar] [CrossRef]
- Yamauchi, L.M.; Aliberti, J.C.; Baruffi, M.D.; Portela, R.W.; Rossi, M.A.; Gazzinelli, R.T.; Mineo, J.R.; Silva, J.S. The binding of CCL2 to the surface of Trypanosoma cruzi induces chemo-attraction and morphogenesis. Microbes Infect. 2007, 9, 111–118. [Google Scholar] [CrossRef]
- Coates, B.M.; Sullivan, D.P.; Makanji, M.Y.; Du, N.Y.; Olson, C.L.; Muller, W.A.; Engman, D.M.; Epting, C.L. Endothelial transmigration by Trypanosoma cruzi. PLoS ONE 2013, 8, e81187. [Google Scholar] [CrossRef]
- Henriques, C.; Castro, D.P.; Gomes, L.H.; Garcia, E.S.; de Souza, W. Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus. Parasit. Vectors 2012, 5, 214. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.A.; Yamakuchi, M.; Ferlito, M.; Mendell, J.T.; Lowenstein, C.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA 2008, 105, 1516–1521. [Google Scholar] [CrossRef] [PubMed]
- Ricci, M.F.; Béla, S.R.; Moraes, M.M.; Bahia, M.T.; Mazzeti, A.L.; Oliveira, A.C.S.; Andrade, L.O.; Radí, R.; Piacenza, L.; Arantes, R.M.E. Neuronal Parasitism, Early Myenteric Neurons Depopulation and Continuous Axonal Networking Damage as Underlying Mechanisms of the Experimental Intestinal Chagas’ Disease. Front. Cell Infect. Microbiol. 2020, 10, 583899. [Google Scholar] [CrossRef]
- Xiang, M.; Zeng, Y.; Yang, R.; Xu, H.; Chen, Z.; Zhong, J.; Xie, H.; Xu, Y.; Zeng, X. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 2014, 454, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Benz, F.; Roderburg, C.; Vargas Cardenas, D.; Vucur, M.; Gautheron, J.; Koch, A.; Zimmermann, H.; Janssen, J.; Nieuwenhuijsen, L.; Luedde, M.; et al. U6 is unsuitable for normalization of serum miRNA levels in patients with sepsis or liver fibrosis. Exp. Mol. Med. 2013, 45, e42. [Google Scholar] [CrossRef]
- Masè, M.; Grasso, M.; Avogaro, L.; D’Amato, E.; Tessarolo, F.; Graffigna, A.; Denti, M.A.; Ravelli, F. Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation. Sci. Rep. 2017, 24, 41127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Ortega, R.F.; Alejandre-Aguilar, R.; Rivas, N.; Sánchez, F.; Sánchez-Muñoz, F.; Ballinas-Verdugo, M.A. Ninoa T. cruzi Strain Modifies the Expression of microRNAs in Cardiac Tissue and Plasma During Chagas Disease Infection. Pathogens 2024, 13, 1127. https://doi.org/10.3390/pathogens13121127
Jiménez-Ortega RF, Alejandre-Aguilar R, Rivas N, Sánchez F, Sánchez-Muñoz F, Ballinas-Verdugo MA. Ninoa T. cruzi Strain Modifies the Expression of microRNAs in Cardiac Tissue and Plasma During Chagas Disease Infection. Pathogens. 2024; 13(12):1127. https://doi.org/10.3390/pathogens13121127
Chicago/Turabian StyleJiménez-Ortega, Rogelio F., Ricardo Alejandre-Aguilar, Nancy Rivas, Fausto Sánchez, Fausto Sánchez-Muñoz, and Martha A. Ballinas-Verdugo. 2024. "Ninoa T. cruzi Strain Modifies the Expression of microRNAs in Cardiac Tissue and Plasma During Chagas Disease Infection" Pathogens 13, no. 12: 1127. https://doi.org/10.3390/pathogens13121127
APA StyleJiménez-Ortega, R. F., Alejandre-Aguilar, R., Rivas, N., Sánchez, F., Sánchez-Muñoz, F., & Ballinas-Verdugo, M. A. (2024). Ninoa T. cruzi Strain Modifies the Expression of microRNAs in Cardiac Tissue and Plasma During Chagas Disease Infection. Pathogens, 13(12), 1127. https://doi.org/10.3390/pathogens13121127