From Infection to Death: An Overview of the Pathogenesis of Visceral Leishmaniasis
<p>Flowchart depicting the likely evolution of VL from infection to disease: After the infective sand fly bite, parasites are released into the skin. Some perish and thus are not expected to generate a cellular immune response. Viable parasites reach their host cells directly via phagocytosis by mononuclear phagocytes and/or via phagocytosis by neutrophils (Trojan host), followed by engulfment by mononuclear cells. After triggering Toll-like intracellular signaling in either case, the infection is controlled by Th1- and cell-mediated immunity. However, the parasites may overcome this host response to replicate by mediating the generation of Th2 and Treg responses, progressing to VL. The patients may die or be cured, leading to lasting immunity to reinfection. Some patients may suffer from relapsing VL due to suppression of cell-mediated immunity preventing a complete cure. <sup>1</sup> Regulated cell death with the formation of neutrophil extracellular traps (NET). <sup>2</sup> A mechanism of intracellular cell entry through the phagocytosis of neutrophils with engulfed microbe by mononuclear phagocytes. <sup>3</sup> T-regulatory cells.</p> "> Figure 2
<p>Uncomplicated, complicated, and lethal VL. Top left: an uncomplicated disease with hepatosplenomegaly and paleness. Top center: extensive bruising. Top right: large hepatosplenomegaly, with ascites and edema of the scrotum. Bottom left: scleral jaundice. Bottom center and right: <span class="html-italic">Pseudomonas aeruginosa</span> secondary infection in the face and the ear.</p> "> Figure 3
<p>Proposed evolution of VL to the death of the patients through leishmanial sepsis: After <span class="html-italic">Leishmania</span> infection, the progression of the disease can be exacerbated by interactions between parasite virulence and host factors. With the development of clinical signs and symptoms, leishmanial sepsis may ensue due to exaggerated innate immune response, which promotes increased tissue-factor expression by endothelium and monocytes, generating disseminated intravascular coagulation (DIC). At the end stage, DIC can trigger bleeding enhanced by acute phase reactions with elevation of procoagulant proteins and reduction in anticoagulant proteins, with liver function and bile retention being altered, reducing vitamin-K-dependent coagulation factors and thrombocytopenia secondary to hypersplenism. Simultaneously, prolonged hospital stays of the patients in conjunction with their lymphopenia and cachexia due to the production of IL-6, IL-1, and TNF-α and deprivation of amino acids, retinol, and zinc increase their susceptibility to bacterial infection and superimposed bacterial sepsis. These episodes of leishmanial sepsis fuel multiple organ dysfunction syndrome and death of the patients.</p> ">
Abstract
:1. Infection
2. Disease
3. Constitutional Symptoms
4. Localized Symptoms
5. Laboratory Changes
6. Complications
7. Death
8. Concluding Remarks—Future Investigation and Clinical Managements
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kassebaum, N.J.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, J.; Carter, A.; Casey, D.C.; Charlson, F.J.; Coates, M.M.; Coggeshall, M.; et al. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1603–1658. [Google Scholar] [CrossRef] [Green Version]
- Wamai, R.G.; Kahn, J.; McGloin, J.; Ziaggi, G. Visceral leishmaniasis: A global overview. J. Glob. Health Sci. 2020, 2, e3. [Google Scholar] [CrossRef]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; WHO Leishmaniasis Control Team. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef] [PubMed]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mandal, R.; Das, S.; Kesari, S.; Dinesh, D.S.; Pandey, K.; Das, V.R.; Topno, R.K.; Sharma, M.P.; Dasgupta, R.K.; et al. Kala-azar elimination in a highly-endemic district of Bihar, India: A success story. PLoS Negl. Trop. Dis. 2020, 14, e0008254. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Kala-azar in India—progress and challenges towards its elimination as a public health problem. Wkly Epidemiol Rec. 2021, 96, 267–279. [Google Scholar]
- Cota, G.; Erber, A.C.; Schernhammer, E.; Simões, T.C. Inequalities of visceral leishmaniasis case-fatality in Brazil: A multilevel modeling considering space, time, individual and contextual factors. PLoS Negl. Trop. Dis. 2021, 15, e0009567. [Google Scholar] [CrossRef]
- Pampiglione, S.; Manson-Bahr, P.E.; La Placa, M.; Borgatti, M.A.; Musumeci, S. Studies in Mediterranean leishmaniasis. 3. The leishmanin skin test in kala-azar. Trans. R. Soc. Trop. Med. Hyg. 1975, 69, 60–68. [Google Scholar] [CrossRef]
- Badaro, R.; Jones, T.C.; Lorenco, R.; Cerf, B.J.; Sampaio, D.; Carvalho, E.M.; Rocha, H.; Teixeira, R.; Johnson, W.D. A Prospective Study of Visceral Leishmaniasis in an Endemic Area of Brazil. J. Infect. Dis. 1986, 154, 639–649. [Google Scholar] [CrossRef]
- Evans, T.G.; Teixeira, M.J.; McAuliffe, I.T.; Vasconcelos, I.; Vasconcelos, A.W.; Sousa, A.d.A.; Lima, J.W.; Pearson, R.D. Epidemiology of visceral leishmaniasis in northeast Brazil. J. Infect. Dis. 1992, 166, 1124–1132. [Google Scholar] [CrossRef]
- Carstens-Kass, J.; Paulini, K.; Lypaczewski, P.; Matlashewski, G. A review of the leishmanin skin test: A neglected test for a neglected disease. PLoS Negl. Trop. Dis. 2021, 15, e0009531. [Google Scholar] [CrossRef] [PubMed]
- Werneck, G.L.; Rodrigues, L.; Santos, M.V.; Araújo, I.B.; Moura, L.S.; Lima, S.S.; Gomes, R.B.B.B.; Maguire, J.H.; Costa, C.H.H.N. The burden of Leishmania chagasi infection during an urban outbreak of visceral leishmaniasis in Brazil. Acta Trop. 2002, 83, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, M.; Moreno, I.; Aizpurua, C.; Toraño, A. Early mechanisms of Leishmania infection in human blood. Microbes Infect. 2003, 5, 507–513. [Google Scholar] [CrossRef]
- Peters, N.C.; Egen, J.G.; Secundino, N.; Debrabant, A.; Kimblin, N.; Kamhawi, S.; Lawyer, P.; Fay, M.P.; Germain, R.N.; Sacks, D. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 2008, 321, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Jafarzadeh, A.; Nemati, M.; Sharifi, I.; Nair, A.; Shukla, D.; Chauhan, P.; Khorramdelazad, H.; Sarkar, A.; Saha, B. Leishmania species-dependent functional duality of toll-like receptor 2. IUBMB Life 2019, 71, 1685–1700. [Google Scholar] [CrossRef]
- Wu, T.-H.; Hsieh, S.-C.; Li, T.-H.; Lu, C.-H.; Liao, H.-T.; Shen, C.-Y.; Li, K.-J.; Wu, C.-H.; Kuo, Y.-M.; Tsai, C.-Y.; et al. Molecular Basis for Paradoxical Activities of Polymorphonuclear Neutrophils in Inflammation/Anti-Inflammation, Bactericide/Autoimmunity, Pro-Cancer/Anticancer, and Antiviral Infection/SARS-CoV-II-Induced Immunothrombotic Dysregulation. Biomedicines 2022, 10, 773. [Google Scholar] [CrossRef]
- Vono, M.; Lin, A.; Norrby-Teglund, A.; Koup, R.A.; Liang, F.; Loré, K. Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood 2017, 129, 1991–2001. [Google Scholar] [CrossRef] [Green Version]
- van Zandbergen, G.; Solbach, W.; Laskay, T. Apoptosis driven infection. Autoimmunity 2007, 40, 349–352. [Google Scholar] [CrossRef]
- Volpedo, G.; Pacheco-Fernandez, T.; Holcomb, E.A.; Cipriano, N.; Cox, B.; Satoskar, A.R. Mechanisms of Immunopathogenesis in Cutaneous Leishmaniasis And Post Kala-azar Dermal Leishmaniasis (PKDL). Front. Cell. Infect. Microbiol. 2021, 11, 685296. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Fasel, N. How to master the host immune system? Leishmania parasites have the solutions! Int. Immunol. 2018, 30, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Tibúrcio, R.; Nunes, S.; Nunes, I.; Rosa Ampuero, M.; Silva, I.B.; Lima, R.; Machado Tavares, N.; Brodskyn, C. Molecular Aspects of Dendritic Cell Activation in Leishmaniasis: An Immunobiological View. Front. Immunol. 2019, 10, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.J.C.; Zacarias, D.A.D.A.; Silva, V.C.V.C.; Rolão, N.; Costa, D.L.D.L.; Costa, C.H.C.H.N. Comparison of optical microscopy and quantitative polymerase chain reaction for estimating parasitaemia in patients with kala-azar and modelling infectiousness to the vector Lutzomyia longipalpis. Mem. Inst. Oswaldo Cruz 2016, 111, 517–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, S.; Kumar, R.; Singh, N.; Singh, A.K.; Rai, M.; Sacks, D.; Sundar, S.; Nylén, S. CD8 T cell exhaustion in human visceral leishmaniasis. J. Infect. Dis. 2014, 209, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Bhor, R.; Rafati, S.; Pai, K. Cytokine saga in visceral leishmaniasis. Cytokine 2020, 147, 155322. [Google Scholar] [CrossRef]
- Volpedo, G.; Bhattacharya, P.; Gannavaram, S.; Pacheco-Fernandez, T.; Oljuskin, T.; Dey, R.; Satoskar, A.R.; Nakhasi, H.L. The History of Live Attenuated Centrin Gene-Deleted Leishmania Vaccine Candidates. Pathogens 2022, 11, 431. [Google Scholar] [CrossRef]
- Kolářová, I.; Valigurová, A. Hide-and-Seek: A Game Played between Parasitic Protists and Their Hosts. Microorganisms 2021, 9, 2434. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Zhang, W.-W.; Matlashewski, G. Evidence that a naturally occurring single nucleotide polymorphism in the RagC gene of Leishmania donovani contributes to reduced virulence. PLoS Negl. Trop. Dis. 2021, 15, e0009079. [Google Scholar] [CrossRef]
- Kariyawasam, K.K.G.D.U.L.; Selvapandiyan, A.; Siriwardana, H.V.Y.D.; Dube, A.; Karunanayake, P.; Senanayake, S.A.S.C.; DEY, R.; Gannavaram, S.; NAKHASI, H.L.; KARUNAWEERA, N.D. Dermotropic Leishmania donovani in Sri Lanka: Visceralizing potential in clinical and preclinical studies. Parasitology 2018, 145, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Grace, C.A.; Sousa Carvalho, K.S.; Sousa Lima, M.I.; Costa Silva, V.; Reis-Cunha, J.L.; Brune, M.J.; Forrester, S.; Pedrozo e Silva de Azevedo, C.d.M.; Costa, D.L.; Speed, D.; et al. Parasite Genotype Is a Major Predictor of Mortality from Visceral Leishmaniasis. MBio 2022, 13, e0206822. [Google Scholar] [CrossRef]
- Killingley, B.; Mann, A.J.; Kalinova, M.; Boyers, A.; Goonawardane, N.; Zhou, J.; Lindsell, K.; Hare, S.S.; Brown, J.; Frise, R.; et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat. Med. 2022, 28, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Martinez, E.; Suazo-Sanchez, I.; Celis-Romero, M.; Carnero, A. 3D and organoid culture in research: Physiology, hereditary genetic diseases and cancer. Cell Biosci. 2022, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Chan Zuckerberg Initiative. Available online: https://chanzuckerberg.com/newsroom/biohub-chicago-engineer-technologies-measure-human-biology (accessed on 24 April 2023).
- Bucheton, B.; Argiro, L.; Chevillard, C.; Marquet, S.; Kheir, M.M.; Mergani, A.; El-Safi, S.H.; Dessein, A.J. Identification of a novel G245R polymorphism in the IL-2 receptor β membrane proximal domain associated with human visceral leishmaniasis. Genes Immun. 2007, 8, 79–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, D.P.; Ferreira, A.F.; Ribolla, P.E.; de Miranda Santos, I.K.; do Socorro Pires e Cruz, M.; Aécio de Carvalho, F.; Abatepaulo, A.R.; Lamounier Costa, D.; Werneck, G.L.; Farias, T.J.; et al. Genotypes of the Mannan-Binding Lectin Gene and Susceptibility to Visceral Leishmaniasis and Clinical Complications. J. Infect. Dis. 2007, 195, 1212–1217. [Google Scholar] [CrossRef]
- Frade, A.F.; Oliveira, L.C.; Costa, D.L.; Costa, C.H.; Aquino, D.; Van Weyenbergh, J.; Barral-Netto, M.; Barral, A.; Kalil, J.; Goldberg, A.C. TGFB1 and IL8 gene polymorphisms and susceptibility to visceral leishmaniasis. Infect. Genet. Evol. 2011, 11, 912–916. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Fakiola, M.; Castellucci, L.C. Human genetics of leishmania infections. Hum. Genet. 2020, 139, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Caldas, A.J.M.; Costa, J.M.L.; Silva, A.A.M.; Vinhas, V.; Barral, A. Risk factors associated with asymptomatic infection by Leishmania chagasi in north-east Brazil. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 21–28. [Google Scholar] [CrossRef]
- Zacarias, D.A.; Rolão, N.; de Pinho, F.A.; Sene, I.; Silva, J.C.; Pereira, T.C.; Costa, D.L.; Costa, C.H.N. Causes and consequences of higher Leishmania infantum burden in patients with kala-azar: A study of 625 patients. Trop. Med. Int. Health 2017, 22, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Yan-jia, L. A review of kala-azar in China from 1949 to 1959. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 531–537. [Google Scholar] [CrossRef]
- Costa, C.H.N.; Pereira, H.F.; Araújo, M.V. Epidemia de leishmaniose visceral no Estado do Piauí, Brasil, 1980–1986. Rev. Saude Publica 1990, 24, 361–372. [Google Scholar] [CrossRef]
- Sharma, M.C.; Gupta, A.K.; Das, V.N.; Verma, N.; Kumar, N.; Saran, R.; Kar, S.K. Leishmania donovani in blood smears of asymptomatic persons. Acta Trop. 2000, 76, 195–196. [Google Scholar] [CrossRef]
- Cloots, K.; Burza, S.; Malaviya, P.; Hasker, E.; Kansal, S.; Mollett, G.; Chakravarty, J.; Roy, N.; Lal, B.K.; Rijal, S.; et al. Male predominance in reported Visceral Leishmaniasis cases: Nature or nurture? A comparison of population-based with health facility-reported data. PLoS Negl. Trop. Dis. 2020, 14, e0007995. [Google Scholar] [CrossRef] [Green Version]
- Araújo Albuquerque, L.P.; Silva, A.M.; Araújo Batista, F.M.; Souza Sene, I.; Costa, D.L.; Costa, C.H.N.; de Araújo Albuquerque, L.P.; da Silva, A.M.; de Araújo Batista, F.M.; de Souza Sene, I.; et al. Influence of sex hormones on the immune response to leishmaniasis. Parasite Immunol. 2021, 43, e12874. [Google Scholar] [CrossRef] [PubMed]
- Khalil, E.A.G.; Zijlstra, E.E.; Kager, P.A.; El Hassan, A.M. Epidemiology and clinical manifestations of Leishmania donovani infection in two villages in an endemic area in eastern Sudan. Trop. Med. Int. Health 2002, 7, 35–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, L.S.; Barreto, A.S.; Bomfim, L.G.S.; Gomes, M.C.; Ferreira, N.L.C.; da Cruz, G.S.; Magalhães, L.S.; de Jesus, A.R.; Palatnik-de-Sousa, C.B.; Corrêa, C.B.; et al. Multifunctional, TNF-α and IFN-γ-Secreting CD4 and CD8 T Cells and CD8High T Cells Are Associated With the Cure of Human Visceral Leishmaniasis. Front. Immunol. 2021, 12, 773983. [Google Scholar] [CrossRef] [PubMed]
- Akuffo, H.; Costa, C.; van Griensven, J.; Burza, S.; Moreno, J.; Herrero, M. New insights into leishmaniasis in the immunosuppressed. PLoS Negl. Trop. Dis. 2018, 12, e0006375. [Google Scholar] [CrossRef]
- Serafim, T.D.; Coutinho-Abreu, I.V.; Dey, R.; Kissinger, R.; Valenzuela, J.G.; Oliveira, F.; Kamhawi, S. Leishmaniasis: The act of transmission. Trends Parasitol. 2021, 37, 976–987. [Google Scholar] [CrossRef]
- Kimblin, N.; Peters, N.; Debrabant, A.; Secundino, N.; Egen, J.; Lawyer, P.; Fay, M.P.; Kamhawi, S.; Sacks, D. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc. Natl. Acad. Sci. USA 2008, 105, 10125–10130. [Google Scholar] [CrossRef]
- Giraud, E.; Martin, O.; Yakob, L.; Rogers, M. Quantifying Leishmania Metacyclic Promastigotes from Individual Sandfly Bites Reveals the Efficiency of Vector Transmission. Commun. Biol. 2019, 2, 84. [Google Scholar] [CrossRef]
- Peruhype-Magalhaes, V.; Martins-Filho, O.A.; Prata, A.; Silva, L.D.A.; Rabello, A.; Teixeira-Carvalho, A.; Figueiredo, R.M.; Guimarães-Carvalho, S.F.; Ferrari, T.C.A.; Van Weyenbergh, J.; et al. Mixed inflammatory/regulatory cytokine profile marked by simultaneous raise of interferon-gamma and interleukin-10 and low frequency of tumour necrosis factor-alpha(+) monocytes are hallmarks of active human visceral Leishmaniasis due to Leishmania chagas. Clin. Exp. Immunol. 2006, 146, 124–132. [Google Scholar] [CrossRef]
- Jawed, J.J.; Dutta, S.; Majumdar, S. Functional aspects of T cell diversity in visceral leishmaniasis. Biomed. Pharmacother. 2019, 117, 109098. [Google Scholar] [CrossRef]
- Carvalho, E.M.; Bacellar, O.; Barral, A.; Badaro, R.; Johnson, W.D.; Carvalho, E.M.; Bacellar, O.; Barral, A.; Badaro, R.; Johnson, W.D.; et al. Antigen-specific immunosuppression in visceral leishmaniasis is cell mediated. J. Clin. Investig. 1989, 83, 860–864. [Google Scholar] [CrossRef]
- Caldas, A.; Favali, C.; Aquino, D.; Vinhas, V.; van Weyenbergh, J.; Brodskyn, C.; Costa, J.; Barral-Netto, M.; Barral, A. Balance of IL-10 and interferon-gamma plasma levels in human visceral leishmaniasis: Implications in the pathogenesis. BMC Infect. Dis. 2005, 5, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nylén, S.; Maurya, R.; Eidsmo, L.; Das Manandhar, K.; Sundar, S.; Sacks, D. Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J. Exp. Med. 2007, 204, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, E.M.; Badaró, R.; Reed, S.G.; Jones, T.C.; Johnson, W.D. Absence of gamma interferon and interleukin 2 production during active visceral leishmaniasis. J. Clin. Investig. 1985, 76, 2066–2069. [Google Scholar] [CrossRef]
- Carvalho, E.M.; Teixeira, R.S.; Johnson, W.D. Cell-mediated immunity in American visceral leishmaniasis: Reversible immunosuppression during acute infection. Infect. Immun. 1981, 33, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.H.N.; Werneck, G.L.; Costa, D.L.; Holanda, T.A.; Aguiar, G.B.; Carvalho, A.S.; Cavalcanti, J.C.; Santos, L.S. Is severe visceral leishmaniasis a systemic inflammatory response syndrome? A case control study. Rev. Soc. Bras. Med. Trop. 2010, 43, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.H.N.; Zacarias, D.A.; Soares, M.R.A.; Silva, J.M.; Costa, D.L.; de Figueirêdo, L.C.; Ishikawa, E.A.Y. Bone Marrow Parasite Burden among Patients with New World Kala-Azar is Associated with Disease Severity. Am. J. Trop. Med. Hyg. 2014, 90, 621–626. [Google Scholar] [CrossRef]
- Chauhan, P.; Shukla, D.; Chattopadhyay, D.; Saha, B. Redundant and regulatory roles for Toll-like receptors in Leishmania infection. Clin. Exp. Immunol. 2017, 190, 167–186. [Google Scholar] [CrossRef] [Green Version]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Schmidt-Arras, D.; Rose-John, S. IL-6 pathway in the liver: From physiopathology to therapy. J. Hepatol. 2016, 64, 1403–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, F.-J.J.; Ott, I.; Marx, N.; Luther, T.; Kenngott, S.; Gawaz, M.; Kotzsch, M.; Schömig, A.; Schömig, A. Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 3399–3405. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Landmesser, U.; Rauch, U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc. Med. 2016, 26, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liu, L.; Zhao, Y.; Hara, H.; Chen, P.; Xu, J.; Tang, J.; Wei, L.; Li, Z.; Cooper, D.K.C.; et al. Human IL-6, IL-17, IL-1β, and TNF-α differently regulate the expression of pro-inflammatory related genes, tissue factor, and swine leukocyte antigen class I in porcine aortic endothelial cells. Xenotransplantation 2017, 24, e12291. [Google Scholar] [CrossRef] [PubMed]
- Vallières, L.; Rivest, S. Regulation of the Genes Encoding Interleukin-6, Its Receptor, and gp130 in the Rat Brain in Response to the Immune Activator Lipopolysaccharide and the Proinflammatory Cytokine Interleukin-1β. J. Neurochem. 1997, 69, 1668–1683. [Google Scholar] [CrossRef]
- Burfeind, K.G.; Michaelis, K.A.; Marks, D.L. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin. Cell Dev. Biol. 2016, 54, 42–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [Green Version]
- Janciauskiene, S.; Welte, T.; Mahadeva, R. Acute Phase Proteins: Structure and Function Relationship [Internet]. In Acute Phase Proteins—Regulation and Functions of Acute Phase Proteins; Veas, F., Ed.; In Tech: London, UK, 2011; p. 368. ISBN 978-953-307-252-4. [Google Scholar]
- Markanday, A. Acute Phase Reactants in Infections: Evidence-Based Review and a Guide for Clinicians. Open Forum Infect. Dis. 2015, 2, ofv098. [Google Scholar] [CrossRef]
- Rasic, I.; Rebic, V.; Rasic, A.; Aksamija, G.; Radovic, S. The Association of Simultaneous Increase in Interleukin-6, C Reactive Protein, and Matrix Metalloproteinase-9 Serum Levels with Increasing Stages of Colorectal Cancer. J. Oncol. 2018, 2018, 2830503. [Google Scholar] [CrossRef] [Green Version]
- Wasunna, K.M.; Raynes, J.G.; Were, J.B.; Muigai, R.; Sherwood, J.; Gachihi, G.; Carpenter, L.; McAdam, K.P. Acute phase protein concentrations predict parasite clearance rate during therapy for visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 678–681. [Google Scholar] [CrossRef]
- Singh, U.K.; Patwari, A.K.; Sinha, R.K.; Kumar, R. Prognostic value of serum C-reactive protein in kala-azar. J. Trop. Pediatr. 1999, 45, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.A.; Sharma, P.; Salotra, P. Circulating nitric oxide and C-reactive protein levels in Indian kala azar patients: Correlation with clinical outcome. Clin. Immunol. 2007, 122, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.N.N.P.; de Almeida, A.T.A.; Costa, D.L.; Costa, C.H.N. C-reactive protein for the diagnosis and prognosis of visceral leishmaniasis caused by Leishmania infantum. J. Trop. Pathol. 2022, 51, 145–156. [Google Scholar]
- Endale, H.T.; Mengstie, T.A.; Dawit, D.D.; Mohammed, R.; Dessie, G.; Tesfa, K.H. Assessment of liver function test and associated factors among visceral leishmaniasis patients attending university of gondar leishmaniasis research and treatment center, Northwest Ethiopia. PLoS ONE 2021, 16, e0260022. [Google Scholar] [CrossRef]
- Varma, N.; Naseem, S. Hematologic changes in visceral leishmaniasis/kala azar. Indian J. Hematol. Blood Transfus. 2010, 26, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Bray, C.; Bell, L.N.; Liang, H.; Haykal, R.; Kaiksow, F.; Mazza, J.J.; Yale, S.H. Erythrocyte Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in Clinical Medicine. WMJ 2016, 115, 317–321. [Google Scholar]
- Tishkowski, K.; Gupta, V. Erythrocyte Sedimentation Rate; In Tech: London, UK, 2022. [Google Scholar]
- Davidson, S.J. Inflammation and Acute Phase Proteins in Haemostasis. In Acute Phase Proteins; In Tech: London, UK, 2013; pp. 31–54. [Google Scholar] [CrossRef] [Green Version]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.-F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- Roth, J.; Blatteis, C.M. Mechanisms of fever production and lysis: Lessons from experimental LPS fever. Compr. Physiol. 2014, 4, 1563–1604. [Google Scholar] [CrossRef]
- Galea, I. The blood–brain barrier in systemic infection and inflammation. Cell. Mol. Immunol. 2021, 18, 2489–2501. [Google Scholar] [CrossRef]
- Rijal, S.; Chappuis, F.; Sundar, S.; Lima, M.A.; Olliaro, P.L.; Costa, C.H.; Vaillant, M.; Costa, D.L.; Balasegaram, M.; Harhay, M.O.; et al. Who Is a Typical Patient with Visceral Leishmaniasis? Characterizing the Demographic and Nutritional Profile of Patients in Brazil, East Africa, and South Asia. Am. J. Trop. Med. Hyg. 2011, 84, 543–550. [Google Scholar] [CrossRef]
- Monteiro, M.J.S.D.; Silva, M.N.P.D.; Paiva, A.A.; Marreiro, D.D.N.; Luzia, L.A.; Henriques, G.S.; Rondó, P.H.C.; Sene, I.S.; Almeida, A.T.A.; Costa, C.H.N.; et al. Nutritional status and vitamin A and zinc levels in patients with kala-azar in Piauí, Brazil. Rev. Soc. Bras. Med. Trop. 2021, 54, e08002020. [Google Scholar] [CrossRef] [PubMed]
- Seaman, J.; Mercer, A.J.; Sondorp, H.E.; Herwaldt, B.L. Epidemic Visceral Leishmaniasis in Southern Sudan: Treatment of Severely Debilitated Patients under Wartime Conditions and with Limited Resources. Ann. Intern. Med. 1996, 124, 664. [Google Scholar] [CrossRef] [PubMed]
- Rey, L.C.; Martins, C.V.; Ribeiro, H.B.; Lima, A.A.M. American visceral leishmaniasis (kala-azar) in hospitalized children from an endemic area. J. Pediatr. 2005, 81, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, M.; Orfanos, G.; Argaw, D.; Mulugeta, A.; Aparicio, P.; Parreño, F.; Bernal, O.; Rubens, D.; Pedraza, J.; Lima, M.A.; et al. Natural history of a visceral leishmaniasis outbreak in highland Ethiopia. Am. J. Trop. Med. Hyg. 2009, 81, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, T.A.M.; Morais, M.H.F.; Lopes, H.M.d.O.R.; Gonçalves, S.A.; Magalhães, F.d.C.; Amâncio, F.F.; Antunes, C.M.F.; Carneiro, M.; de Oliveira Ramos Lopes, H.M.; Gonçalves, S.A.; et al. Prognostic factors associated with death from visceral leishmaniasis: A case-control study in Brazil. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 346–354. [Google Scholar] [CrossRef]
- Abongomera, C.; van Henten, S.; Vogt, F.; Buyze, J.; Verdonck, K.; van Griensven, J. Prognostic factors for mortality among patients with visceral leishmaniasis in East Africa: Systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2020, 14, e0008319. [Google Scholar] [CrossRef]
- Thaler, J.P.; Choi, S.J.; Schwartz, M.W.; Wisse, B.E. Hypothalamic inflammation and energy homeostasis: Resolving the paradox. Front. Neuroendocrinol. 2010, 31, 79–84. [Google Scholar] [CrossRef]
- Harden, L.M.; Kent, S.; Pittman, Q.J.; Roth, J. Fever and sickness behavior: Friend or foe? Brain. Behav. Immun. 2015, 50, 322–333. [Google Scholar] [CrossRef]
- Rothhaas, R.; Chung, S. Role of the Preoptic Area in Sleep and Thermoregulation. Front. Neurosci. 2021, 15, 664781. [Google Scholar] [CrossRef]
- Stephens, N.A.; Skipworth, R.J.; Fearon, K.C. Cachexia, survival and the acute phase response. Curr. Opin. Support. Palliat. Care 2008, 2, 267–274. [Google Scholar] [CrossRef]
- Carson, J.A.; Baltgalvis, K.A. Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc. Sport Sci. Rev. 2010, 38, 168–176. [Google Scholar] [CrossRef]
- Narsale, A.A.; Carson, J.A. Role of interleukin-6 in cachexia: Therapeutic implications. Curr. Opin. Support. Palliat. Care 2014, 8, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorza, K.; Williams, A.; Phillips, J.D.; Shaw, J. Evaluation of nausea and vomiting. Am. Fam. Physician 2007, 76, 76–84. [Google Scholar] [PubMed]
- Singh, P.; Yoon, S.S.; Kuo, B. Nausea: A review of pathophysiology and therapeutics. Therap. Adv. Gastroenterol. 2016, 9, 98–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, S.; Veeken, H.; Long, J. Visceral leishmaniasis and HIV in Tigray, Ethiopia. Trop. Med. Int. Health 2003, 8, 733–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collin, S.; Davidson, R.; Ritmeijer, K.; Keus, K.; Melaku, Y.; Kipngetich, S.; Davies, C. Conflict and Kala-Azar: Determinants of Adverse Outcomes of Kala-Azar among Patients in Southern Sudan. Clin. Infect. Dis. 2004, 38, 612–619. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, V.E.M.; Morais, M.H.F.; Reis, I.A.; Rabello, A.; Carneiro, M. Early Clinical Manifestations Associated with Death from Visceral Leishmaniasis. PLoS Negl. Trop. Dis. 2012, 6, e1511. [Google Scholar] [CrossRef] [Green Version]
- Madalosso, G.; Fortaleza, C.M.; Ribeiro, A.F.; Cruz, L.L.; Nogueira, P.A.; Lindoso, J.A. American Visceral Leishmaniasis: Factors Associated with Lethality in the State of São Paulo, Brazil. J. Trop. Med. 2012, 2012, 281572. [Google Scholar] [CrossRef] [Green Version]
- Belo, V.S.; Struchiner, C.J.; Barbosa, D.S.; Nascimento, B.W.L.; Horta, M.A.P.; da Silva, E.S.; Werneck, G.L. Risk Factors for Adverse Prognosis and Death in American Visceral Leishmaniasis: A Meta-analysis. PLoS Negl. Trop. Dis. 2014, 8, e2982. [Google Scholar] [CrossRef]
- Costa, D.L.; Rocha, R.L.; Carvalho, R.M.A.; Lima-Neto, A.S.; Harhay, M.O.; Costa, C.H.N.; Barral-Neto, M.; Barral, A.P. Serum cytokines associated with severity and complications of kala-azar. Pathog. Glob. Health 2013, 107, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Srikiatkhachorn, A.; Mathew, A.; Rothman, A.L. Immune-mediated cytokine storm and its role in severe dengue. Semin. Immunopathol. 2017, 39, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoula, M.S.; M’Hamdi, Z.; Amri, F.; Tebib, N.; Ben Turkia, H.; Ben Dridi, M.F. Visceral leishmaniasis in children: Prognostic factors. Tunis. Med. 2003, 81, 535–539. [Google Scholar] [PubMed]
- Werneck, G.L.L.; Batista, M.S.A.S.A.; Gomes, J.R.B.R.B.; Costa, D.L.L.; Costa, C.H.N.H.N. Prognostic Factors for Death from Visceral Leishmaniasis in Teresina, Brazil. Infection 2003, 31, 174–177. [Google Scholar] [CrossRef]
- Sampaio, M.J.A.D.Q.; Cavalcanti, N.V.; Alves, J.G.B.; Fernandes-Filho, M.J.C.; Correia, J.B. Risk factors for death in children with visceral leishmaniasis. PLoS Negl. Trop. Dis. 2010, 4, e877. [Google Scholar] [CrossRef] [PubMed]
- Coura-Vital, W.; de Araújo, V.E.M.; Reis, I.A.; Amancio, F.F.; Reis, A.B.; Carneiro, M. Prognostic Factors and Scoring System for Death from Visceral Leishmaniasis: An Historical Cohort Study in Brazil. PLoS Negl. Trop. Dis. 2014, 8, e3374. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.L.; Rocha, R.L.; Chaves, E.d.B.F.; Batista, V.G.d.V.; Costa, H.L.; Costa, C.H.N. Predicting death from kala-azar: Construction, development, and validation of a score set and accompanying software. Rev. Soc. Bras. Med. Trop. 2016, 49, 728–740. [Google Scholar] [CrossRef]
- Ben Helel, K.; Ben Rejeb, M.; Habboul, Z.; Khattat, N.; Mejaouel, H.; Said-Latiri, H.; Kaabi, B.; Zhioua, E.; Helel, K.B.; Rejeb, M.B.; et al. Risk factors for mortality of children with zoonotic visceral leishmaniasis in Central Tunisia. PLoS ONE 2017, 12, e0189725. [Google Scholar] [CrossRef] [Green Version]
- Foinquinos, J.; Duarte, M.d.C.; Figueiroa, J.N.; Correia, J.B.; Cavalcanti, N.V. Temporal Validation of a Predictive Score for Death in Children with Visceral Leishmaniasis. J. Trop. Med. 2021, 2021, 6688444. [Google Scholar] [CrossRef]
- Kager, P.A.; Rees, P.H. Haematological investigations in visceral leishmaniasis. Trop. Geogr. Med. 1986, 38, 371–379. [Google Scholar]
- Boyer, T.D.; Habib, S. Big spleens and hypersplenism: Fix it or forget it? Liver Int. 2015, 35, 1492–1498. [Google Scholar] [CrossRef]
- Nemeth, E.; Rivera, S.; Gabayan, V.; Keller, C.; Taudorf, S.; Pedersen, B.K.; Ganz, T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 2004, 113, 1271–1276. [Google Scholar] [CrossRef] [Green Version]
- Sangkhae, V.; Nemeth, E. Regulation of the Iron Homeostatic Hormone Hepcidin. Adv. Nutr. 2017, 8, 126–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Singh, S.S.; Sundar, S. Hepcidin mediated iron homoeostasis as immune regulator in visceral leishmaniasis patients. Parasite Immunol. 2019, 41, e12601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veress, B.; Omer, A.; Satir, A.A.; El Hassan, A.M. Morphology of the spleen and lymph nodes in fatal visceral leishmaniasis. Immunology 1977, 33, 605–610. [Google Scholar] [PubMed]
- Duarte, M.I.S.; Corbett, C.E.P. Histopathological patterns of the liver involvement in visceral leishmaniasis. Rev. Inst. Med. Trop. Sao Paulo 1987, 29, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos-Santos, W.L.; Pagliari, C.; Santos, L.G.; Almeida, V.A.; e Silva, T.L.; Coutinho, J.D., Jr.; Souza, T.; Duarte, M.I.; de Freitas, L.A.; Costa, C.H. A case of conventional treatment failure in visceral leishmaniasis: Leukocyte distribution and cytokine expression in splenic compartments. BMC Infect. Dis. 2014, 14, 491. [Google Scholar] [CrossRef]
- Hermida, M.D.; de Melo, C.V.B.; Lima, I.d.S.; Oliveira, G.G.d.S.; Dos-Santos, W.L.C. Histological Disorganization of Spleen Compartments and Severe Visceral Leishmaniasis. Front. Cell. Infect. Microbiol. 2018, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.; Ghosh, S.; Ejazi, S.A.; Rahaman, M.; Pandey, K.; Ravi Das, V.N.; Das, P.; Goswami, R.P.; Saha, B.; Ali, N. Induction of IL-10 and TGFβ from CD4+CD25+FoxP3+ T Cells Correlates with Parasite Load in Indian Kala-azar Patients Infected with Leishmania donovani. PLoS Negl. Trop. Dis. 2016, 10, e0004422. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, A.S.; Ribeiro-Alves, M.; Pereira, L.D.O.R.; Mestre, G.L.; Ferreira, A.B.R.; Morgado, F.N.; Boité, M.C.; Cupolillo, E.; Moraes, M.O.; Porrozzi, R. Parasite Load Induces Progressive Spleen Architecture Breakage and Impairs Cytokine mRNA Expression in Leishmania infantum-Naturally Infected Dogs. PLoS ONE 2015, 10, e0123009. [Google Scholar] [CrossRef]
- Reinaldo, L.G.C.; Araújo-Júnior, R.J.C.; Diniz, T.M.; Moura, R.D.; Meneses-Filho, A.J.; Furtado, C.V.V.M.; Santos, W.L.C.; Costa, D.L.; Eulálio, K.D.; Ferreira, G.R.; et al. Splenectomy in Patients with Visceral Leishmaniasis Resistant to Conventional Therapy and Secondary Prophylaxis: A Retrospective Cohort. Am. J. Trop. Med. Hyg. 2022, in press. [Google Scholar] [CrossRef]
- el Hag, I.A.; Hashim, F.A.; el Toum, I.A.; Homeida, M.; el Kalifa, M.; el Hassan, A.M. Liver morphology and function in visceral leishmaniasis (Kala-azar). J. Clin. Pathol. 1994, 47, 547–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luz, K.G.; Tuon, F.F.; Duarte, M.I.S.; Maia, G.M.; Matos, P.; Ramos, A.M.d.O.; Nicodemo, A.C. Cytokine expression in the duodenal mucosa of patients with visceral leishmaniasis. Rev. Soc. Bras. Med. Trop. 2010, 43, 393–395. [Google Scholar] [CrossRef] [Green Version]
- Yeshaw, Y.; Tsegaye, A.T.; Nigatu, S.G. Incidence of mortality and its predictors among adult visceral leishmaniasis patients at the university of gondar hospital: A retrospective cohort study. Infect. Drug Resist. 2020, 13, 881–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN. J. Parenter. Enteral Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daher, E.F.; Soares, D.S.; Filho, S.L.; Meneses, G.C.; Freitas, T.V.; Leite, T.T.; da Silva Junior, G.B. Hyponatremia and risk factors for death in human visceral leishmaniasis: New insights from a cross-sectional study in Brazil. BMC Infect. Dis. 2017, 17, 168. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.I.; da Matta, V.L.; Corbett, C.E.; Laurenti, M.D.; Chebabo, R.; Goto, H. Interstitial pneumonitis in human visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 73–76. [Google Scholar] [CrossRef]
- Tuon, F.F.; Guedes, F.; Fernandes, E.R.; Pagliari, C.; Amato, V.S.; Seixas Duarte, M.I. In situ immune responses to interstitial pneumonitis in human visceral leishmaniasis. Parasite Immunol. 2009, 31, 98–103. [Google Scholar] [CrossRef]
- Bispo, A.J.B.; Almeida, M.L.D.; de Almeida, R.P.; Bispo Neto, J.; de Oliveira Brito, A.V.; França, C.M. Pulmonary involvement in human visceral leishmaniasis: Clinical and tomographic evaluation. PLoS ONE 2020, 15, e0228176. [Google Scholar] [CrossRef] [Green Version]
- Azadeh, N.; Limper, A.H.; Carmona, E.M.; Ryu, J.H. The Role of Infection in Interstitial Lung Diseases. Chest 2017, 152, 842–852. [Google Scholar] [CrossRef]
- Montero, P.; Milara, J.; Roger, I.; Cortijo, J. Role of JAK/STAT in Interstitial Lung Diseases; Molecular and Cellular Mechanisms. Int. J. Mol. Sci. 2021, 22, 6211. [Google Scholar] [CrossRef]
- Huo, R.; Guo, Q.; Hu, J.; Li, N.; Gao, R.; Mi, L.; Zhang, Z.; Liu, H.; Guo, Z.; Zhao, H.; et al. Therapeutic Potential of Janus Kinase Inhibitors for the Management of Interstitial Lung Disease. Drug Des. Devel. Ther. 2022, 16, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Libório, A.B.; Rocha, N.A.; Oliveira, M.J.C.; Franco, L.F.L.G.; Aguiar, G.B.R.; Pimentel, R.S.; Abreu, K.L.S.; Silva, G.B.; Daher, E.F. Acute Kidney Injury in Children with Visceral Leishmaniasis. Pediatr. Infect. Dis. J. 2012, 31, 451–454. [Google Scholar] [CrossRef]
- Oliveira, M.J.; Silva Júnior, G.B.; Abreu, K.L.; Rocha, N.A.; Garcia, A.V.; Franco, L.F.; Mota, R.M.; Libório, A.B.; Daher, E.F. Risk factors for acute kidney injury in visceral leishmaniasis (Kala-Azar). Am. J. Trop. Med. Hyg. 2010, 82, 449–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva Junior, G.B.; Barros, E.J.G.; Daher, E.D.F. Kidney involvement in leishmaniasis—A review. Braz. J. Infect. Dis. 2013, 18, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Meneses, G.C.; De Francesco Daher, E.; da Silva Junior, G.B.; Bezerra, G.F.; da Rocha, T.P.; de Azevedo, I.E.P.; Libório, A.B.; Martins, A.M.C. Visceral leishmaniasis-associated nephropathy in hospitalised Brazilian patients: New insights based on kidney injury biomarkers. Trop. Med. Int. Health 2018, 23, 1046–1057. [Google Scholar] [CrossRef] [Green Version]
- Navarro, M.; Bonet, J.; Bonal, J.; Romero, R. Secondary amyloidosis with irreversible acute renal failure caused by visceral leishmaniasis in a patient with AIDS. Nefrologia 2006, 26, 745–746. [Google Scholar]
- Gangneux, J.-P.; Donaghy, L.; Marty, P. Liver involvement during visceral leishmaniasis. Gastroenterol. Clin. Biol. 2006, 30, 1027–1032. [Google Scholar] [CrossRef]
- Mathur, P.; Samantaray, J.C.; Samanta, P. High Prevalence of Functional Liver Derangement in Visceral Leishmaniasis at an Indian Tertiary Care Center. Clin. Gastroenterol. Hepatol. 2008, 6, 1170–1172. [Google Scholar] [CrossRef]
- Tawfik, A.K.; Amin, A.M.; Yousef, M.; El-Sayd, N.M.; Elashry, H.; Elkadeem, M.; Abd-Elsalam, S. IL-1α correlates with severity of hepatitis C virus-related liver diseases. J. Inflamm. Res. 2018, 11, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Hall, P.; Cash, J. What is the real function of the liver “function” tests? Ulster Med. J. 2012, 81, 30–36. [Google Scholar]
- Alvarez-Nebreda, M.L.; Alvarez-Fernández, E.; Rada, S.; Brañas, F.; Marañón, E.; Vidán, M.T.; Serra-Rexach, J.A. Unusual duodenal presentation of leishmaniasis. J. Clin. Pathol. 2005, 58, 1321–1322. [Google Scholar] [CrossRef]
- Luz, J.G.G.; Naves, D.B.; de Carvalho, A.G.; Meira, G.A.; Dias, J.V.L.; Fontes, C.J.F.; de Carvalho, A.G.; Meira, G.A.; Dias, J.V.L.; Fontes, C.J.F. Visceral leishmaniasis in a Brazilian endemic area: An overview of occurrence, HIV coinfection and lethality. Rev. Inst. Med. Trop. Sao Paulo 2018, 60, e12. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, Z.A.; Berkley, J.A.; Bandsma, R.H.J.; Kerac, M.; Trehan, I.; Briend, A. Severe childhood malnutrition. Nat. Rev. Dis. Prim. 2017, 3, 17067. [Google Scholar] [CrossRef]
- Baba, C.S.; Makharia, G.K.; Mathur, P.; Ray, R.; Gupta, S.D.; Samantaray, J.C. Chronic diarrhea and malabsorption caused by Leishmania donovani. Indian J. Gastroenterol. 2006, 25, 309–310. [Google Scholar]
- Boumis, E.; Chinello, P.; Della Rocca, C.; Paglia, M.G.; Proietti, M.F.; Petrosillo, N. Atypical disseminated leishmaniasis resembling post-kala-azar dermal leishmaniasis in an HIV-infected patient. Int. J. STD AIDS 2006, 17, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, E.E. PKDL and other dermal lesions in HIV co-infected patients with Leishmaniasis: Review of clinical presentation in relation to immune responses. PLoS Negl. Trop. Dis. 2014, 8, e3258. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, E.E. The immunology of post-kala-azar dermal leishmaniasis (PKDL). Parasit. Vectors 2016, 9, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, V.; Das, V.N.R.; Singh, S.N.; Singh, R.S.; Pandey, K.; Verma, N.; Hightower, A.; Rijal, S.; Das, P.; Alvar, J.; et al. Long-term incidence of relapse and post-kala-azar dermal leishmaniasis after three different visceral leishmaniasis treatment regimens in Bihar, India. PLoS Negl. Trop. Dis. 2020, 14, e0008429. [Google Scholar] [CrossRef] [PubMed]
- Okuda, K. Non-cirrhotic portal hypertension versus idiopathic portal hypertension. J. Gastroenterol. Hepatol. 2002, 17 (Suppl. S3), S204–S213. [Google Scholar] [CrossRef] [PubMed]
- Al-Jurayyan, N.A.M.; Al-Nasser, M.N.; Al-Fawaz, I.M.; Al Ayed, I.H.; Al Herbish, A.S.; M-Mazrou, A.M.; Al Sohaibani, M.O. The Haematological Manifestations of Visceral Leishmaniasis in Infancy and Childhood. J. Trop. Pediatr. 1995, 41, 143–148. [Google Scholar] [CrossRef]
- Rohrer, C.; Arni, U.; Deubelbeiss, K.A. Influence of the Spleen on the Distribution of Blood Neutrophils. Scand. J. Haematol. 2009, 30, 103–109. [Google Scholar] [CrossRef]
- Hidalgo, A.; Chilvers, E.R.; Summers, C.; Koenderman, L. The Neutrophil Life Cycle. Trends Immunol. 2019, 40, 584–597. [Google Scholar] [CrossRef]
- Lawrence, S.M.; Corriden, R.; Nizet, V. How Neutrophils Meet Their End. Trends Immunol. 2020, 41, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Cotterell, S.E.J.; Engwerda, C.R.; Kaye, P.M. Enhanced Hematopoietic Activity Accompanies Parasite Expansion in the Spleen and Bone Marrow of Mice Infected with Leishmania donovani. Infect. Immun. 2000, 68, 1840–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, P.; Dixit, A.; Chatterjee, T.; Bhattacharya, M.; Bhattacharya, J.; Dutta, P.; Mahapatra, M.; Prasad Pati, H.; Choudhry, V.P.; Saxena, R.; et al. Disseminated intravascular coagulation as an unusual presentation of kala-azar: Report of two cases. Scand. J. Infect. Dis. 2004, 36, 519–521. [Google Scholar] [CrossRef] [PubMed]
- Lomtadze, M.L.; Khochava, M.A.; Shalamberidze, I.A.; Kharaishvili, V.I.; Vorob’eva, E.O.; VI, K.; Vorob’eva, E.O. Study of intravascular coagulation activation markers in patients with visceral leishmaniasis. Georgian Med. News 2005, 124–125, 47–50. [Google Scholar]
- Thiagarajan, P.; Platelet Disorders Overview of Platelet Disorders. Medscape. Published 2021. Available online: https://emedicine.medscape.com/article/201722-overview#a2 (accessed on 23 October 2022).
- S Lima, S.; Cavalcante Braz, D.; Costa Silva, V.; J C Farias, T.; Zacarias, D.A.; da Silva, J.C.; Costa, C.H.N.; Costa, D.L. Biomarkers of the early response to treatment of visceral leishmaniasis: A prospective cohort study. Parasite Immunol. 2021, 43, e12797. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghazaly, J.; Al-Dubai, W. The clinical and biochemical characteristics of Yemeni adults and children with visceral leishmaniasis and the differences between them: A prospective cross-sectional study before and after treatment. Trop. Doct. 2016, 46, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Zhao, E.J.; Cheng, C.V.; Mattman, A.; Chen, L.Y.C. Polyclonal hypergammaglobulinaemia: Assessment, clinical interpretation, and management. Lancet Haematol. 2021, 8, e365–e375. [Google Scholar] [CrossRef]
- Zhao, E.J.; Carruthers, M.N.; Li, C.H.; Mattman, A.; Chen, L.Y.C. Conditions associated with polyclonal hypergammaglobulinemia in the IgG4-related disease era: A retrospective study from a hematology tertiary care center. Haematologica 2020, 105, e121–e123. [Google Scholar] [CrossRef]
- da Silva, P.E.F.; dos Santos Fonseca Junior, G.; Ambrozio, R.B.; Costa, M.G.S.T.; Machado, G.B.; de Carvalho, S.F.G.; de Oliveira, E.J.; Jorge, D.C.; de Almeida Silva Teixeira, L. LeishCare®: A software designed for the management of individuals with leishmaniases. Am. J. Trop. Med. Hyg. 2020, 103, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Abongomera, C.; Ritmeijer, K.; Vogt, F.; Buyze, J.; Mekonnen, Z.; Admassu, H.; Colebunders, R.; Mohammed, R.; Lynen, L.; Diro, E.; et al. Development and external validation of a clinical prognostic score for death in visceral leishmaniasis patients in a high HIV co-infection burden area in Ethiopia. PLoS ONE 2017, 12, e0178996. [Google Scholar] [CrossRef]
- Singh, K.; Singh, R.; Parija, S.C.; Faridi, M.M.A.; Bhatta, N. Clinical and laboratory study of kala-azar in children in Nepal. J. Trop. Pediatr. 1999, 45, 95–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barati, M.; Sharifi, I.; Daie Parizi, M.; Fasihi Harandi, M. Bacterial infections in children with visceral leishmaniasis: Observations made in Kerman province, southern Iran, between 1997 and 2007. Ann. Trop. Med. Parasitol. 2008, 102, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Abdinia, B.; Oliaei-Motlagh, M.; Teimouri-Dereshki, A. Pediatric visceral leishmaniasis in northwest of Iran. Medicine 2016, 95, e5261. [Google Scholar] [CrossRef]
- Griffin, G.; Shenoi, S.; Hughes, G.C. Hemophagocytic lymphohistiocytosis: An update on pathogenesis, diagnosis, and therapy. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101515. [Google Scholar] [CrossRef]
- Bertoli, A.; Greco, A.V.; Caputo, S.; Caradonna, P.; Grieco, A.; Laghi, V. Visceral leishmaniasis presenting with hypertrigliceridaemia. Lancet 1982, 320, 504–505. [Google Scholar] [CrossRef]
- Lal, C.S.; Verma, R.B.; Verma, N.; Siddiqui, N.A.; Rabidas, V.N.; Pandey, K.; Singh, D.; Kumar, S.; Paswan, R.K.; Kumari, A.; et al. Hypertriglyceridemia: A possible diagnostic marker of disease severity in visceral leishmaniasis. Infection 2016, 44, 39–45. [Google Scholar] [CrossRef]
- Brun, R. Antiparasitic. Clin. Microbiol. Infect. 2012, 18, 16–17. [Google Scholar] [CrossRef] [Green Version]
- Mottaghipisheh, H.; Kalantar, K.; Amanati, A.; Shokripour, M.; Shahriari, M.; Zekavat, O.R.; Zareifar, S.; Karimi, M.; Haghpanah, S.; Bordbar, M. Comparison of the clinical features and outcome of children with hemophagocytic lymphohistiocytosis (HLH) secondary to visceral leishmaniasis and primary HLH: A single-center study. BMC Infect. Dis. 2021, 21, 732. [Google Scholar] [CrossRef]
- González, J.L.; Insa, F.; Novoa, C.; Pizarro, M. Intestinal amyloidosis in hamsters with visceral leishmaniasis. Br. J. Exp. Pathol. 1986, 67, 353–360. [Google Scholar] [PubMed]
- de Freitas, J.C.C.; Lima, A.L.; Nunes-Pinheiro, D.C.S. Spleen damage in a dog naturally infected by Leishmania infantum. Rev. Soc. Bras. Med. Trop. 2017, 50, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Taylor, F.B.; Toh, C.H.; Hoots, W.K.; Wada, H.; Levi, M.; Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb. Haemost. 2001, 86, 1327–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, H. Disseminated intravascular coagulation. Clin. Chim. Acta 2004, 344, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Umemura, Y.; Wada, H.; Levy, J.H. Roles of Coagulation Abnormalities and Microthrombosis in Sepsis: Pathophysiology, Diagnosis, and Treatment. Arch. Med. Res. 2021, 52, 788–797. [Google Scholar] [CrossRef]
- Iba, T.; Levi, M.; Levy, J.H. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Semin. Thromb. Hemost. 2020, 46, 089–095. [Google Scholar] [CrossRef]
- Levi, M. Disseminated Intravascular Coagulation (DIC). Medscape. Published. 2022. Available online: https://emedicine.medscape.com/article/199627-overview (accessed on 12 May 2023).
- Butenas, S.; Orfeo, T.; Mann, K.G. Tissue factor in coagulation: Which? Where? When? Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1989–1996. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.H.; Kim, W.R.; Poterucha, J.J. Evaluation of Elevated Liver Enzymes. Clin. Liver Dis. 2012, 16, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, E.T.; Pavlidis, T.E. Pathophysiological consequences of obstructive jaundice and perioperative management. Hepatobiliary Pancreat. Dis. Int. 2018, 17, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Andrade, T.M.; Carvalho, E.M.; Rocha, H. Bacterial infections in patients with visceral leishmaniasis. J. Infect. Dis. 1990, 162, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Kadivar, M.R.; Kajbaf, T.Z.; Karimi, A.; Alborzi, A. Childhood visceral leishmaniasis complicated by bacterial infections. East. Mediterr. Health J. 2000, 6, 879–883. [Google Scholar]
- Bone, R.C. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome. Crit. Care Med. 1996, 24, 163–172. [Google Scholar] [CrossRef]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Shubin, N.J.; Monaghan, S.F.; Ayala, A. Anti-inflammatory mechanisms of sepsis. Contrib. Microbiol. 2011, 17, 108–124. [Google Scholar] [CrossRef] [PubMed]
- Nedeva, C.; Menassa, J.; Puthalakath, H. Sepsis: Inflammation Is a Necessary Evil. Front. Cell Dev. Biol. 2019, 7, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Liu, J.; Chen, S.; Ying, M.; Chen, G.; Liu, L.; Lun, Z.; Li, H.; Huang, H.; Li, Q.; et al. Malnutrition affects cholesterol paradox in coronary artery disease: A 41,229 Chinese cohort study. Lipids Health Dis. 2021, 20, 36. [Google Scholar] [CrossRef]
- Venet, F.; Monneret, G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 2018, 14, 121–137. [Google Scholar] [CrossRef]
- Liu, D.; Huang, S.-Y.; Sun, J.-H.; Zhang, H.-C.; Cai, Q.-L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil. Med. Res. 2022, 9, 56. [Google Scholar] [CrossRef]
- Heffernan, D.S.; Monaghan, S.F.; Thakkar, R.K.; Machan, J.T.; Cioffi, W.G.; Ayala, A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit. Care 2012, 16, R12. [Google Scholar] [CrossRef] [Green Version]
- Drewry, A.M.; Samra, N.; Skrupky, L.P.; Fuller, B.M.; Compton, S.M.; Hotchkiss, R.S. Persistent Lymphopenia After Diagnosis of Sepsis Predicts Mortality. Shock 2014, 42, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.; Zhang, S.; Peng, G.; Tang, Y.; Yang, Y. ICU and Sepsis: Role of Myeloid and Lymphocyte Immune Cells. J. Oncol. 2022, 2022, 7340266. [Google Scholar] [CrossRef]
- Finfer, S.; Venkatesh, B.; Hotchkiss, R.S.; Sasson, S.C. Lymphopenia in sepsis—An acquired immunodeficiency? Immunol. Cell Biol. 2023, 101, 535–544. [Google Scholar] [CrossRef]
- Francois, B.; Jeannet, R.; Daix, T.; Walton, A.H.; Shotwell, M.S.; Unsinger, J.; Monneret, G.; Rimmelé, T.; Blood, T.; Morre, M.; et al. Interleukin-7 restores lymphocytes in septic shock: The IRIS-7 randomized clinical trial. JCI Insight 2018, 3, e98960. [Google Scholar] [CrossRef]
- Silva-Freitas, M.L.; Corrêa-Castro, G.; Cota, G.F.; Giacoia-Gripp, C.; Rabello, A.; Teixeira Dutra, J.; de Vasconcelos, Z.F.M.; Savino, W.; Da-Cruz, A.M.; Santos-Oliveira, J.R. Impaired Thymic Output Can Be Related to the Low Immune Reconstitution and T Cell Repertoire Disturbances in Relapsing Visceral Leishmaniasis Associated HIV/AIDS Patients. Front. Immunol. 2020, 11, 953. [Google Scholar] [CrossRef] [PubMed]
- Takele, Y.; Mulaw, T.; Adem, E.; Shaw, C.J.; Franssen, S.U.; Womersley, R.; Kaforou, M.; Taylor, G.P.; Levin, M.; Müller, I.; et al. Immunological factors, but not clinical features, predict visceral leishmaniasis relapse in patients co-infected with HIV. Cell Rep. Med. 2022, 3, 100487. [Google Scholar] [CrossRef] [PubMed]
- Potestio, M.; D’Agostino, P.; Romano, G.C.; Milano, S.; Ferlazzo, V.; Aquino, A.; Di Bella, G.; Caruso, R.; Gambino, G.; Vitale, G.; et al. CD4+ CCR5+ and CD4+ CCR3+ lymphocyte subset and monocyte apoptosis in patients with acute visceral leishmaniasis. Immunology 2004, 113, 260–268. [Google Scholar] [CrossRef] [PubMed]
- de Souza, T.L.; da Silva, A.V.A.; Pereira, L.d.O.R.; Figueiredo, F.B.; Mendes Junior, A.A.V.; Menezes, R.C.; Mendes-da-Cruz, D.A.; Boité, M.C.; Cupolillo, E.; Porrozzi, R.; et al. Pro-Cellular Exhaustion Markers are Associated with Splenic Microarchitecture Disorganization and Parasite Load in Dogs with Visceral Leishmaniasis. Sci. Rep. 2019, 9, 12962. [Google Scholar] [CrossRef] [Green Version]
- Rytter, M.J.H.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The Immune System in Children with Malnutrition—A Systematic Review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef] [Green Version]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.-L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef]
- Ashwin, H.; Sadlova, J.; Vojtkova, B.; Becvar, T.; Lypaczewski, P.; Schwartz, E.; Greensted, E.; Van Bocxlaer, K.; Pasin, M.; Lipinski, K.S.; et al. Characterization of a new Leishmania major strain for use in a controlled human infection model. Nat. Commun. 2021, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Grzymajlo, K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front. Microbiol. 2022, 13, 854112. [Google Scholar] [CrossRef] [PubMed]
Clinical and Laboratory Manifestation | Model | Proposed Mediator | Organ and System Involved | Proposed Mechanism |
---|---|---|---|---|
Constitutional symptom | ||||
Fever | Rodents (rabbit, mouse, rat, guinea pig) | IL-1β, IL-6, TNF-α | Circumventricular organs, hypothalamus, preoptic area, the central thermoregulatory circuitries | Exogenous and endogenous pyrogens cross the brain barrier and reach the hypothalamus, where prostaglandin A2 acts via the prostaglandin E receptor 3, generating fever |
Weight loss | Rodents (mouse, rat) | IL-1β, IL-6, TNF-α, other cytokines | Circumventricular organs, hypothalamus, muscles, adipose tissue | “Sickness behavior” with loss of appetite, plus fever increasing the consumption of energy, sarcopenia due to IL-6, and acute phase response |
Nausea and vomiting | Dog, cat, ferret, nonhuman primates, human | Unknown | Circumventricular organs, central-pattern generator, nucleus tractus solitarius. | Stimuli from the viscera transported by the blood arrive in the area postrema and by the abdominal vagal afferents to the nucleus tractus solitarius. Neurons project to a central-pattern generator, which coordinates the act of emesis, and project to the ventral medulla and hypothalamus, from which cortical brain areas are reached |
Anemia | Mouse, dog, human | IL-6, IL-1β, hepcidin, ferroportin. Enlarged spleen | Bone marrow, liver, enterocytes, splenic macrophages. | IL-6 and Il-1b trigger the acute phase response protein hepcidin that inhibits the iron-exporter ferroportin, depriving bone marrow from iron. Also, phagocytosis by macrophages of the enlarged spleen |
Localized symptom | ||||
Hepatosplenomegaly | Dog, mouse, hamster, human | Hyperplasia, hypertrophy. | Spleen, liver | Proliferation of macrophages and amastigotes in spleen and liver |
Edema | Dog, hamster, nonhuman primates, human | IL-6, IL-1β | Liver, blood vessels | Acute phase response diminishes the synthesis of albumin. Hypoalbuminemia decreases the oncotic pressure and plasma leaks to the interstitial space |
Cough and dyspnea | Hamster, dog, cat, human | IL-6, IL-13, IL-4 | Pneumonitis in the alveolar interstitial space. Alveolar space | Interstitial inflammation and thickening alveolar space or bacterial pneumonia due to regulatory cytokines |
Kidney failure | Hamster, mouse, dog, cat, human | Unknown, likely multicausal. Amyloid. Medication | Glomeruli, tubules | Polyclonal hypergammaglobulinemia secondary to IL-6 secretion, proteinuria leading to proximal tubular injury, associated with glomerular inflammation. Amyloid deposition. Drug toxicity |
Liver involvement | Hamster, mouse, dog, human | Undetermined cytokines | Hepatocytes, bile ducts. Hepatic venules | Hepatocyte degeneration and death. Kupffer cells parasitized with amastigotes. Disseminated intravascular coagulation causing microthrombi. Fibrosis associated with Ito’s cells transformation into fibroblasts |
Diarrhea | Hamster, mouse, dog, human | Parasitism. Malnutrition | Intestinal mucosa | Heavy parasitism with mucosal inflammation |
Post-kala-azar dermal leishmaniasis | Human | IFN-γ, TNF-α, IL-12, IL-10 | Skin | Skin immunity is reactivated after cure, leading to a decrease in regulatory T cells, TGF-β, and IL-10 levels and an increase in IFN-γ, TNF-α, and IL-12 |
Laboratory changes | ||||
Neutropenia | Mouse, dog, nonhuman primates, human | Undetermined mediators | Bone marrow, spleen, liver vasculature | Parasitized and inflamed marginated pools of spleen, liver, and bone marrow may increase the disappearance of neutrophils by mechanisms such as necroptosis, pyroptosis, and neutrophil extracellular traps |
Thrombocytopenia | Dog, hamster, nonhuman primates, human | IL-6, IL-1β, tissue-factor | Vasculature | IL-6, IL-1β, and TNF-α increase the expression of tissue factor, triggering the extrinsic pathway of coagulation and depleting coagulation factors, including platelets |
Hyperglobulinemia | Dog, hamster, nonhuman primates, human | IL-6 | Liver, bone marrow | B-cells’ differentiation into antibody, producing plasma cells under the stimuli of IL-6 |
Hypoalbuminemia | Dog, hamster, nonhuman primates, human | IL-6 | Liver | IL-6 induces acute phase reaction that reduces the synthesis of albumin |
C-reactive protein | Dog, human | IL-6 | Liver | IL-6 induces acute phase reaction that increases the synthesis of C-reactive protein |
Erythrocyte sedimentation rate | Human | IL-6, fibrinogen | Liver | IL-6 induces acute phase reaction that change the balance between pro- and antisedimentation factors |
Haemophagocytic lymphohistiocytosis syndrome | Human | Cytokine storm, IL-6, IFN-γ, TNF-α, IL1β, IL-10 | Bone marrow, systemic | Activated CD8+ T cells and macrophages stimulate each other |
Amyloidosis | Hamster, human | IL-6, serum amyloid A. | Kidneys, systemic. | IL-6 induces acute phase reaction that increases the synthesis of amyloid proteins that deposit in tissues |
Complications and death | ||||
Hemorrhage | Dog, hamster, human | IL-6, IL-1β, tissue-factor. | Vasculature | Leishmanial and bacterial sepsis: IL-6, IL-1β, and TNF-α increase the expression of tissue factor, triggering the extrinsic pathway of coagulation and consumption coagulopathy. Microthrombi can lead to multiorgan failure and death |
Bacterial infections | Human | IL-10, IL-4, TGF-β. | Lungs, skin, urinary tract, blood | Regulatory cytokines, lymphopenia with lymphocyte apoptosis, following cytokine storm. Secondary malnutrition leads to several immunological defects. Bacterial sepsis further exacerbating leishmanial sepsis: disseminated intravascular coagulation causing microthrombi, which can lead to multiorgan failure, septic shock, and death |
Parameter | Died (n = 66) | Survived (n = 816) | ||
---|---|---|---|---|
Mean | Median | Mean | Median | |
Lymphocytes/μL | 1387 | 1 1100 | 1960 | 1 1565 |
Neutrophils/μL | 1293 | 2 945 | 1331 | 2 1065 |
Biomarkers needed for the diagnosis of the following: |
|
|
Supportive therapy with the following: |
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.H.N.; Chang, K.-P.; Costa, D.L.; Cunha, F.V.M. From Infection to Death: An Overview of the Pathogenesis of Visceral Leishmaniasis. Pathogens 2023, 12, 969. https://doi.org/10.3390/pathogens12070969
Costa CHN, Chang K-P, Costa DL, Cunha FVM. From Infection to Death: An Overview of the Pathogenesis of Visceral Leishmaniasis. Pathogens. 2023; 12(7):969. https://doi.org/10.3390/pathogens12070969
Chicago/Turabian StyleCosta, Carlos H. N., Kwang-Poo Chang, Dorcas L. Costa, and Francisco Valmor M. Cunha. 2023. "From Infection to Death: An Overview of the Pathogenesis of Visceral Leishmaniasis" Pathogens 12, no. 7: 969. https://doi.org/10.3390/pathogens12070969
APA StyleCosta, C. H. N., Chang, K.-P., Costa, D. L., & Cunha, F. V. M. (2023). From Infection to Death: An Overview of the Pathogenesis of Visceral Leishmaniasis. Pathogens, 12(7), 969. https://doi.org/10.3390/pathogens12070969