Strains Associated with Two 2020 Welder Anthrax Cases in the United States Belong to Separate Lineages within Bacillus cereus sensu lato
"> Figure 1
<p>Maximum likelihood phylogeny constructed using core genes detected among 607 genomes assigned to the Genome Taxonomy Database (GTDB) <span class="html-italic">Bacillus</span> (<span class="html-italic">B.</span>) <span class="html-italic">anthracis</span>, <span class="html-italic">B. paranthracis</span>, and <span class="html-italic">B. tropicus</span> species, plus outgroup genome <span class="html-italic">B. cereus sensu lato</span> (<span class="html-italic">s.l.</span>) strain FSL W8-0169 (National Center for Biotechnology Information [NCBI] RefSeq Assembly Accession GCF_001583695.1; omitted for readability). Branch colors and clade labels denote GTDB species assignments or, for <span class="html-italic">B. anthracis</span> and Group III “<span class="html-italic">B. cereus</span>”, historical species assignments (per the United States Food and Drug Administration’s Bacteriological Analytical Manual [FDA BAM]). The heatmap to the right of the phylogeny denotes the following (from left to right): (i) whether a genome was sequenced in this study or publicly available (“Origin”); (ii) selected PubMLST lineages assigned using seven-gene multi-locus sequence typing, to which the three genomes sequenced in this study were assigned (“MLST”); (iii) whether a genome possessed two or more anthrax toxin-encoding genes (<span class="html-italic">cya, lef, pagA</span>) or not (“Anthrax”); (iv) whether a genome possessed three or more cereulide synthetase (emetic toxin)-encoding genes (<span class="html-italic">cesABCD</span>) or not (“Emetic”); (v) whether a genome possessed four or more polyglutamate capsule-encoding genes (<span class="html-italic">capBCADE</span>) or not (“Cap”); (vi) whether a genome possessed six or more Bps exopolysaccharide-encoding genes (<span class="html-italic">bpsXABCDEFGH</span>) or not (“Bps”); (vii) whether a genome possessed two or more hyaluronic acid capsule-encoding genes <span class="html-italic">(hasABC)</span> or not (“Has”); (viii) whether a genome possessed three or more hemolysin BL diarrheal enterotoxin-encoding genes (<span class="html-italic">hblABCD</span>) or not (“Hbl”); (ix) whether a genome possessed cytotoxin K-encoding <span class="html-italic">cytK-2</span> or not (“CytK-2”); (x) the <span class="html-italic">panC</span> Group to which each genome was assigned (using BTyper3 and an eight-group scheme; “<span class="html-italic">panC</span>”). The phylogeny was rooted along the outgroup genome (omitted for readability), with branch lengths reported in substitutions per site.</p> "> Figure 2
<p>Maximum likelihood phylogeny constructed using core genes detected among 55 genomes assigned to the Genome Taxonomy Database (GTDB) <span class="html-italic">B. tropicus</span> species, plus GTDB <span class="html-italic">B. paranthracis</span> outgroup genome <span class="html-italic">B. cereus s.l.</span> strain AH187 (NCBI RefSeq Assembly Accession GCF_000021225.1; omitted for readability). A predicted anthrax toxin gene gain event among PubMLST Sequence Type 78 (ST78) genomes is denoted by a black arrow. The heatmap to the right of the phylogeny denotes the following (from left to right): (i) whether a genome was sequenced in this study or publicly available (“Origin”); (ii) selected PubMLST lineages assigned using seven-gene multi-locus sequence typing, to which genomes sequenced in this study were assigned (“MLST”); (iii) whether a genome possessed two or more anthrax toxin-encoding genes (<span class="html-italic">cya, lef, pagA</span>) or not (“Anthrax”); (iv) whether a genome possessed four or more polyglutamate capsule-encoding genes (<span class="html-italic">capBCADE</span>) or not (“Cap”); (v) whether a genome possessed six or more Bps exopolysaccharide-encoding genes (<span class="html-italic">bpsXABCDEFGH</span>) or not (“Bps”); (vi) whether a genome possessed two or more hyaluronic acid capsule-encoding genes <span class="html-italic">(hasABC)</span> or not (“Has”). The phylogeny was rooted along the outgroup genome (omitted for readability), with branch lengths reported in substitutions per site. For complete ancestral state reconstruction results, see <a href="#app1-pathogens-11-00856" class="html-app">Supplementary Figure S3</a>.</p> "> Figure 3
<p>Geographic origins of anthrax toxin gene-harboring <span class="html-italic">B. cereus s.l.</span> genomes, which do not belong to the clonal, historical <span class="html-italic">B. anthracis</span> lineage. Regions are colored by the associated number of anthrax toxin gene-harboring genomes assigned to (<b>A</b>) sequence type 78 (ST78) or (<b>B</b>) the ST365 clonal complex (CC) within PubMLST. For each of (<b>A</b>) ST78 and (<b>B</b>) the ST365 CC, one anthrax toxin gene-harboring genome with an unknown origin was excluded from the map.</p> "> Figure 4
<p>Maximum likelihood phylogeny constructed using core genes detected among 326 genomes assigned to the Genome Taxonomy Database (GTDB) <span class="html-italic">B. anthracis</span> species, plus GTDB <span class="html-italic">B. paranthracis</span> outgroup genome <span class="html-italic">B. cereus s.l.</span> strain AH187 (NCBI RefSeq Assembly Accession GCF_000021225.1; omitted for readability). Predicted anthrax toxin gene gain events among PubMLST Sequence Type 365 Clonal Complex (ST365 CC) genomes are denoted by black arrows. Branch colors and clade labels differentiate genomes that are members of the clonal, historical <span class="html-italic">B. anthracis</span> lineage (darker pink) from genomes that are not (lighter pink). The heatmap to the right of the phylogeny denotes the following (from left to right): (i) whether a genome was sequenced in this study or publicly available (“Origin”); (ii) selected PubMLST lineages assigned using seven-gene multi-locus sequence typing, to which the genomes sequenced in this study were assigned (“MLST”); (iii) whether a genome possessed two or more anthrax toxin-encoding genes (<span class="html-italic">cya, lef, pagA</span>) or not (“Anthrax”); (iv) whether a genome possessed four or more polyglutamate capsule-encoding genes (<span class="html-italic">capBCADE</span>) or not (“Cap”); (v) whether a genome possessed two or more hyaluronic acid capsule-encoding genes <span class="html-italic">(hasABC)</span> or not (“Has”); (vi) the <span class="html-italic">panC</span> Group to which each genome was assigned (using BTyper3 and an eight-group scheme; “<span class="html-italic">panC</span>”). The phylogeny was rooted along the outgroup genome (omitted for readability), with branch lengths reported in substitutions per site. For complete ancestral state reconstruction results, see <a href="#app1-pathogens-11-00856" class="html-app">Supplementary Figure S4</a>.</p> "> Figure 5
<p>Inferred parameters for the Finitely Many Genes (FMG) model among genomes assigned to the following taxonomic units: (i) the <span class="html-italic">B. mosaicus</span> genomospecies within the 2020 <span class="html-italic">B. cereus s.l.</span> Genomospecies-Subspecies-Biovar (GSB) framework (<span class="html-italic">n</span> = 664 genomes)<span class="html-italic">;</span> (ii) the clonal, historical <span class="html-italic">B. anthracis</span> lineage most commonly associated with anthrax toxin production (also known as <span class="html-italic">B. mosaicus</span> subsp. <span class="html-italic">anthracis</span> within the 2020 GSB framework; <span class="html-italic">n</span> = 119 genomes); (iii) the Genome Taxonomy Database (GTDB) <span class="html-italic">B. anthracis</span> species (<span class="html-italic">n</span> = 180 genomes)<span class="html-italic">;</span> (iv) GTDB’s <span class="html-italic">B. anthracis</span>, <span class="html-italic">B. paranthracis</span>, and <span class="html-italic">B. tropicus</span> species (<span class="html-italic">n</span> = 415 genomes); (v) GTDB’s <span class="html-italic">B. tropicus</span> species (<span class="html-italic">n</span> = 46 genomes). FMG parameters were estimated using Panaroo, with gray bars denoting the 2.5 and 97.5% confidence interval bounds for each parameter (obtained using 100 bootstrap replicates).</p> "> Figure 6
<p>Results of non-metric multidimensional scaling (NMDS) performed using the presence and absence of pan-genome orthologous gene clusters detected among anthrax toxin gene-harboring members of (i) the clonal, historical <span class="html-italic">B. anthracis</span> lineage typically associated with anthrax toxin production (also known as <span class="html-italic">B. mosaicus</span> subsp. <span class="html-italic">anthracis</span> within the 2020 Genomospecies-Subspecies-Biovar [GSB] framework); (ii) the PubMLST ST365 Clonal Complex (CC;, i.e., anthrax-causing “<span class="html-italic">B. cereus</span>”-like genomes, which are most closely related to the <span class="html-italic">B. anthracis</span> species type strain genome but are not members of the 2020 GSB <span class="html-italic">B. anthracis</span> subspecies); (iii) PubMLST ST78 (i.e., anthrax-causing “<span class="html-italic">B. cereus</span>”-like genomes, which are most closely related to the <span class="html-italic">B. tropicus</span> species type strain genome). Points represent genomes, while shaded regions and convex hulls correspond to the anthrax toxin gene-harboring lineage to which each genome belongs. Lineages differed significantly based on pan-genome orthologous gene cluster presence/absence (Bonferroni-corrected ANOSIM and PERMANOVA <span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. B. cereus s.l. Strains with “B. cereus”-like Phenotypic Characteristics were Responsible for Welder Anthrax Cases in Louisiana and Texas
2.2. Anthrax-Causing B. cereus s.l. ST78 and ST108 Genomes Belong to Separate Species at Conventional Genomospecies Thresholds
2.3. Anthrax-Causing ST78 Genomes May Possess Genes Encoding the Bps Exopolysaccharide Capsule, as Well as Enterotoxins Hbl and CytK-2
NCBI RefSeq Accession | Strain | Host | Geographic Location | Collection Year | GTDB Species b | panC Group c | MLST ST [CC] d | Capsule e |
---|---|---|---|---|---|---|---|---|
GCF_000022505.1 | 03BB102 | Human | USA (Texas: San Antonio) | 2003 | B. anthracis | III | 11 [ST-365 CC] | cap |
GCF_000143605.1 | CI | Chimpanzee (“Léo”) | Côte d′Ivoire (Taï National Park) | 2002 | B. anthracis | III | 935 [ST-365 CC] | cap |
GCF_000688755.1 | BcFL2013 | Human | USA (Florida) | 2013 | B. tropicus | II | 78 [NA] | NA |
GCF_000789315.1 | 03BB87 | Human | USA (Texas: Lubbock) | 2003 | B. tropicus | II | 78 [NA] | bps |
GCF_000832405.1 | 03BB102 | Human | USA (Texas: San Antonio) | 2003 | B. anthracis | III | 11 [ST-365 CC] | cap |
GCF_000832805.1 | G9241 | Human | USA (Louisiana) | 2004 | B. tropicus | II | 78 [NA] | bps |
GCF_002007005.1 | LA2007 | Human | USA (Louisiana: Galliano) | 2007 | B. tropicus | II | 78 [NA] | bps |
GCF_002117465.1 | BC-AK | Kangaroo | China (Guangxi) | 2016 | B. tropicus | II | 78 [NA] | cap |
GCF_016027015.1 | FDAARGOS_918 | NA | NA | NA | B. anthracis | III | 11 [ST-365 CC] | cap |
GCF_016027575.1 | FDAARGOS_897 | NA | NA | NA | B. tropicus | II | 78 [NA] | bps |
2.4. ST108 and Other Anthrax-Causing Members of the ST365 Clonal Complex Belong to B. Anthracis at Conventional Species Thresholds
2.5. Anthrax-Causing B. cereus s.l. Lineages Differ in Pan-Genome Composition
3. Discussion
3.1. Two Distinct Lineages of Anthrax-Causing B. cereus s.l. with “B. cereus”-like Phenotypic Characteristics Are Circulating in the United States and Have the Potential to Cause Severe Anthrax-like Illness
3.2. Recommendations for Effective and Unambiguous Communication of B. cereus s.l. Taxonomy for Anthrax-Causing Strains
3.3. Whole-Genome Sequencing in Combination with Epidemiological, Microbiological and Clinical Data May Improve Surveillance of Anthrax Cases in the Future
4. Materials and Methods
4.1. Clinical Case Information and Environmental Isolate Acquisition
4.2. Whole-Genome Sequencing
4.3. Data Pre-Processing and Quality Control
4.4. Taxonomic Assignment, Sequence Typing, and Detection of Virulence Factors
4.5. Phylogenomic and Pan-Genomic Comparison to Publicly Available B. mosaicus Genomes
4.6. Anthrax Toxin Gene Presence Ancestral State Reconstruction
4.7. Genomic Comparison to Closely Related B. cereus s.l. Genomes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, V.M. You Can’t B. cereus—A Review of Bacillus cereus Strains That Cause Anthrax-Like Disease. Front. Microbiol. 2020, 11, 1731. [Google Scholar] [CrossRef]
- Carroll, L.M.; Cheng, R.A.; Wiedmann, M.; Kovac, J. Keeping up with the Bacillus cereus group: Taxonomy through the genomics era and beyond. Crit. Rev. Food Sci. Nutr. 2021, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7, 875–902. [Google Scholar] [CrossRef] [PubMed]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. mBio 2020, 11, e00034-20. [Google Scholar] [CrossRef] [Green Version]
- Moayeri, M.; Leppla, S.H.; Vrentas, C.; Pomerantsev, A.P.; Liu, S. Anthrax Pathogenesis. Annu. Rev. Microbiol. 2015, 69, 185–208. [Google Scholar] [CrossRef]
- Pilo, P.; Frey, J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. Infect. Genet. Evol. 2018, 64, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Glil, M.Y.; Chiaverini, A.; Garofolo, G.; Fasanella, A.; Parisi, A.; Harmsen, D.; Jolley, K.A.; Elschner, M.C.; Tomaso, H.; Linde, J.; et al. A Whole-Genome-Based Gene-by-Gene Typing System for Standardized High-Resolution Strain Typing of Bacillus anthracis. J. Clin. Microbiol. 2021, 59, e0288920. [Google Scholar] [CrossRef] [PubMed]
- Fasanella, A. Bacillus anthracis, virulence factors, PCR, and interpretation of results. Virulence 2013, 4, 659–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okinaka, R.T.; Cloud, K.; Hampton, O.; Hoffmaster, A.R.; Hill, K.K.; Keim, P.; Koehler, T.M.; Lamke, G.; Kumano, S.; Mahillon, J.; et al. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 1999, 181, 6509–6515. [Google Scholar] [CrossRef] [Green Version]
- Hoffmaster, A.R.; Koehler, T.M. Autogenous regulation of the Bacillus anthracis pag operon. J. Bacteriol. 1999, 181, 4485–4492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makino, S.; Uchida, I.; Terakado, N.; Sasakawa, C.; Yoshikawa, M. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 1989, 171, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Tallent, S.M.; Kotewicz, K.M.; Strain, E.A.; Bennett, R.W. Efficient isolation and identification of Bacillus cereus group. J. AOAC Int. 2012, 95, 446–451. [Google Scholar] [CrossRef]
- Tallent, S.M.; Knolhoff, A.; Rhodehamel, E.J.; Harmon, S.M.; Bennett, R.W. Chapter 14: Bacillus cereus. In Bacteriological Analytical Manual (BAM), 8th ed.; Food and Drug Administration: Silver Spring, MA, USA, 2019. [Google Scholar]
- Brown, E.R.; Cherry, W.B.; Moody, M.D.; Gordon, M.A. The induction of motility in Bacillus anthracis by means of bacteriophage lysates: Significance for the relationship of Bacillus anthracis to Bacillus cereus. J. Bacteriol. 1955, 69, 590–602. [Google Scholar] [CrossRef] [Green Version]
- Abshire, T.G.; Brown, J.E.; Ezzell, J.W. Production and validation of the use of gamma phage for identification of Bacillus anthracis. J. Clin. Microbiol. 2005, 43, 4780–4788. [Google Scholar] [CrossRef] [Green Version]
- Jain, C.; Rodriguez, R.L.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [Green Version]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Hoffmaster, A.R.; Ravel, J.; Rasko, D.A.; Chapman, G.D.; Chute, M.D.; Marston, C.K.; De, B.K.; Sacchi, C.T.; Fitzgerald, C.; Mayer, L.W.; et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 2004, 101, 8449–8454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avashia, S.B.; Riggins, W.S.; Lindley, C.; Hoffmaster, A.; Drumgoole, R.; Nekomoto, T.; Jackson, P.J.; Hill, K.K.; Williams, K.; Lehman, L.; et al. Fatal pneumonia among metalworkers due to inhalation exposure to Bacillus cereus Containing Bacillus anthracis toxin genes. Clin. Infect. Dis. 2007, 44, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Klee, S.R.; Ozel, M.; Appel, B.; Boesch, C.; Ellerbrok, H.; Jacob, D.; Holland, G.; Leendertz, F.H.; Pauli, G.; Grunow, R.; et al. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J. Bacteriol. 2006, 188, 5333–5344. [Google Scholar] [CrossRef] [Green Version]
- Klee, S.R.; Brzuszkiewicz, E.B.; Nattermann, H.; Bruggemann, H.; Dupke, S.; Wollherr, A.; Franz, T.; Pauli, G.; Appel, B.; Liebl, W.; et al. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS ONE 2010, 5, e10986. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.K.; Vergis, J.M.; Alem, F.; Palmer, J.R.; Keane-Myers, A.M.; Brahmbhatt, T.N.; Ventura, C.L.; O’Brien, A.D. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice. Infect. Immun. 2011, 79, 3012–3019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.Y.; Budzik, J.M.; Garufi, G.; Schneewind, O. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol. Microbiol. 2011, 80, 455–470. [Google Scholar] [CrossRef] [Green Version]
- Brezillon, C.; Haustant, M.; Dupke, S.; Corre, J.P.; Lander, A.; Franz, T.; Monot, M.; Couture-Tosi, E.; Jouvion, G.; Leendertz, F.H.; et al. Capsules, toxins and AtxA as virulence factors of emerging Bacillus cereus biovar anthracis. PLoS Negl. Trop. Dis. 2015, 9, e0003455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marston, C.K.; Ibrahim, H.; Lee, P.; Churchwell, G.; Gumke, M.; Stanek, D.; Gee, J.E.; Boyer, A.E.; Gallegos-Candela, M.; Barr, J.R.; et al. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar. PLoS ONE 2016, 11, e0156987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonation, K.S.; Grutzmacher, K.; Dupke, S.; Mabon, P.; Zimmermann, F.; Lankester, F.; Peller, T.; Feistner, A.; Todd, A.; Herbinger, I.; et al. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution. PLoS Negl. Trop. Dis. 2016, 10, e0004923. [Google Scholar] [CrossRef]
- Pena-Gonzalez, A.; Marston, C.K.; Rodriguez-R, L.M.; Kolton, C.B.; Garcia-Diaz, J.; Theppote, A.; Frace, M.; Konstantinidis, K.T.; Hoffmaster, A.R. Draft Genome Sequence of Bacillus cereus LA2007, a Human-Pathogenic Isolate Harboring Anthrax-Like Plasmids. Genome Announc. 2017, 5, e00181-17. [Google Scholar] [CrossRef] [Green Version]
- Scarff, J.M.; Seldina, Y.I.; Vergis, J.M.; Ventura, C.L.; O’Brien, A.D. Expression and contribution to virulence of each polysaccharide capsule of Bacillus cereus strain G9241. PLoS ONE 2018, 13, e0202701. [Google Scholar] [CrossRef] [Green Version]
- Saikia, L.; Gogoi, N.; Das, P.P.; Sarmah, A.; Punam, K.; Mahanta, B.; Bora, S.; Bora, R. Bacillus cereus-Attributable Primary Cutaneous Anthrax-Like Infection in Newborn Infants, India. Emerg. Infect. Dis. 2019, 25, 1261–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Alvarez, D.; Peterson, A.T.; Salzer, J.S.; Pittiglio, C.; Shadomy, S.; Traxler, R.; Vieira, A.R.; Bower, W.A.; Walke, H.; Campbell, L.P. Potential distributions of Bacillus anthracis and Bacillus cereus biovar anthracis causing anthrax in Africa. PLoS Negl. Trop. Dis. 2020, 14, e0008131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, P.; Schrodt, C.A.; Feldmann, K.; Traxler, R.M.; Gee, J.E.; Kolton, C.B.; Marston, C.K.; Gulvik, C.A.; Antonini, J.M.; Negron, M.E.; et al. Notes from the Field: Fatal Anthrax Pneumonia in Welders and Other Metalworkers Caused by Bacillus cereus Group Bacteria Containing Anthrax Toxin Genes—U.S. Gulf Coast States, 1994–2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1453–1454. [Google Scholar] [CrossRef]
- de Perio, M.A.; Hendricks, K.A.; Dowell, C.H.; Bower, W.A.; Burton, N.C.; Dawson, P.; Schrodt, C.A.; Salzer, J.S.; Marston, C.K.; Feldmann, K.; et al. Welder’s Anthrax: A Review of an Occupational Disease. Pathogens 2022, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Hoffmaster, A.R.; Hill, K.K.; Gee, J.E.; Marston, C.K.; De, B.K.; Popovic, T.; Sue, D.; Wilkins, P.P.; Avashia, S.B.; Drumgoole, R.; et al. Characterization of Bacillus cereus Isolates Associated with Fatal Pneumonias: Strains Are Closely Related to Bacillus anthracis and Harbor B. anthracis Virulence Genes. J. Clin. Microbiol. 2006, 44, 3352–3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [Green Version]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Carroll, L.M.; Cheng, R.A.; Kovac, J. No Assembly Required: Using BTyper3 to Assess the Congruency of a Proposed Taxonomic Framework for the Bacillus cereus Group With Historical Typing Methods. Front. Microbiol. 2020, 11, 580691. [Google Scholar] [CrossRef] [PubMed]
- Guinebretiere, M.H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus Group. Environ. Microbiol. 2008, 10, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Guinebretiere, M.H.; Velge, P.; Couvert, O.; Carlin, F.; Debuyser, M.L.; Nguyen-The, C. Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J. Clin. Microbiol. 2010, 48, 3388–3391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivy, R.A.; Ranieri, M.L.; Martin, N.H.; den Bakker, H.C.; Xavier, B.M.; Wiedmann, M.; Boor, K.J. Identification and characterization of psychrotolerant sporeformers associated with fluid milk production and processing. Appl. Environ. Microbiol. 2012, 78, 1853–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, L.M.; Kovac, J.; Miller, R.A.; Wiedmann, M. Rapid, High-Throughput Identification of Anthrax-Causing and Emetic Bacillus cereus Group Genome Assemblies via BTyper, a Computational Tool for Virulence-Based Classification of Bacillus cereus Group Isolates by Using Nucleotide Sequencing Data. Appl. Environ. Microbiol. 2017, 83, e01096-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Goker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Chuvochina, M.; Chaumeil, P.A.; Rinke, C.; Mussig, A.J.; Hugenholtz, P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 2020, 38, 1079–1086. [Google Scholar] [CrossRef]
- Sunagawa, S.; Mende, D.R.; Zeller, G.; Izquierdo-Carrasco, F.; Berger, S.A.; Kultima, J.R.; Coelho, L.P.; Arumugam, M.; Tap, J.; Nielsen, H.B.; et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat. Methods 2013, 10, 1196–1199. [Google Scholar] [CrossRef]
- Richter, M.; Rossello-Mora, R.; Oliver Glockner, F.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Lai, Q.; Zeng, R.; Ye, D.; Xu, J.; Shao, Z. Proposal of nine novel species of the Bacillus cereus group. Int. J. Syst. Evol. Microbiol. 2017, 67, 2499–2508. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lai, Q.; Goker, M.; Meier-Kolthoff, J.P.; Wang, M.; Sun, Y.; Wang, L.; Shao, Z. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 2015, 5, 14082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.M.; Beres, S.B.; Consamus, E.N.; Long, S.W.; Flores, A.R.; Barrios, R.; Richter, G.S.; Oh, S.Y.; Garufi, G.; Maier, H.; et al. Rapidly progressive, fatal, inhalation anthrax-like infection in a human: Case report, pathogen genome sequencing, pathology, and coordinated response. Arch. Pathol. Lab. Med. 2011, 135, 1447–1459. [Google Scholar] [CrossRef]
- Brown, B.; Allard, M.; Bazaco, M.C.; Blankenship, J.; Minor, T. An economic evaluation of the Whole Genome Sequencing source tracking program in the U.S. PLoS ONE 2021, 16, e0258262. [Google Scholar] [CrossRef] [PubMed]
- Rantsiou, K.; Kathariou, S.; Winkler, A.; Skandamis, P.; Saint-Cyr, M.J.; Rouzeau-Szynalski, K.; Amezquita, A. Next generation microbiological risk assessment: Opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. Int. J. Food Microbiol. 2018, 287, 3–9. [Google Scholar] [CrossRef]
- Gardy, J.L.; Loman, N.J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef]
- Carroll, L.M.; Wiedmann, M.; Mukherjee, M.; Nicholas, D.C.; Mingle, L.A.; Dumas, N.B.; Cole, J.A.; Kovac, J. Characterization of Emetic and Diarrheal Bacillus cereus Strains From a 2016 Foodborne Outbreak Using Whole-Genome Sequencing: Addressing the Microbiological, Epidemiological, and Bioinformatic Challenges. Front. Microbiol. 2019, 10, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, M.S.; Hsieh, Y.H.; Simpson, S.; Kerdahi, K.; Sulaiman, I.M. Evaluation of Two Standard and Two Chromogenic Selective Media for Optimal Growth and Enumeration of Isolates of 16 Unique Bacillus Species. J. Food Prot. 2017, 80, 952–962. [Google Scholar] [CrossRef]
- Pettengill, J.B.; Markell, A.; Conrad, A.; Carleton, H.A.; Beal, J.; Rand, H.; Musser, S.; Brown, E.W.; Allard, M.W.; Huffman, J.; et al. A multinational listeriosis outbreak and the importance of sharing genomic data. Lancet Microbe 2020, 1, e233–e234. [Google Scholar] [CrossRef]
- Carroll, L.M.; Pierneef, R.; Mathole, A.; Atanda, A.; Matle, I. Genomic Sequencing of Bacillus cereus Sensu Lato Strains Isolated from Meat and Poultry Products in South Africa Enables Inter- and Intranational Surveillance and Source Tracking. Microbiol. Spectr. 2022, 10, e00700-22. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Souvorov, A.; Agarwala, R.; Lipman, D.J. SKESA: Strategic k-mer extension for scrupulous assemblies. Genome Biol. 2018, 19, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Ewels, P.; Magnusson, M.; Lundin, S.; Kaller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- The Pandas Development Team. Pandas-dev/Pandas: Pandas. Zenodo 2020. Available online: https://doi.org/10.5281/zenodo.3509134 (accessed on 24 November 2021).
- Tonkin-Hill, G.; MacAlasdair, N.; Ruis, C.; Weimann, A.; Horesh, G.; Lees, J.A.; Gladstone, R.A.; Lo, S.; Beaudoin, C.; Floto, R.A.; et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020, 21, 180. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernandez-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantalapiedra, C.P.; Hernandez-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Page, A.J.; Taylor, B.; Delaney, A.J.; Soares, J.; Seemann, T.; Keane, J.A.; Harris, S.R. SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2016, 2, e000056. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 1986, 17, 57–86. [Google Scholar]
- Minh, B.Q.; Nguyen, M.A.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Barrett, T.; Clark, K.; Gevorgyan, R.; Gorelenkov, V.; Gribov, E.; Karsch-Mizrachi, I.; Kimelman, M.; Pruitt, K.D.; Resenchuk, S.; Tatusova, T.; et al. BioProject and BioSample databases at NCBI: Facilitating capture and organization of metadata. Nucleic Acids Res. 2012, 40, D57–D63. [Google Scholar] [CrossRef] [PubMed]
- To, T.-H.; Jung, M.; Lycett, S.; Gascuel, O. Fast Dating Using Least-Squares Criteria and Algorithms. Syst. Biol. 2015, 65, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Zamani-Dahaj, S.A.; Okasha, M.; Kosakowski, J.; Higgs, P.G. Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss. Mol. Biol. Evol. 2016, 33, 1843–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package. R Package Version 2.5-7. 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 12 April 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; Version 4.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Revell, L.J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Seemann, T. Snippy: Rapid Haploid Variant Calling and Core Genome Alignment; Version 4.4.0; Torsten Seemann: Melbourne, Australia, 2019. [Google Scholar]
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef] [Green Version]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 1981, 78, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A. FigTree: A Graphical Viewer of Phylogenetic Trees; Version 1.4.4; Andrew Rambaut: Edinburgh, Scotland, UK, 2021. [Google Scholar]
Isolate | Year of Isolation | Geographic Location of Isolation | Isolation Source (General) | Isolation Source (Details) | Host Illness | Host Age (Years) | Host Sex | Host Occupation | Host Outcome |
---|---|---|---|---|---|---|---|---|---|
BacLA2020a | 2020 | Louisiana, USA | Human clinical case | Patient F a,b | Severe anthrax pneumonia | 39 | Male | Welder | Recovered c |
BacLA2020b | 2020 | Louisiana, USA | Environmental isolate | Soil sample from Patient F’s worksite d | NA e | NA e | NA e | NA e | NA e |
BacTX2020a | 2020 | Texas, USA | Human clinical case | Patient G a | Severe anthrax pneumonia | 34 | Male | Welder | Fatal |
Single- and Multi-Locus Sequence Typing | Toxin Genes | Capsule Genes d | Whole-Genome-Based Taxonomic Assignment | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Genome | panC Group a | MLST ST b | rpoB AT c | Anthrax Toxin Genes d,e | Cap f | Bps g | Has h | Closest Species Type Strain (ANI; DDH) i | GTDB Species j | 2020 GSB Taxonomy k |
BacLA2020a | II | 78 | 365 | + | − | + | + | B. tropicus (96.5%; 69.7%) | B. tropicus | B. mosaicus biovar Anthracis; B. anthracis |
BacLA2020b | II | 78 | 365 | + | − | + | + | B. tropicus (96.5%; 69.7%) | B. tropicus | B. mosaicus biovar Anthracis; B. anthracis |
BacTX2020a | III | 108 | 120 | + | − | − | + | B. anthracis (97.4%; 76.1%) | B. anthracis | B. mosaicus biovar Anthracis; B. anthracis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carroll, L.M.; Marston, C.K.; Kolton, C.B.; Gulvik, C.A.; Gee, J.E.; Weiner, Z.P.; Kovac, J. Strains Associated with Two 2020 Welder Anthrax Cases in the United States Belong to Separate Lineages within Bacillus cereus sensu lato. Pathogens 2022, 11, 856. https://doi.org/10.3390/pathogens11080856
Carroll LM, Marston CK, Kolton CB, Gulvik CA, Gee JE, Weiner ZP, Kovac J. Strains Associated with Two 2020 Welder Anthrax Cases in the United States Belong to Separate Lineages within Bacillus cereus sensu lato. Pathogens. 2022; 11(8):856. https://doi.org/10.3390/pathogens11080856
Chicago/Turabian StyleCarroll, Laura M., Chung K. Marston, Cari B. Kolton, Christopher A. Gulvik, Jay E. Gee, Zachary P. Weiner, and Jasna Kovac. 2022. "Strains Associated with Two 2020 Welder Anthrax Cases in the United States Belong to Separate Lineages within Bacillus cereus sensu lato" Pathogens 11, no. 8: 856. https://doi.org/10.3390/pathogens11080856
APA StyleCarroll, L. M., Marston, C. K., Kolton, C. B., Gulvik, C. A., Gee, J. E., Weiner, Z. P., & Kovac, J. (2022). Strains Associated with Two 2020 Welder Anthrax Cases in the United States Belong to Separate Lineages within Bacillus cereus sensu lato. Pathogens, 11(8), 856. https://doi.org/10.3390/pathogens11080856