Invaders as Diluents of the Cercarial Dermatitis Etiological Agent
<p>Schematic diagram of the experimental procedure.</p> "> Figure 2
<p>Bird schistosome cercariae in beakers (ind/mL, mean values ± SE, <span class="html-italic">n</span> = 3 for each tested replicate) before and after exposure to following experimental invertebrate species: (<b>A</b>) <span class="html-italic">Physa acuta</span> (5 specimens), (<b>B</b>) <span class="html-italic">Dreissena polymorpha</span> (5 specimens), (<b>C</b>) <span class="html-italic">Dikerogammarus villosus</span> (3 specimens).</p> "> Figure 3
<p>Average densities of bird schistosome cercariae remaining (%) after exposure to following experimental invertebrate species: (<b>A</b>) <span class="html-italic">Physa acuta</span> (5 specimens), (<b>B</b>) <span class="html-italic">Dreissena polymorpha</span> (5 specimens), (<b>C</b>) <span class="html-italic">Dikerogammarus villosus</span> (3 specimens).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bird Schistosome Cercariae Collecting and Counting
2.2. Experimental Setup and Test Procedure
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horák, P.; Mikeš, L.; Lichtenbergová, L.; Skála, V.; Soldánová, M.; Brant, S.V. Avian schistosomes and outbreaks of cercarial dermatitis. Clin. Microbiol. Rev. 2015, 28, 165–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horák, P.; Kolářová, L. Bird schistosomes: Do they die in mammalian skin? Trends Parasitol. 2001, 17, 66–69. [Google Scholar] [CrossRef]
- Horák, P.; Kolářová, L.; Adema, C.M. Biology of the schistosome genus Trichobilharzia. Adv. Parasitol. 2002, 52, 155–233. [Google Scholar]
- Żbikowska, E. Is there a potential danger of “swimmer’s itch in Poland? Parasitol. Res. 2002, 89, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Marszewska, A.; Cichy, A.; Heese, T.; Żbikowska, E. The real threat of swimmers’ itch in anthropogenic recreational water body of the Polish Lowland. Parasitol. Res. 2016, 115, 3049–3056. [Google Scholar] [CrossRef] [Green Version]
- Bayssade-Dufour, C.; Martins, C.; Vuong, P.N. Histopathologie pulmonaire d’un modele mammifere et dermatite cercarienne humaine. Med. Mal. Infect. 2001, 12, 713–722. [Google Scholar] [CrossRef]
- Horák, P.; Kolářová, L. Survival of bird schistosomes in mammalian lungs. Int. J. Parasitol. 2000, 30, 65–68. [Google Scholar] [CrossRef]
- Olivier, L. Observations on the migration of avian schistosomes in mammals previously unexposed to cercariae. J. Parasitol. 1953, 39, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Haas, W.; Pietsch, U. Migration of Trichobilharzia ocellata schistosomula in the duck and in the abnormal murine host. Parasitol. Res. 1991, 77, 642–644. [Google Scholar] [CrossRef]
- Horák, P.; Dvořák, J.; Kolářová, L.; Trefil, L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology 1999, 119, 577–581. [Google Scholar] [CrossRef]
- Żbikowska, E. Infection of snails with bird schistosomes and the threat of swimmer’s itch in selected Polish Lakes. Parasitol. Res. 2004, 92, 30–35. [Google Scholar] [CrossRef]
- Selbach, C.; Soldánová, M.; Sures, B. Estimating the risk of swimmer’s itch in surface waters–a case study from Lake Baldeney, River Ruhr. Int. J. Hyg. Environ. Health 2016, 219, 693–699. [Google Scholar] [CrossRef]
- Soldánová, M.; Selbach, C.; Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial Emission from Lymnaea stagnalis. PLoS ONE 2016, 11, e0149678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Liberato, C.; Berrilli, F.; Bossù, T.; Magliano, A.; Montalbano Di Filippo, M.; Di Cave, D.; Sigismondi, M.; Cannavacciuolo, A.; Scaramozzino, P. Outbreak of swimmer’s itch in Central Italy: Description, causative agent and preventive measures. Zoonoses Public Health 2019, 66, 377–381. [Google Scholar] [CrossRef]
- Tracz, E.S.; Al-Jubury, A.; Buchmann, K.; Bygum, A. Outbreak of swimmer’s itch in Denmark. Acta Derm. Venereol. 2019, 99, 1116–1120. [Google Scholar] [CrossRef] [Green Version]
- Gulyás, K.; Soldánová, M.; Orosová, M.; Oros, M. Confirmation of the presence of zoonotic Trichobilharzia franki following a human cercarial dermatitis outbreak in recreational water in Slovakia. Parasitol. Res. 2020, 119, 2531–2537. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, B.; Giovenazzo, P.; Guerrier, P.; Laverdiere, D.; Prud’Homme, H. Investigation of an outbreak of cercarial dermatitis. Epidemiol. Infect. 2002, 129, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Wulff, C.; Haeberlein, S.; Haas, W. Cream formulations protecting against cercarial dermatitis by Trichobilharzia. Parasitol. Res. 2007, 101, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Jouet, D.; Ferté, H.; Depaquit, J.; Rudolfová, J.; Latour, P.; Zanella, D.; Kaltenbach, M.L.; Léger, N. Trichobilharzia spp. in natural conditions in Annecy Lake, France. Parasitol. Res. 2008, 103, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Marszewska, A.; Cichy, A.; Bulantová, J.; Horák, P.; Żbikowska, E. Potamopyrgus antipodarum as a potential defender against swimmer’s itch in european recreational water bodies—experimental study. PeerJ 2018, 6, e5045. [Google Scholar] [CrossRef] [Green Version]
- Born-Torrijos, A.; Paterson, R.A.; van Beest, G.S.; Vyhlídalová, T.; Henriksen, E.H.; Knudsen, R.; Kristoffersen, R.; Amundsen, P.-A.; Soldánová, M. Cercarial behaviour alters the consumer functional response of three-spined sticklebacks. J. Anim. Ecol. 2021, 90, 978–988. [Google Scholar] [CrossRef]
- Peirce, J.P.; Pellett, J.J.; Sandland, G.J. A Mathematical model for the control of swimmer’s itch. Nat. Resour. Model. 2020, 33, e12275. [Google Scholar] [CrossRef]
- Soldánová, M.; Selbach, C.; Kalbe, M.; Kostadinova, A.; Sures, B. Swimmer’s itch: Etiology, impact, and risk factors in Europe. Trends Parasitol. 2013, 29, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Bullard, S.A.; Overstreet, R.M. Digeneans as enemies of fishes. Fish Dis. 2008, 2, 817–976. [Google Scholar]
- Weinzettl, M.; Jurberg, P. Biological control of Biomphalaria tenagophila (Mollusca, Planorbidae), a schistosomiasis vector, using the fish Geophagus brasiliensis (Pisces, Cichlidae) in the Laboratory or in a Seminatural Environment. Mem. Inst. Oswaldo Cruz 1990, 85, 35–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froelich, K.L.; Reimink, R.L.; Rudko, S.P.; VanKempen, A.P.; Hanington, P.C. Evaluation of Targeted Copper Sulfate (CuSO4) Application for controlling swimmer’s itch at a freshwater recreation site in Michigan. Parasitol. Res. 2019, 118, 1673–1677. [Google Scholar] [CrossRef] [PubMed]
- Marszewska, A.; Cichy, A.; Bulantová, J.; Horák, P.; Żbikowska, E. The chemotactic swimming behavior of bird schistosome miracidia in the presence of compatible and incompatible snail hosts. PeerJ 2020, 8, e9487. [Google Scholar] [CrossRef] [PubMed]
- Keesing, F.; Holt, R.D.; Ostfeld, R.S. Effects of species diversity on disease risk. Ecol. Lett. 2006, 9, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Kopp, K.; Jokela, J. Resistant invaders can convey benefits to native species. Oikos 2007, 116, 295–301. [Google Scholar] [CrossRef]
- Johnson, P.T.J.; Thieltges, D.W. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. J. Exp. Biol. 2010, 213, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Cichy, A.; Urbańska, M.; Marszewska, A.; Andrzejewski, W.; Żbikowska, E. The invasive chinese pond mussel Sinanodonta woodiana (Lea, 1834) as a host for native symbionts in European waters. J. Limnol. 2016, 75. [Google Scholar] [CrossRef] [Green Version]
- Christensen, N.Ø. Schistosoma mansoni: Interference with cercarial host-finding by various aquatic organisms. J. Helminthol. 1979, 53, 7–14. [Google Scholar] [CrossRef]
- Sapp, K.K.; Loker, E.S. Mechanisms underlying digenean–snail specificity: Role of miracidial attachment and host plasma factors. J. Parasitol. 2000, 86, 1012–1019. [Google Scholar]
- Thieltges, D.W.; Jensen, K.T.; Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 2008, 135, 407–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tierney, P.A.; Caffrey, J.M.; Vogel, S.; Matthews, S.M.; Costantini, E.; Holland, C.V. Invasive freshwater fish (Leuciscus leuciscus) acts as a sink for a parasite of native brown trout Salmo trutta. Biol. Invasions 2020, 22, 2235–2250. [Google Scholar] [CrossRef]
- Mouritsen, K.N.; Poulin, R. The mud flat anemone-cockle association: Mutualism in the intertidal zone? Oecologia 2003, 135, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopper, J.V.; Poulin, R.; Thieltges, D.W. Buffering role of the intertidal Anthopleura aureoradiata in cercarial transmission from snails to crabs. J. Exp. Mar. Biol. Ecol. 2008, 367, 153–156. [Google Scholar] [CrossRef]
- Selbach, C.; Rosenkranz, M.; Poulin, R. Cercarial behavior determines risk of predation. J. Parasitol. 2019, 105, 330–333. [Google Scholar] [CrossRef]
- Strayer, D.L.; Smith, L.C. Relationships between zebra mussels (Dreissena polymorpha) and unionid clams during the early stages of the zebra mussel invasion of the Hudson River. Freshw. Biol. 1996, 36, 771–780. [Google Scholar]
- Goodenough, A.E. Are the ecological impacts of alien species misrepresented? A review of the “native good, alien bad” philosophy. Community Ecol. 2010, 11, 13–21. [Google Scholar] [CrossRef]
- Lettoof, D.C.; Greenlees, M.J.; Stockwell, M.; Shine, R. Do invasive cane toads affect the parasite burdens of native Australian frogs? Int. J. Parasitol. Parasites Wildl. 2013, 2, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, K.; Ruokonen, T.J.; Mykrä, M.; Tambe, G.; Karjalainen, J.; Hämäläinen, H. Indirect effects of invasive crayfish on native fish parasites. Ecosphere 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Gendron, A.D.; Marcogliese, D.J. Reduced survival of a native parasite in the invasive round goby: Evidence for the dilution hypothesis? Aquat. Invasions 2016, 11, 189–198. [Google Scholar] [CrossRef]
- Westby, K.M.; Sweetman, B.M.; Van Horn, T.R.; Biro, E.G.; Medley, K.A. Invasive species reduces parasite prevalence and neutralizes negative environmental effects on parasitism in a native mosquito. J. Anim. Ecol. 2019, 88, 1215–1225. [Google Scholar] [CrossRef]
- Venesky, M.D.; Liu, X.; Sauer, E.L.; Rohr, J.R. Linking manipulative experiments to field data to test the dilution effect. J. Anim. Ecol. 2014, 83, 557–565. [Google Scholar] [CrossRef]
- Nelson, F.B.; Brown, G.P.; Shilton, C.; Shine, R. Helpful invaders: Can cane toads reduce the parasite burdens of native frogs? Int. J. Parasitol. Parasites Wildl. 2015, 4, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Born-Torrijos, A.; Paterson, R.A.; van Beest, G.S.; Schwelm, J.; Vyhlídalová, T.; Henriksen, E.H.; Knudsen, R.; Kristoffersen, R.; Amundsen, P.-A.; Soldánová, M. Temperature does not influence functional response of amphipods consuming different trematode prey. Parasitol. Res. 2020, 119, 4271–4276. [Google Scholar] [CrossRef]
- Al-Jubury, A.; Kania, P.; Bygum, A.; Buchmann, K. Temperature and light effects on trichobilharzia szidati cercariae with implications for a risk analysis. Acta Vet. Scand. 2020, 62, 54. [Google Scholar] [CrossRef] [PubMed]
- Griffiths-Jones, E.; Atkinson, H.; Hassan, A. A Comparison of the relative killing power of chlorine and chloramine on schistosome cercariae of the human type, together with a note on the relative stabilities of chlorine and chloramine. Ann. Trop. Med. Parasitol. 1930, 24, 503–525. [Google Scholar] [CrossRef]
- Stier, T.; Drent, J.; Thieltges, D.W. Trematode infections reduce clearance rates and condition in blue mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 2015, 529, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Underwood, A.J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance; Cambridge University Press: Cambridge, UK, 1997; p. 504. [Google Scholar]
- Orlofske, S.A.; Jadin, R.C.; Preston, D.L.; Johnson, P.T. Parasite transmission in complex communities: Predators and alternative hosts alter pathogenic infections in amphibians. Ecology 2012, 93, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, J.E.; van der Meer, J.; Brussaard, C.P.; Thieltges, D.W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. UK 2014, 94, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Welsh, J.E.; Liddell, C.; Van Der Meer, J.; Thieltges, D.W. Parasites as prey: The effect of cercarial density and alternative prey on consumption of cercariae by four non-host species. Parasitology 2017, 144, 1775–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keesing, F.; Ostfeld, R.S. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc. Natl. Acad. Sci. USA 2021, 118, e2023540118. [Google Scholar] [CrossRef]
- Schotthoefer, A.M.; Labak, K.M.; Beasley, V.R. Ribeiroia ondatrae cercariae are consumed by aquatic invertebrate predators. J. Parasitol. 2007, 93, 1240–1243. [Google Scholar] [CrossRef]
- Mironova, E.; Gopko, M.; Pasternak, A.; Mikheev, V.; Taskinen, J. Trematode cercariae as prey for zooplankton: Effect on fitness traits of predators. Parasitology 2019, 146, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, K.M.; Koprivnikar, J.; Johnson, P.T.; Arts, M.T. Parasite infectious stages provide essential fatty acids and lipid-rich resources to freshwater consumers. Oecologia 2020, 192, 477–488. [Google Scholar] [CrossRef]
- Mironova, E.; Gopko, M.; Pasternak, A.; Mikheev, V.; Taskinen, J. Cyclopoids feed selectively on free-living stages of parasites. Freshw. Biol. 2020, 65, 1450–1459. [Google Scholar] [CrossRef]
- Vielma, S.; Lagrue, C.; Poulin, R.; Selbach, C. Non-host organisms impact transmission at two different life stages in a marine parasite. Parasitol. Res. 2019, 118, 111–117. [Google Scholar] [CrossRef]
- Welsh, J.E.; Hempel, A.; Markovic, M.; Van Der Meer, J.; Thieltges, D.W. Consumer and host body size effects on the removal of trematode cercariae by ambient communities. Parasitology 2019, 146, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Tucker, M.S.; Karunaratne, L.B.; Lewis, F.A.; Freitas, T.C.; Liang, Y. Schistosomiasis. Curr. Protoc. Immunol. 2001, 103, 1–28. [Google Scholar] [CrossRef]
- Aono, K.; Fusada, A.; Fusada, Y.; Ishii, W.; Kanaya, Y.; Komuro, M.; Matsui, K.; Meguro, S.; Miyamae, A.; Miyamae, Y. Upside-down gliding of Lymnaea. Biol. Bull. 2008, 215, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, P.; Miccoli, F.P.; Giustini, M.; Cicolani, B. Diel activity cycles of freshwater gastropods under natural light: Patterns and ecological implications. Ann. Limnol-Int. J. Lim. 2010, 46, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Piechocki, A.; Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2016; p. 280. [Google Scholar]
- Schloesser, D.W.; Nalepa, T.F.; Mackie, G.L. Zebra mussel infestation of unionid bivalves (Unionidae) in North America. Am. Zool. 1996, 36, 300–310. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Marcogliese, D.J.; de Lafontaine, Y.; Da Silva, A.J.; Mhangami-Ruwende, B.; Pieniazek, N.J. Cryptosporidium parvum oocysts in zebra mussels (Dreissena polymorpha): Evidence from the st. Lawrence River. Parasitol. Res. 2001, 87, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.K.; Conn, D.B.; Lucy, F.; Minchin, D.; Tamang, L.; Moura, L.N.S.; DaSilva, A.J. Human waterborne parasites in zebra mussels (Dreissena polymorpha) from the Shannon River drainage area, Ireland. Parasitol. Res. 2004, 93, 385–391. [Google Scholar] [CrossRef]
- Lucy, F.E.; Graczyk, T.K.; Tamang, L.; Miraflor, A.; Minchin, D. Biomonitoring of surface and coastal water for Cryptosporidium, Giardia, and human-virulent microsporidia using molluscan shellfish. Parasitol. Res. 2008, 103, 1369–1375. [Google Scholar] [CrossRef]
- Mosteo, R.; Goñi, P.; Miguel, N.; Abadías, J.; Valero, P.; Ormad, M.P. Bioaccumulation of pathogenic bacteria and amoeba by zebra mussels and their presence in watercourses. Environ. Sci. Pollut. Res. 2016, 23, 1833–1840. [Google Scholar] [CrossRef]
- Géba, E.; Rousseau, A.; Guernic, A.L.; Escotte-Binet, S.; Favennec, L.; Carbona, S.L.; Gargala, G.; Dubey, J.P.; Villena, I.; Betoulle, S.; et al. Survival and infectivity of Toxoplasma gondii and Cryptosporidium parvum oocysts bioaccumulated by Dreissena polymorpha. J. Appl. Microbiol. 2021, 130, 504–515. [Google Scholar] [CrossRef]
- Goedknegt, M.A.; Welsh, J.E.; Drent, J.; Thieltges, D.W. Climate change and parasite transmission: How temperature affects parasite infectivity via predation on infective stages. Ecosphere 2015, 6, art96. [Google Scholar] [CrossRef] [Green Version]
- Burge, C.A.; Closek, C.J.; Friedman, C.S.; Groner, M.L.; Jenkins, C.M.; Shore-Maggio, A.; Welsh, J.E. The use of filter-feeders to manage disease in a changing world. Integ. Comp. Biol. 2016, 56, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Gopko, M.; Mironova, E.; Pasternak, A.; Mikheev, V.; Taskinen, J. Freshwater mussels (Anodonta anatina) reduce transmission of a common fish trematode (eye fluke, Diplostomum pseudospathaceum). Parasitology 2017, 144, 1971–1979. [Google Scholar] [CrossRef]
- Ben-Horin, T.; Burge, C.A.; Bushek, D.; Groner, M.L.; Proestou, D.A.; Huey, L.I.; Bidegain, G.; Carnegie, R.B. Intensive oyster aquaculture can reduce disease impacts on sympatric wild oysters. Aquac. Environ. Interact. 2018, 10, 557–567. [Google Scholar] [CrossRef]
- Rahman, R.; Tantio, F.; Yuhana, M.; Firdausi, A.P.; Sumadi, R.; Sumadikarta, A. The utilization of native freshwater mussel Pilsbryoconcha exilis as biocontrol of pathogenic bacteria Aeromonas hydrophila in Tilapia aquaculture. Omni-Akuatika 2019, 15, 60–68. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Kopp, M.; Tollrian, R. Consumer-food systems: Why type I functional responses are exclusive to filter feeders. Biol. Rev. 2004, 79, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Gopko, M.; Mironova, E.; Pasternak, A.; Mikheev, V.; Taskinen, J. Parasite transmission in aquatic ecosystems under temperature change: Effects of host activity and elimination of parasite larvae by filter-feeders. Oikos 2020, 129, 1531–1540. [Google Scholar] [CrossRef]
- Bontes, B.M.; Verschoor, A.M.; Pires, L.M.D.; Van Donk, E.; Ibelings, B.W. Functional response of Anodonta anatina feeding on a green alga and four strains of cyanobacteria, differing in shape, size and toxicity. Hydrobiologia 2007, 584, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Roje, S.; Švagrová, K.; Veselỳ, L.; Sentis, A.; Kouba, A.; Buřič, M. Pilferer, murderer of innocents or prey? The potential impact of killer shrimp (Dikerogammarus villosus) on crayfish. Aquat. Sci. 2021, 83, 5. [Google Scholar] [CrossRef]
- Dodd, J.A.; Dick, J.T.A.; Alexander, M.E.; MacNeil, C.; Dunn, A.M.; Aldridge, D.C. Predicting the ecological impacts of a new freshwater invader: Functional responses and prey selectivity of the ‘killer shrimp’, Dikerogammarus villosus, compared to the native Gammarus pulex. Freshw. Biol. 2014, 59, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Orlofske, S.A.; Jadin, R.C.; Johnson, P.T. It’sa predator–eat–parasite world: How characteristics of predator, parasite and environment affect consumption. Oecologia 2015, 178, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Christensen, N.Ø.; Frandsen, F.; Nansen, P. The interaction of some environmental factors influencing Schistosoma mansoni cercarial host-finding. J. Helminthol. 1980, 54, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Galaktionov, K.V.; Dobrovolskij, A.A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2003; p. 592. [Google Scholar]
- Semenchenko, V.; Laenko, T.; Razlutskij, V. A New record of the north american gastropod Physella acuta (Draparnaud 1805) from the Neman River Basin, Belarus. Aquat. Invasions 2008, 3, 359–360. [Google Scholar] [CrossRef]
- Faltỳnková, A. Larval trematodes (Digenea) in molluscs from small water bodies near Šeské Budšjovice, Czech Republic. Acta Parasitol. 2005, 50, 49–55. [Google Scholar]
- Buck, J.C.; Lutterschmidt, W.I. Parasite abundance decreases with host density: Evidence of the encounter-dilution effect for a parasite with a complex life cycle. Hydrobiologia 2017, 784, 201–210. [Google Scholar] [CrossRef]
- Buck, J.C.; Hechinger, R.F.; Wood, A.C.; Stewart, T.E.; Kuris, A.M.; Lafferty, K.D. Host density increases parasite recruitment but decreases host risk in a snail–trematode system. Ecology 2017, 98, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanicka, A.; Migdalski, Ł.; Szopieray, K.; Cichy, A.; Jermacz, Ł.; Lombardo, P.; Żbikowska, E. Invaders as Diluents of the Cercarial Dermatitis Etiological Agent. Pathogens 2021, 10, 740. https://doi.org/10.3390/pathogens10060740
Stanicka A, Migdalski Ł, Szopieray K, Cichy A, Jermacz Ł, Lombardo P, Żbikowska E. Invaders as Diluents of the Cercarial Dermatitis Etiological Agent. Pathogens. 2021; 10(6):740. https://doi.org/10.3390/pathogens10060740
Chicago/Turabian StyleStanicka, Anna, Łukasz Migdalski, Katarzyna Szopieray, Anna Cichy, Łukasz Jermacz, Paola Lombardo, and Elżbieta Żbikowska. 2021. "Invaders as Diluents of the Cercarial Dermatitis Etiological Agent" Pathogens 10, no. 6: 740. https://doi.org/10.3390/pathogens10060740
APA StyleStanicka, A., Migdalski, Ł., Szopieray, K., Cichy, A., Jermacz, Ł., Lombardo, P., & Żbikowska, E. (2021). Invaders as Diluents of the Cercarial Dermatitis Etiological Agent. Pathogens, 10(6), 740. https://doi.org/10.3390/pathogens10060740