Biomimetic Silicone Surfaces for Antibacterial Applications
"> Figure 1
<p>Schematic of the fabrication process to obtain silicone replicas of flower petals.</p> "> Figure 2
<p>SEM images illustrating the silicone replicas of rose, chamomile, pansy, and magnolia petals: (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>) Photograph of a flower; (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>) silicone replica of a flower petal with a 100 µm scale bar; (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>) silicone replica of a flower petal with a 10 µm scale bar.</p> "> Figure 3
<p>Fractal analysis of SEM image topography of flower petal replicas: (<b>a</b>) lacunarity analysis; (<b>b</b>) roughness ratio analysis. The relative standard deviation (RSD) of all measurements was less than 5%.</p> "> Figure 4
<p>The fluorescent images of biomimetic and flat substrates populated with bacteria (at 20× magnification): (<b>a</b>) flat; (<b>b</b>) magnolia replica; (<b>c</b>) pansy replica; (<b>d</b>) chamomile replica; (<b>e</b>) rose replica; (<b>f</b>) quantitative analysis.</p> "> Figure 5
<p>Graphical representation of the E. coli area coverage of biomimetic surfaces as a function of: (<b>a</b>) lacunarity coefficient; (<b>b</b>) developed interfacial area ratio. The stars on both plots indicate experimental data, while the line indicates the fitted data using second order polynomials.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Biomimetic Surfaces
2.2. Characterization of Biomimetic Surfaces
2.3. Antibacterial Properties of Biomimetic Surfaces
2.4. Topography Analysis
2.4.1. Lacunarity Analysis
2.4.2. Analysis of Developed Interfacial Area Ratio
3. Results and Discussion
3.1. Characterization of Biomimetic Surfaces
3.2. Fractal Analysis of SEM Images
3.2.1. Lacunarity Analysis
3.2.2. Analysis of Developed Interfacial Area Ratio
3.3. Analysis of Antibacterial Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jothi, L.; Nageswaran, G. Non-Thermal Plasma Technology for Polymeric Materials; Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P., Praveen, K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 409–437. [Google Scholar] [CrossRef]
- Li, M.; Neoh, K.G.; Xu, L.Q.; Wang, R.; Kang, E.-T.; Lau, T.; Olszyna, D.P.; Chiong, E. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir 2012, 28, 16408–16422. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, P.; Chaudhuri, S. Nanomaterials in antimicrobial paints and coatings to prevent biodegradation of man-made surfaces: A review. Mater. Today Proc. 2021, 45, 3769–3777. [Google Scholar] [CrossRef]
- Yılmaz, G.E.; Göktürk, I.; Ovezova, M.; Yılmaz, F.; Kılıç, S.; Denizli, A. Antimicrobial nanomaterials: A review. Hygiene 2023, 3, 269–290. [Google Scholar] [CrossRef]
- Shan, Z.; Yang, Y.; Shi, H.; Zhu, J.; Tan, X.; Luan, Y.; Jiang, Z.; Wang, P.; Qin, J. Hollow dodecahedra graphene oxide- cuprous oxide nanocomposites with effective photocatalytic and bactericidal activity. Front. Chem. 2021, 9, 755836. [Google Scholar] [CrossRef]
- Lam, M.; Migonney, V.; Falentin-Daudre, C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater. 2021, 121, 68–88. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Thian, E.S.; Wang, M.; Wang, Z.; Ren, L. Surface design for antibacterial materials: From fundamentals to advanced strategies. Adv. Sci. 2021, 8, 2100368. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulos-Soares, I.; Papazoglou, E.L.; Karmiris-Obratański, P.; Karkalos, N.E.; Markopoulos, A.P. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Colloids Surf. B Biointerfaces 2023, 231, 113584. [Google Scholar] [CrossRef] [PubMed]
- Meier, E.L.; Jang, Y. Surface design strategies of polymeric biomedical implants for antibacterial properties. Curr. Opin. Biomed. Eng. 2023, 26, 100448. [Google Scholar] [CrossRef]
- Cheng, Y.; Feng, G.; Moraru, C.I. Micro- and nanotopography sensitive bacterial attachment mechanisms: A review. Front. Microbiol. 2019, 10, 191. [Google Scholar] [CrossRef]
- Truong, V.K.; Kobaisi, M.A.; Vasilev, K.; Cozzolino, D.; Chapman, J. Current perspectives for engineering antimicrobial nanostructured materials. Curr. Opin. Biomed. Eng. 2022, 23, 100399. [Google Scholar] [CrossRef]
- Linklater, D.P.; Ivanova, E.P. Nanostructured antibacterial surfaces—What can be achieved? Nano Today 2022, 43, 101404. [Google Scholar] [CrossRef]
- Bright, R.; Fernandes, D.; Wood, J.; Palms, D.; Burzava, A.; Ninan, N.; Brown, T.; Barker, D.; Vasilev, K. Long-term antibacterial properties of a nanostructured titanium alloy surface: An in vitro study. Mater. Today Bio 2022, 13, 100176. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, W.; Zhao, W.; Lan, X. Revealing the antibacterial mechanism of copper surfaces with controllable microstructures. Surf. Coat. Technol. 2020, 395, 125911. [Google Scholar] [CrossRef]
- Vieira, A.; Rodríguez-Lorenzo, L.; Leonor, I.B.; Reis, R.L.; Espiña, B.; Dos Santos, M.B. Innovative antibacterial, photocatalytic, titanium dioxide microstructured surfaces based on bacterial adhesion enhancement. ACS Appl. Bio Mater. 2023, 6, 754–764. [Google Scholar] [CrossRef]
- Nikam, M.; Mane, S.; Jadhav, S.; Jadhav, S.; Mastud, S.; Bhole, K.; Roy, T.; Bhople, N. Influence of micro-textures on wettability and antibacterial behavior of Titanium surfaces against S. aureus and E. coli: In vitro studies. Int. J. Interact. Des. Manuf. 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Nishitani, T.; Hirokawa, T.; Ishiguro, H.; Ito, T. Mechanism of antibacterial property of micro scale rough surface formed by fine-particle bombarding. Sci. Technol. Adv. Mater. 2024, 25, 2356722. [Google Scholar] [CrossRef]
- Cao, Y.; Jana, S.; Bowen, L.; Tan, X.; Liu, H.; Rostami, N.; Brown, J.; Jakubovics, N.S.; Chen, J. Hierarchical rose petal surfaces delay the early-stage bacterial biofilm growth. Langmuir 2019, 35, 14670–14680. [Google Scholar] [CrossRef]
- Heckmann, T.S.; Schiffman, J.D. Spatially organized nanopillar arrays dissimilarly affect the antifouling and antibacterial activities of Escherichia coli and Staphylococcus aureus. ACS Appl. Nano Mater. 2019, 3, 977–984. [Google Scholar] [CrossRef]
- Barshutina, M.; Yakubovsky, D.; Kirtaev, R.; Volkov, V.; Arsenin, A.; Vladimirova, A.; Baymiev, A.; Barshutin, S. Design of silicone interfaces with antibacterial properties. Biofouling 2023, 39, 473–482. [Google Scholar] [CrossRef]
- Perera-Costa, D.; Bruque, J.M.; González-Martín, M.L.; Gómez-García, A.C.; Vadillo-Rodríguez, V. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir 2014, 30, 4633–4641. [Google Scholar] [CrossRef]
- Gürsoy, M.; Testici, H.; Çıtak, E.; Kaya, M.; Türk Daği, H.; Öztürk, B.; Karaman, M. Biomimetic surfaces prepared by soft lithography and vapour deposition for hydrophobic and antibacterial performance. Mater. Technol. 2021, 37, 745–752. [Google Scholar] [CrossRef]
- Chebolu, A.; Laha, B.; Ghosh, M.; Nagahanumaiah. Investigation on bacterial adhesion and colonization resistance over laser-machined micro patterned surfaces. Micro Nano Lett. 2013, 8, 280–283. [Google Scholar] [CrossRef]
- Perni, S.; Prokopovich, P. Micropatterning with conical features can control bacterial adhesion on silicone. Soft Matter 2013, 9, 1844–1851. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Ting, Y.-S.; Chen, B.-Y.; Cheng, Y.-W.; Liu, T.-Y. Bionic shark skin replica and zwitterionic polymer brushes functionalized PDMS membrane for anti-fouling and wound dressing applications. Surf. Coat. Technol. 2020, 391, 125663. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, R.; Chen, R.; Lou, L.; Jing, X.; Liu, Q.; Liu, J.; Yu, J.; Liu, P.; Wang, J. Layer-by-Layer-Assembled antifouling films with surface microtopography inspired by Laminaria japonica. Appl. Surf. Sci. 2020, 511, 145564. [Google Scholar] [CrossRef]
- Baymiev, A.K.; Yamidanov, R.S.; Matniyazov, R.T.; Blagova, D.K.; Baymiev, A.l.K.; Chemeris, A.V. Preparation of fluorescent labeled nodule bacteria strains of wild legumes for their detection in vivo and in vitro. Mol. Biol. 2011, 45, 904–910. [Google Scholar] [CrossRef]
- Utrilla-Coello, R.G.; Bello-Perez, L.A.; Vernon-Carter, E.J.; Rodriguez, E.; Alvarez-Ramirez, J. Microstructure of retrograded starch: Quantification from Lacunarity analysis of SEM micrographs. J. Food Eng. 2013, 116, 775–781. [Google Scholar] [CrossRef]
- Saha, R.K.; Debanath, M.K.; Paul, B.; Medhi, S.; Saikia, E. Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures. Sci. Rep. 2020, 10, 2598. [Google Scholar] [CrossRef]
- Pavón-Domínguez, P.; Díaz-Jiménez, M. Characterization of synthetic porous media images by using fractal and multifractal analysis. Int. J. Geomath. 2023, 14, 27. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wheeler, J.A. The fractal geometry of nature. Am. J. Phys. 1983, 51, 286–287. [Google Scholar] [CrossRef]
- Gefen, Y.; Meir, Y.; Aharony, A. Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices. Phys. Rev. Lett. 1983, 50, 145–148. [Google Scholar] [CrossRef]
- Lin, B.; Yang, Z.R. A suggested lacunarity expression for Sierpinski carpets. J. Phys. A 1986, 19, L49–L52. [Google Scholar] [CrossRef]
- Voss, R.F. Characterization and measurement of random fractals. Phys. Scr. 1986, 1986, 27–32. [Google Scholar] [CrossRef]
- Allain, C.; Cloitre, M. Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 1991, 44, 3552–3558. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, N.E.; Wiens, J.A. A novel use of the lacunarity index to discern landscape function. Landsc. Ecol. 2000, 15, 313–321. [Google Scholar] [CrossRef]
- Strzałkowski, K.; Pawlak, M.; Kulesza, S.; Dadarlat, D.; Streza, M. Effect of the surface roughness on the measured thermal diffusivity of the ZnBeMnSe single-crystalline solids. Appl. Phys. A 2019, 125, 459. [Google Scholar] [CrossRef]
- Cai, S.; Wu, C.; Yang, W.; Liang, W.; Yu, H.; Liu, L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol. Rev. 2020, 9, 971–989. [Google Scholar] [CrossRef]
- Mu, M.; Liu, S.; DeFlorio, W.; Hao, L.; Wang, X.; Salazar, K.S.; Taylor, M.; Castillo, A.; Cisneros-Zevallos, L.; Oh, J.K.; et al. Influence of surface roughness, nanostructure, and wetting on bacterial adhesion. Langmuir 2023, 39, 5426–5439. [Google Scholar] [CrossRef]
- Workman, M.J.; Serov, A.; Halevi, B.; Atanassov, P.; Artyushkova, K. Application of the discrete wavelet transform to SEM and AFM micrographs for quantitative analysis of complex surfaces. Langmuir 2015, 31, 4924–4933. [Google Scholar] [CrossRef]
- Bobaru, S.; Rico-Gavira, V.; García-Valenzuela, A.; López-Santos, C.; González-Elipe, A.R. Electron beam evaporated vs. magnetron sputtered nanocolumnar porous stainless steel: Corrosion resistance, wetting behavior and anti-bacterial activity. Mater. Today Commun. 2022, 31, 103266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barshutina, M.; Yakubovsky, D.; Arsenin, A.; Volkov, V.; Barshutin, S.; Vladimirova, A.; Baymiev, A. Biomimetic Silicone Surfaces for Antibacterial Applications. Polymers 2025, 17, 213. https://doi.org/10.3390/polym17020213
Barshutina M, Yakubovsky D, Arsenin A, Volkov V, Barshutin S, Vladimirova A, Baymiev A. Biomimetic Silicone Surfaces for Antibacterial Applications. Polymers. 2025; 17(2):213. https://doi.org/10.3390/polym17020213
Chicago/Turabian StyleBarshutina, Marie, Dmitry Yakubovsky, Aleksey Arsenin, Valentyn Volkov, Sergey Barshutin, Anastasiya Vladimirova, and Andrei Baymiev. 2025. "Biomimetic Silicone Surfaces for Antibacterial Applications" Polymers 17, no. 2: 213. https://doi.org/10.3390/polym17020213
APA StyleBarshutina, M., Yakubovsky, D., Arsenin, A., Volkov, V., Barshutin, S., Vladimirova, A., & Baymiev, A. (2025). Biomimetic Silicone Surfaces for Antibacterial Applications. Polymers, 17(2), 213. https://doi.org/10.3390/polym17020213