Brewers’ Spent Grain-Derived Arabinoxylan as a Sustainable Filler for Enhanced PHBV Biocomposites
<p>Typical stress vs. strain curves for neat PHBV and PHBV/AX composites.</p> "> Figure 2
<p>SEM micrographs detailing the fracture surface of all PHBV-based formulations and EDS analysis of neat PHBV.</p> "> Figure 3
<p>TGA curves and derivative weight against temperature (<b>a</b>) of the fillers and (<b>b</b>) of the PHBV-based composites.</p> "> Figure 4
<p>DSC thermograms of neat PHBV and PHBV-based composites during (<b>a</b>) cooling run and (<b>b</b>) second heating run.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biocomposite Formulations
- PHBV: the neat PHBV;
- PHBV/4 B-AX(BSG): the biocomposite films produced with PHBV and 4% (w/w) of functionalized arabinoxylan from the standard;
- PHBV/10 B-AX(BSG): the biocomposite films produced with PHBV and 10% (w/w) of functionalized arabinoxylan from the standard;
- PHBV/4 B-AX(BSG): the biocomposite films produced with PHBV and 4% (w/w) of functionalized arabinoxylan extracted from BSG.
2.3. Characterization of Biocomposites
2.3.1. Mechanical and Morphological Properties
2.3.2. Thermal Characterization of Biocomposites
3. Results and Discussion
3.1. Synthesis of Benzoate-Functionalized Arabinoxylans
3.2. Biocomposite Characterization
3.2.1. Mechanical Properties and Morphology of Biocomposites
3.2.2. Thermal Properties of Biocomposites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics Europe. “Plastics—The Fast Facts 2024”. 2024. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ (accessed on 1 December 2024).
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2021, 405, 126683. [Google Scholar] [CrossRef] [PubMed]
- European Bioplastics e.V. Relevant EU Policies. Available online: https://www.european-bioplastics.org/policy/ (accessed on 16 December 2024).
- European Commission. “Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe”. Brussels, 11.3.2020, COM(2020) 98. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 2 December 2024).
- European Union. “Plastics Strategy”. 2018. Available online: https://environment.ec.europa.eu/strategy/plastics-strategy_en#:~:text=The%20EU%20adopted%20a%20European%20strategy%20for%20plastics,transition%20towards%20a%20carbon%20neutral%20and%20circular%20economy (accessed on 10 November 2024).
- European Union. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment (Text with EEA Relevance). Off. J. Eur. Union 2019, 1–19. Available online: https://eur-lex.europa.eu/eli/dir/2019/904/oj (accessed on 10 November 2024).
- Liang, X.; Cha, D.K.; Xie, Q. Properties, production, and modification of polyhydroxyalkanoates. RCR Adv. 2024, 21, 200206. [Google Scholar] [CrossRef]
- Lyshtva, P.; Voronova, V.; Barbir, J.; Filho, W.L.; Kröger, S.D.; Witt, G.; Miksch, L.; Saborowski, R.; Gutow, L.; Frank, C.; et al. Degradation of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) compound in different environments. Heliyon 2024, 10, e24770. [Google Scholar] [CrossRef]
- Zheng, G.; Kang, X.; Ye, H.; Fan, W.; Sonne, C.; Lame, S.S.; Liew, R.K.; Xia, C.; Shi, Y.; Ge, S. Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chin. Chem. Lett. 2024, 35, 102217. [Google Scholar] [CrossRef]
- Jin, A.; del Valle, L.J.; Puiggalí, J. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Int. J. Mol. Sci. 2023, 24, 17250. [Google Scholar] [CrossRef]
- Lhamo, P.; Mahanty, B. Tuning Material Properties of Microbially Synthesized Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Their Composites for Various Applications. J. Polym. Environ. 2023, 31, 4641–4661. [Google Scholar] [CrossRef]
- European Bioplastics e.V. Bioplastics Market Development Update 2024. Available online: https://www.european-bioplastics.org/bioplastics-market-development-update-2024/# (accessed on 16 December 2024).
- Qazanfarzadeh, Z.; Ganesan, A.R.; Mariniello, L.; Conterno, L.; Kumaravel, V. Valorization of brewer’s spent grain for sustainable food packaging. J. Clean. Prod. 2023, 385, 135726. [Google Scholar] [CrossRef]
- Bonnenfant, C.; Gontard, N.; Aouf, C. PHBV-based polymers as food packaging: Physical-chemical and structural stability under reuse conditions. Polymer 2023, 270, 125784. [Google Scholar] [CrossRef]
- Yu, h.; Sun, B.; Zhang, D.; Chen, G.; Yanga, X.; Yao, J. Reinforcement of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J. Mater. Chem. B 2014, 2, 8479–8489. [Google Scholar] [CrossRef]
- Madbouly, S.A. Bio-based polyhydroxyalkanoates blends and composites. Phys. Sci. Rev. 2023, 8, 1107–1125. [Google Scholar] [CrossRef]
- Avella, M.; Rota, G.L.; Martuscelli, E.; Raimo, M.; Sadocco, P.; Elegir, G.; Riva, R. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: Thermal, mechanical properties and biodegradation behaviour. J. Mater. Sci. 2000, 35, 829–836. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.D.; Gimenez, E.; Lagaron, J.M. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr. Polym. 2008, 71, 235–244. [Google Scholar] [CrossRef]
- Ashori, A.; Jonoobi, M.; Ayrilmis, N.; Shahreki, A.; Fashapoyeh, M.A. Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. Int. J. Biol. Macromol. 2019, 136, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Sreekumar, P.A.; Joseph, K.; Skrifvars, M. Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites. J. Appl. Polym. Sci. 2012, 124, 3357–3362. [Google Scholar] [CrossRef]
- Nyhan, L.; Sahin, A.W.; Schmitz, H.H.; Siegel, J.B.; Arendt, E.K. Brewers’ Spent Grain: An Unprecedented Opportunity to Develop Sustainable Plant-Based Nutrition Ingredients Addressing Global Malnutrition Challenges. J. Agric. Food Chem. 2023, 71, 10543–10564. [Google Scholar] [CrossRef]
- Belardi, I.; De Francesco, G.; Alfeo, V.; Bravi, E.; Sileoni, V.; Marconi, O.; Marrocchi, A. Advances in the valorization of brewing by-products. Food Chem. 2025, 465, 141882. [Google Scholar] [CrossRef]
- Yun, S.; Kim, Y.; Lee, S.; Ho, D.; Kim, J.; Kim, H.; Marconi, O.; Marrocchi, A.; Kim, C. Brewers’ spent grain (BSG)-based green dielectric materials for low-voltage operating solution-processed organic field-effect transistors. J. Mater. Chem. C 2022, 10, 15194–15199. [Google Scholar] [CrossRef]
- Camacho-Núñez, L.; Jurado-Contreras, S.; La Rubia, M.D.; Navas-Martos, F.J.; Rodríguez-Liébana, J.A. Cellulose-Based Upcycling of Brewer’s Spent Grains: Extraction and Acetylation. J. Polym. Environ. 2023, 32, 3011–3024. [Google Scholar]
- Hejna, A. Poly(ε-caprolactone)/brewers’ spent grain composites—The impact of filler treatment on the mechanical performance. J. Compos. Sci. 2020, 4, 167. [Google Scholar] [CrossRef]
- Hejna, A.; Marć, M.; Kowalkowska-Zedler, D.; Pladzyk, A.; Barczewski, M. Insights into the Thermo-Mechanical Treatment of Brewers’ Spent Grain as a Potential Filler for Polymer Composites. Polymers 2021, 13, 879. [Google Scholar] [CrossRef] [PubMed]
- Jaguey-Hernández, Y.; Tapia-Ignacio, C.; Aguilar-Arteaga, K.; González-Olivares, L.G.; Castañeda-Ovando, E.P.; Cruz-Cansino, N.; Ojeda-Ramirez, D.; Castañeda-Ovando, A. Thermoplastic biofilms obtained from an arabinoxylan-rich fraction from brewers’ spent grain: Physicochemical characterization and thermal analysis. Biomass Convers. Biorefinery 2023, 13, 14035–14047. [Google Scholar] [CrossRef]
- Jarupan, L.; Kruakam, C.; Bumbudsanpharoke, N. Valorization of brewer’s spent grains to produce nutrient biodegradable plant pot. J. Mater. Cycles Waste Manag. 2024, 26, 501–511. [Google Scholar] [CrossRef]
- Lin, L.; Mirkin, S.; Park, H.E. Biodegradable Composite Film of Brewers’ Spent Grain and Poly(Vinyl Alcohol). Processes 2023, 11, 2400. [Google Scholar] [CrossRef]
- Moreirinha, C.; Vilela, C.; Silva, N.H.C.S.; Pinto, R.J.B.; Almeida, A.; Rocha, M.A.M.; Coelho, E.; Coimbra, M.A.; Silvestre, A.J.D.; Freire, C.S.R. Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocoll. 2020, 108, 105836. [Google Scholar] [CrossRef]
- Belardi, I.; Marrocchi, A.; Alfeo, V.; Sileoni, V.; De Francesco, G.; Paolantoni, M.; Marconi, O. Sequential Extraction and Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy Monitoring in the Biorefining of Brewer’s Spent Grain. Molecules 2023, 28, 7992. [Google Scholar] [CrossRef]
- Hernández-Pinto, F.J.; Miranda-Medina, J.D.; Natera-Maldonado, A.; Vara-Aldama, Ó.; Ortueta-Cabranes, M.P.; del Mercado-Pardiño, J.A.V.; El-Aidie, S.A.M.; Siddiqui, S.A.; Castro-Muñoz, R. Arabinoxylans: A review on protocols for their recovery, functionalities and roles in food formulations. Int. J. Biol. Macromol. 2024, 259, 129309. [Google Scholar] [CrossRef]
- Marconi, O.; Tomasi, I.; Sileoni, V.; Bonciarelli, U.; Guiducci, M.; Maranghi, S.; Perretti, G. Effects of Growth Conditions and Cultivar on the Content and Physiochemical Properties of Arabinoxylan in Barley. J. Agric. Food Chem. 2020, 68, 1064–1070. [Google Scholar] [CrossRef]
- Pérez-Flores, J.G.; Contreras-López, E.; Castañeda-Ovando, A.; Pérez-Moreno, F.; Aguilar-Arteaga, K.; Álvarez-Romero, G.A.; Téllez-Jurado, A. Physicochemical characterization of an arabinoxylan-rich fraction from brewers’ spent grain and its application as a release matrix for caffeine. Food Res. Int. 2019, 116, 1020–1030. [Google Scholar] [CrossRef]
- Marconi, O.; Marrocchi, A. Process for Treating of Brewing Industry By-Products. WO Patent 2023012841 A1, 9 February 2023. [Google Scholar]
- Wang, H.; Yang, L.; Yang, Y. A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives. Int. J. Biol. Macromol. 2024, 292, 139151. [Google Scholar] [CrossRef]
- Wang, H.; Gong, X.; Miao, Y.; Guo, X.; Liu, C.; Fan, Y.-Y.; Zhang, J.; Niu, B.; Li, W. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chem. 2019, 283, 397–403. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Lin, Z.; Tang, Z.; Lin, B. Carboxymethyl chitosan/sodium alginate hydrogel films with good biocompatibility and reproducibility by in situ ultra-fast crosslinking for efficient preservation of strawberry. Carbohydr. Polym. 2023, 316, 121073. [Google Scholar] [CrossRef] [PubMed]
- ASTM D882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing Materials: West Conshohocken, PA, USA, 2018.
- Ten, E.; Jiang, L.; Wolcott, M.P. Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr. Polym. 2012, 90, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Chea, V.; Angellier-Coussy, H.; Peyron, S.; Kemmer, D.; Gontard, N. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging: Physical–chemical and structural stability under food contact conditions. J. Appl. Polym. Sci. 2016, 133, 41850. [Google Scholar] [CrossRef]
- Berthet, M.-A.; Angellier-Coussy, H.; Chea, V.; Guillard, V.; Gastaldi, E.; Gontard, N. Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV-based composites properties. Compos. Part A Appl. Sci. Manuf. 2015, 72, 139–147. [Google Scholar] [CrossRef]
- Giubilini, A.; Sciancalepore, C.; Messori, M.; Bondioli, F. Valorization of oat hull fiber from agri-food industrial waste as filler for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J. Mater. Cycles Waste Manag. 2021, 23, 402–408. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Zuorro, A.; Maffei, G.; Lavecchia, R.; Puglia, D.; Dominici, F.; Luzi, F.; Valente, T.; Torre, L. Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-Hydroxybutyrate-co-3-hydroxyvalerate) matrix. Ind. Crops Prod. 2018, 118, 311–320. [Google Scholar] [CrossRef]
- Angellier-Coussy, H.; Kemmer, D.; Gontard, N.; Peyron, S. Physical–chemical and structural stability of PHBV/wheat straw fibers based biocomposites under food contact conditions. J. Appl. Polym. Sci. 2020, 137, 49231. [Google Scholar] [CrossRef]
- David, G.; Heux, L.; Pradeau, S.; Gontard, N.; Angellier-Coussy, H. Upcycling of Vine Shoots: Production of Fillers for PHBV-Based Biocomposite Applications. J. Polym. Environ. 2021, 29, 404–417. [Google Scholar] [CrossRef]
- Lammi, S.; Le Moignec, N.; Djenane, D.; Gontard, D.; Angellier-Coussy, H. Dry fractionation of olive pomace for the development of food packaging biocomposites. Ind. Crops Prod. 2018, 120, 250–261. [Google Scholar] [CrossRef]
- Revert, A.; Reig, M.; Seguí, V.J.; Boronat, T.; Fombuena, V.; Balart, R. Upgrading brewer’s spent grain as functional filler in polypropylene matrix. Polym. Compos. 2017, 38, 40–47. [Google Scholar] [CrossRef]
- Li, Z.; Reimer, C.; Wang, T.; Mohanty, A.K.; Misra, M. Thermal and Mechanical Properties of the Biocomposites of Miscanthus Biocarbon and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PHBV). Polymers 2020, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.R.; Huque, M.M.; Islam, M.N.; Hasan, M. Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos. Part A Appl. Sci. Manuf. 2009, 40, 511–517. [Google Scholar] [CrossRef]
- Kim, G.-M.; Michler, G.H. Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology. Polymer 1998, 39, 5689–5697. [Google Scholar] [CrossRef]
- Archibong, F.N.; Sanusi, O.M.; Médéric, P.; Hocine, N.A. An overview on the recycling of waste ground tyre rubbers in thermoplastic matrices: Effect of added fillers. Resour. Conserv. Recycl. 2021, 175, 105894. [Google Scholar] [CrossRef]
- Miao, Y.; Fang, C.; Shi, D.; Li, Y.; Wang, Z. Coupling effects of boron nitride and heat treatment on crystallization, mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Polymer 2022, 252, 124967. [Google Scholar] [CrossRef]
- Öner, M.; Kızıl, G.; Keskin, G.; Pochat-Bohatier, C.; Bechelany, M. The Effect of Boron Nitride on the Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Nanomaterials 2018, 8, 940. [Google Scholar] [CrossRef]
- Puente, J.A.S.; Esposito, A.; Chivrac, F.; Dargent, E. Effect of boron nitride as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate). J. Appl. Polym. Sci. 2013, 128, 2586–2594. [Google Scholar] [CrossRef]
- Jakić, M.; Vrandečić, N.S.; Erceg, M. Thermal degradation of poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: Thermogravimetric and kinetic analysis. Eur. Polym. J. 2016, 81, 376–385. [Google Scholar] [CrossRef]
- Lo, J.S.C.; Chen, X.; Chen, S.; Miao, Y.; Daoud, W.A.; Tso, C.Y.; Firdous, I.; Deka, B.J.; Lin, C.S.K. Fabrication of biodegradable PLA-PHBV medical textiles via electrospinning for healthcare apparel and personal protective equipment. Sustain. Chem. Pharm. 2024, 39, 101536. [Google Scholar] [CrossRef]
- Werner, K.; Pommer, L.; Broström, M. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 2014, 110, 130–137. [Google Scholar] [CrossRef]
- Patwardhan, P.R.; Brown, R.C.; Shanks, B.H. Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem 2011, 4, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-Y.; Qin, Z.-Y.; Sun, B.; Yang, X.-G.; Yao, J.-M. Reinforcement of transparent poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Compos. Sci. Technol. 2014, 94, 96–104. [Google Scholar] [CrossRef]
Formulation | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation at Break (%) |
---|---|---|---|
PHBV | 25.5 ± 1.4 | 2.7 ± 0.1 | 2.3 ± 0.1 |
PHBV/4 B-AX(STD) | 28.7 ± 1.5 | 3.2 ± 0.1 | 1.4 ± 0.1 |
PHBV/10 B-AX(STD) | 28.2 ± 0.6 | 3.2 ± 0.1 | 1.3 ± 0.1 |
PHBV/4 B-AX(BSG) | 28.8 ± 0.6 | 3.8 ± 0.1 | 1.1 ± 0.1 |
Formulation | Tmax (°C) | T5% (°C) | T10% (°C) |
---|---|---|---|
PHBV | 303 | 288 | 292 |
B-AX(STD) | 292 | 277 | 283 |
B-AX(BSG) | 327 | 278 | 294 |
PHBV/4 B-AX(STD) | 303 | 289 | 293 |
PHBV/10 B-AX(STD) | 287 | 269 | 274 |
PHBV/4 B-AX(BSG) | 289 | 273 | 276 |
Formulation | Tm (°C) | Tc (°C) | Xc (%) |
---|---|---|---|
PHBV | 175.6 | 118.1 | 59.9 |
PHBV/4 B-AX(STD) | 173.4 | 115.1 | 66.0 |
PHBV/10 B-AX(STD) | 169.5 | 111.9 | 64.9 |
PHBV/4 B-AX(BSG) | 171.7 | 113.6 | 67.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belardi, I.; Sarasini, F.; Tirillò, J.; Russo, P.; De Francesco, G.; Marconi, O.; Marrocchi, A. Brewers’ Spent Grain-Derived Arabinoxylan as a Sustainable Filler for Enhanced PHBV Biocomposites. Polymers 2025, 17, 114. https://doi.org/10.3390/polym17010114
Belardi I, Sarasini F, Tirillò J, Russo P, De Francesco G, Marconi O, Marrocchi A. Brewers’ Spent Grain-Derived Arabinoxylan as a Sustainable Filler for Enhanced PHBV Biocomposites. Polymers. 2025; 17(1):114. https://doi.org/10.3390/polym17010114
Chicago/Turabian StyleBelardi, Ilary, Fabrizio Sarasini, Jacopo Tirillò, Pietro Russo, Giovanni De Francesco, Ombretta Marconi, and Assunta Marrocchi. 2025. "Brewers’ Spent Grain-Derived Arabinoxylan as a Sustainable Filler for Enhanced PHBV Biocomposites" Polymers 17, no. 1: 114. https://doi.org/10.3390/polym17010114
APA StyleBelardi, I., Sarasini, F., Tirillò, J., Russo, P., De Francesco, G., Marconi, O., & Marrocchi, A. (2025). Brewers’ Spent Grain-Derived Arabinoxylan as a Sustainable Filler for Enhanced PHBV Biocomposites. Polymers, 17(1), 114. https://doi.org/10.3390/polym17010114