Methyl Gallate and Amoxicillin-Loaded Electrospun Poly(vinyl alcohol)/Chitosan Mats: Impact of Acetic Acid on Their Anti-Staphylococcus aureus Activity
<p>Schematic illustrations showing the electrospinning method to fabricate MG/Amox/PVA/CS nanofibers.</p> "> Figure 2
<p>(<b>a</b>) Images of the electrospun nanofiber mat fabricated under optimization conditions with acetic acid conditions (formulation set A) and (<b>b</b>) their antibacterial activities compared with neat PVA and PVA/CS against <span class="html-italic">S. aureus</span> ATCC 25923 (MSSA) and 43300 (MRSA). Each symbol indicates the mean ± S.D. (<span class="html-italic">n</span> = 3). # The inhibition zone could not be determined. * Denotes a significant difference between the mean inhibition zones of the two bacterial strains (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>(<b>a</b>) Images of the electrospun nanofiber mat fabricated under optimization conditions without acetic acid conditions (formulation set B) and (<b>b</b>) their antibacterial activities compared with neat PVA/CS against <span class="html-italic">S. aureus</span> ATCC 25923 (MSSA) and 43300 (MRSA). Each symbol indicates the mean ± S.D. (<span class="html-italic">n</span> = 3). # The inhibition zone could not be determined. ## A large and overlapping inhibition zone was observed.</p> "> Figure 4
<p>(<b>a</b>) Images of the electrospun nanofiber mat and (<b>b</b>) the antibacterial activities of the formulation set C; 64 mg MG/PVA/CS, 25 mg Amox/PVA/CS, and 64 mg MG/25 mg Amox/PVA/CS nanofiber mats, compared with neat PVA and PVA/CS against <span class="html-italic">S. aureus</span> ATCC 25923 (MSSA) and 43300 (MRSA). Each symbol indicates the mean ± S.D. (<span class="html-italic">n</span> = 3). # The inhibition zone could not be determined. * Significant difference between the mean inhibition zones of the two bacterial strains, <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>SEM images of fabricated mats from formulation set C: (<b>a</b>) PVA, (<b>b</b>) PVA/CS, (<b>c</b>) MG/PVA/CS, (<b>d</b>) Amox/PVA/CS, and (<b>e</b>) MG/Amox/PVA/CS.</p> "> Figure 6
<p>FTIR spectra of PVA, PVA/CS, MG/PVA/CS, Amox/PVA/CS, and MG/Amox/PVA/CS nanofibers from formulation set C.</p> "> Figure 7
<p>DSC thermograms of PVA, PVA/CS, MG/PVA/CS Amox/PVA/CS, and MG/Amox/PVA/CS nanofibers from formulation set C (heating rate 5 °C/min).</p> "> Figure 8
<p>Percentage of swelling degree, weight loss, and water retention of PVA, PVA/CS, MG/PVA/CS, Amox/PVA/CS, and MG/Amox/PVA/CS nanofiber from formulation set C. Data shown as mean ± S.D. (<span class="html-italic">n</span> = 3).</p> "> Figure 9
<p>The 24 h percentage release of MG and Amox from PVA/CS electrospun (formulation set C). Data shown as mean ± S.D. (<span class="html-italic">n</span> = 3). # The concentration of MG and Amox could not be determined.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Electrospinning Solutions
2.2.2. Fabrication of Electrospinning Nanofibers
2.2.3. In Vitro Anti-S. aureus Activity
2.2.4. Morphological, Chemical, and Thermal Characterizations of Nanofibers
2.2.5. Swelling, Water Retention, and Weight Loss Test
2.2.6. Release Test
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimization Concentrations of Active Compounds: Impact of Acetic Acid on the Anti-S. aureus Activity of Electrospun Mats
3.2. Morphology of the Optimized Formulation Set C
3.3. FTIR Analysis
3.4. DSC Analysis
3.5. Swelling, Water Retention, and Weight Loss Behaviors
3.6. Release Behaviors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, E.L. The penicillins: A review and update. J. Midwifery Womens Health 2002, 47, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Essack, S.Y. The development of beta-lactam antibiotics in response to the evolution of beta-lactamases. Pharm. Res. 2001, 18, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.D. Beta-lactamases and beta-lactamase inhibitors. Int. J. Antimicrob. Agents 1999, 12 (Suppl. S1), S3–S7; discussion S26–S27. [Google Scholar]
- Finlay, J.; Miller, L.; Poupard, J.A. A review of the antimicrobial activity of clavulanate. J. Antimicrob. Chemother. 2003, 52, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Bello, C.; Rodríguez, D.; Pernas, M.; Rodriguez, A.; Colchon, E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem. 2019, 63, 1859–1881. [Google Scholar] [CrossRef]
- Evans, J.; Hanoodi, M.; Wittler, M. Amoxicillin Clavulanate. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Chomnawang, M.T. The inhibitory potential of Thai mango seed kernel extract against methicillin-resistant Staphylococcus aureus. Molecules 2011, 16, 6255–6270. [Google Scholar] [CrossRef]
- Jiamboonsri, P.; Eurtivong, C.; Wanwong, S. Assessing the potential of gallic acid and methyl gallate to enhance the efficacy of β-Lactam antibiotics against methicillin-resistant Staphylococcus aureus by targeting β-Lactamase: In silico and in vitro studies. Antibiotics 2023, 12, 1622. [Google Scholar] [CrossRef] [PubMed]
- Flores-Maldonado, O.; Lezcano-Domínguez, C.I.; Dávila-Aviña, J.; González, G.M.; Ríos-López, A.L. Methyl gallate attenuates virulence and decreases antibiotic resistance in extensively drug-resistant Pseudomonas aeruginosa. Microb. Pathog. 2024, 194, 106830. [Google Scholar] [CrossRef]
- Xu, K.-Z.; Xiang, S.-L.; Wang, Y.-J.; Wang, B.; Jia, A.-Q. Methyl gallate isolated from partridge tea (Mallotus oblongifolius (Miq.) Müll.Arg.) inhibits the biofilms and virulence factors of Burkholderia thailandensis. J. Ethnopharmacol. 2024, 320, 117422. [Google Scholar] [CrossRef] [PubMed]
- Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Leanpolchareanchai, J.; Yin, T.; Gao, S.; Hu, M. Factors influencing oral bioavailability of Thai mango seed kernel extract and its key phenolic principles. Molecules 2015, 20, 21254–21273. [Google Scholar] [CrossRef]
- Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Leanpolchareanchai, J.; Gao, S.; Hu, M. In vitro glucuronidation of methyl gallate and pentagalloyl glucopyranose by liver microsomes. Drug Metab. Pharmacokinet. 2016, 31, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Luraghi, A.; Peri, F.; Moroni, L. Electrospinning for drug delivery applications: A review. J. Control Release 2021, 334, 463–484. [Google Scholar] [CrossRef]
- Jiffrin, R.; Razak, S.I.A.; Jamaludin, M.I.; Hamzah, A.S.A.; Mazian, M.A.; Jaya, M.A.T.; Nasrullah, M.Z.; Majrashi, M.; Theyab, A.; Aldarmahi, A.A.; et al. Electrospun nanofiber composites for drug delivery: A review on current progresses. Polymers 2022, 14, 3725. [Google Scholar] [CrossRef]
- Abdou, E.S.; Nagy, K.S.; Elsabee, M.Z. Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. 2008, 99, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Sashiwa, H.; Aiba, S.-I. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci. 2004, 29, 887–908. [Google Scholar] [CrossRef]
- Petrova, V.A.; Golovkin, A.S.; Mishanin, A.I.; Romanov, D.P.; Chernyakov, D.D.; Poshina, D.N.; Skorik, Y.A. Cytocompatibility of bilayer scaffolds electrospun from chitosan/alginate-chitin nanowhiskers. Biomedicines 2020, 8, 305. [Google Scholar] [CrossRef] [PubMed]
- Koosha, M.; Mirzadeh, H. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res. A 2015, 103, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Türkoğlu, G.C.; Khomarloo, N.; Mohsenzadeh, E.; Gospodinova, D.N.; Neznakomova, M.; Salaün, F. PVA-based electrospun materials—A promising route to designing nanofiber mats with desired morphological shape—A review. Int. J. Mol. Sci. 2024, 25, 1668. [Google Scholar] [CrossRef] [PubMed]
- Maliszewska, I.; Czapka, T. Electrospun polymer nanofibers with antimicrobial activity. Polymers 2022, 14, 1661. [Google Scholar] [CrossRef]
- Kharaghani, D.; Khan, M.Q.; Tamada, Y.; Ogasawara, H.; Inoue, Y.; Saito, Y.; Hashmi, M.; Kim, I.S. Fabrication of electrospun antibacterial PVA/Cs nanofibers loaded with CuNPs and AgNPs by an in-situ method. Polym. Test. 2018, 72, 315–321. [Google Scholar] [CrossRef]
- Abbaspour, M.; Sharif Makhmalzadeh, B.; Rezaee, B.; Shoja, S.; Ahangari, Z. Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur J. Microbiol. 2015, 8, e24239. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zheng, Z.; Lin, L.; Si, J.; Wang, Q.; Peng, X.; Chen, W. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv. Polym. Technol. 2018, 37, 1917–1928. [Google Scholar] [CrossRef]
- Narasagoudr, S.S.; Hegde, V.G.; Chougale, R.B.; Masti, S.P.; Vootla, S.; Malabadi, R.B. Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications. Food Hydrocoll. 2020, 109, 106096. [Google Scholar] [CrossRef]
- Jiamboonsri, P.; Sangkhun, W.; Wanwong, S. Electrospun cellulose acetate/poly(vinyl alcohol) nanofibers loaded with methyl gallate and gallic acid for anti-Staphylococcus aureus applications. Polymers 2024, 16, 2971. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Su, T.; Chen, Y.; Long, M.; Luo, X.; Xie, X.; Qin, Z. Enhanced water absorbency and water retention rate for superabsorbent polymer via porous calcium carbonate crosslinking. Nanomaterials 2023, 13, 2575. [Google Scholar] [CrossRef] [PubMed]
- Rinaudo, M.; Pavlov, G.; Desbrières, J. Influence of acetic acid concentration on the solubilization of chitosan. Polymer 1999, 40, 7029–7032. [Google Scholar] [CrossRef]
- Paipitak, K.; Pornpra, T.; Mongkontalang, P.; Techitdheer, W.; Pecharapa, W. Characterization of PVA-chitosan nanofibers prepared by electrospinning. Procedia Eng. 2011, 8, 101–105. [Google Scholar] [CrossRef]
- Stoica, A.E.; Albuleț, D.; Bîrcă, A.C.; Iordache, F.; Ficai, A.; Grumezescu, A.M.; Vasile, B.Ș.; Andronescu, E.; Marinescu, F.; Holban, A.M. Electrospun nanofibrous mesh based on PVA, chitosan, and usnic acid for applications in wound healing. Int. J. Mol. Sci. 2023, 24, 11037. [Google Scholar] [CrossRef] [PubMed]
- Olewnik-Kruszkowska, E.; Gierszewska, M.; Jakubowska, E.; Tarach, I.; Sedlarik, V.; Pummerova, M. Antibacterial films based on PVA and PVA–chitosan modified with poly(hexamethylene guanidine). Polymers 2019, 11, 2093. [Google Scholar] [CrossRef]
- Pranoto, Y.; Rakshit, S.K.; Salokhe, V.M. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci. Technol. 2005, 38, 859–865. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; Vega-Cázarez, C.A.; Hernández-Ruiz, K.L.; Campas-Baypoli, O.N.; Soto-Cota, A.; Madera-Santana, T.J. Functional and antibacterial characterization of electrospun nanofiber membranes made of chitosan and polyvinyl alcohol. Results Chem. 2024, 7, 101314. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, S.; Wen, S.; Shen, M.; Zhu, M.; Shi, X. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 2013, 34, 1402–1412. [Google Scholar] [CrossRef]
- Furtos, G.; Rivero, G.; Rapuntean, S.; Abraham, G.A. Amoxicillin-loaded electrospun nanocomposite membranes for dental applications. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 966–976. [Google Scholar] [CrossRef]
- Jerzsele, Á.; Nagy, G. The stability of amoxicillin trihydrate and potassium clavulanate combination in aqueous solutions. Acta Vet. Hung. 2009, 57, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Aranda, F.L.; Rivas, B.L. Removal of amoxicillin through different methods, emphasizing removal by biopolymers and its derivatives. An overview. J. Chil. Chem. Soc. 2022, 67, 5643–5655. [Google Scholar] [CrossRef]
- Tsuji, A.; Nakashima, E.; Hamano, S.; Yamana, T. Physicochemical properties of amphoteric beta-lactam antibiotics I: Stability, solubility, and dissolution behavior of amino penicillins as a function of pH. J. Pharm. Sci. 1978, 67, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.; Barbosa, J.; Ramos, F. Determination of amoxicillin stability in chicken meat by liquid chromatography–Tandem mass spectrometry. Food Anal. Methods 2012, 5, 471–479. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, A.K.; Kharaba, Z.; Yasin, H.; Yasmin, R.; Ijaz, M.; Khan, M.; Murtaza, G. Development of poly (vinyl alcohol)–Chitosan composite nanofibers for dual drug therapy of wounds. ACS Omega 2024, 9, 12825–12834. [Google Scholar] [CrossRef]
- Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585–4592. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.; Duan, B.; Wu, L.; Li, S.; Yuan, X. Preparation of electrospun chitosan/poly (vinyl alcohol) membranes. Colloid Polym. Sci. 2007, 285, 855–863. [Google Scholar] [CrossRef]
- Beglou, M.; Haghi, A. Electrospun biodegradable and biocompatible natural nanofibers: A detailed review. Cellul. Chem. Technol. 2008, 42, 441. [Google Scholar]
- Abdulhussain, R.; Adebisi, A.; Conway, B.R.; Asare-Addo, K. Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery. J. Drug Deliv. Sci. Technol. 2023, 90, 105156. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, S.; Rode, S.; Chaudhary, P.K.; Khan, N.A.; Ramamurthy, P.C.; Gupta, D.N.; Kumar, R.; Das, J.; Sharma, A.K. Fabrication and characterization of polyvinyl alcohol-chitosan composite nanofibers for carboxylesterase immobilization to enhance the stability of the enzyme. Sci. Rep. 2024, 14, 19615. [Google Scholar] [CrossRef] [PubMed]
- Reis, E.F.d.; Campos, F.S.; Lage, A.P.; Leite, R.C.; Heneine, L.G.; Vasconcelos, W.L.; Lobato, Z.I.P.; Mansur, H.S. Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater. Res. 2006, 9, 185–191. [Google Scholar] [CrossRef]
- Ji, Y.; Liang, N.; Xu, J.; Zuo, D.; Chen, D.; Zhang, H. Cellulose and poly (vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors. Cellulose 2019, 26, 1055–1065. [Google Scholar] [CrossRef]
- Bernal, R.A.O.; Olekhnovich, R.O.; Uspenskaya, M.V. Influence of thermal treatment and acetic acid concentration on the electroactive properties of chitosan/PVA-based micro- and nanofibers. Polymers 2023, 15, 3719. [Google Scholar] [CrossRef]
- Prakashkumar, N.; Sivamaruthi, B.S.; Chaiyasut, C.; Suganthy, N. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis: An in vitro study. Pharmaceutics 2021, 13, 299. [Google Scholar] [CrossRef] [PubMed]
- Tsioptsias, C.; Fardis, D.; Ntampou, X.; Tsivintzelis, I.; Panayiotou, C. Thermal behavior of poly (vinyl alcohol) in the form of physically crosslinked film. Polymers 2023, 15, 1843. [Google Scholar] [CrossRef] [PubMed]
- Olvera Bernal, R.A.; Olekhnovich, R.O.; Uspenskaya, M.V. Chitosan/PVA nanofibers as potential material for the development of soft actuators. Polymers 2023, 15, 2037. [Google Scholar] [CrossRef]
- Van Der Sman, R. Predictions of glass transition temperature for hydrogen bonding biomaterials. J. Phys. Chem. B 2013, 117, 16303–16313. [Google Scholar] [CrossRef]
- Çay, A.; Miraftab, M.; Perrin Akçakoca Kumbasar, E. Characterization and swelling performance of physically stabilized electrospun poly(vinyl alcohol)/chitosan nanofibres. Eur. Polym. J. 2014, 61, 253–262. [Google Scholar] [CrossRef]
- Sa’adon, S.; Abd Razak, S.I.; Ismail, A.E.; Fakhruddin, K. Drug-loaded poly-vinyl alcohol electrospun nanofibers for transdermal drug delivery: Review on factors affecting the drug release. Procedia Comput. Sci. 2019, 158, 436–442. [Google Scholar] [CrossRef]
- Edikresnha, D.; Suciati, T.; Munir, M.M.; Khairurrijal, K. Polyvinylpyrrolidone/cellulose acetate electrospun composite nanofibres loaded by glycerine and garlic extract with in vitro antibacterial activity and release behaviour test. RSC Adv. 2019, 9, 26351–26363. [Google Scholar] [CrossRef]
- Wutticharoenmongkol, P.; Hannirojram, P.; Nuthong, P. Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials. Polym. Adv. Technol. 2019, 30, 1135–1147. [Google Scholar] [CrossRef]
- Purohit, T.J.; Wu, Z.; Hanning, S.M. Simple and reliable extraction and a validated high performance liquid chromatographic assay for quantification of amoxicillin from plasma. J. Chromatogr. A 2020, 1611, 460611. [Google Scholar] [CrossRef]
- Sofokleous, P.; Stride, E.; Edirisinghe, M. Preparation, characterization, and release of amoxicillin from electrospun fibrous wound dressing patches. Pharm. Res. 2013, 30, 1926–1938. [Google Scholar] [CrossRef] [PubMed]
Formulation set A: | |||||
Concentrations (mg/mL with acetic acid) | |||||
PVA | PVA/CS | MG/PVA/CS | Amox/PVA/CS | MG/Amox/PVA/CS | |
PVA | 100 | 100 | 100 | 100 | 100 |
CS | 0 | 1 | 1 | 1 | 1 |
Amox | 0 | 0 | 0 | 0.25 (0.25 wt%) | 2.5 |
or 1 (1 wt%) | |||||
or 4 (4 wt%) | |||||
MG | 0 | 0 | 64 | 0 | 64 |
Formulation set B: | |||||
Concentrations (mg/mL without acetic acid) | |||||
PVA | PVA/CS | MG/PVA/CS | Amox/PVA/CS | MG/Amox/PVA/CS | |
PVA | - | 100 | - | 100 | - |
CS | - | 1 | - | 1 | - |
Amox | - | 0 | - | 0.15 (0.15 wt%) | - |
or 5 (5 wt%) | |||||
or 7 (7 wt%) | |||||
or 10 (10 wt%) | |||||
MG | - | 0 | - | - | - |
Formulation set C: | |||||
Concentrations (mg/mL without acetic acid) | |||||
PVA | PVA/CS | MG/PVA/CS | Amox/PVA/CS | MG/Amox/PVA/CS | |
PVA | 100 | 100 | 100 | 100 | 100 |
CS | 0 | 1 | 1 | 1 | 1 |
Amox | 0 | 0 | 0 | 2.5 | 2.5 |
MG | 0 | 0 | 64 | 0 | 64 |
Formulation Set C | Average Diameter | ||
---|---|---|---|
Fibers (nm) | Oval Bead (μm) * | Spherical Bead (μm) * | |
PVA | 282.0 ± 0.5 | - | - |
PVA/CS | 256 ± 4 | - | - |
MG/PVA/CS | 107 ± 15 | 0.33 ± 0.07 | 1.7 ± 0.1 |
Amox/PVA/CS | 47.3 ± 6.3 | 0.39 ± 0.01 | 1.3 ± 0.3 |
MG/Amox/PVA/CS | 126 ± 45 | 0.95 ± 0.4 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiamboonsri, P.; Sangkhun, W.; Wanwong, S. Methyl Gallate and Amoxicillin-Loaded Electrospun Poly(vinyl alcohol)/Chitosan Mats: Impact of Acetic Acid on Their Anti-Staphylococcus aureus Activity. Polymers 2025, 17, 7. https://doi.org/10.3390/polym17010007
Jiamboonsri P, Sangkhun W, Wanwong S. Methyl Gallate and Amoxicillin-Loaded Electrospun Poly(vinyl alcohol)/Chitosan Mats: Impact of Acetic Acid on Their Anti-Staphylococcus aureus Activity. Polymers. 2025; 17(1):7. https://doi.org/10.3390/polym17010007
Chicago/Turabian StyleJiamboonsri, Pimsumon, Weradesh Sangkhun, and Sompit Wanwong. 2025. "Methyl Gallate and Amoxicillin-Loaded Electrospun Poly(vinyl alcohol)/Chitosan Mats: Impact of Acetic Acid on Their Anti-Staphylococcus aureus Activity" Polymers 17, no. 1: 7. https://doi.org/10.3390/polym17010007
APA StyleJiamboonsri, P., Sangkhun, W., & Wanwong, S. (2025). Methyl Gallate and Amoxicillin-Loaded Electrospun Poly(vinyl alcohol)/Chitosan Mats: Impact of Acetic Acid on Their Anti-Staphylococcus aureus Activity. Polymers, 17(1), 7. https://doi.org/10.3390/polym17010007