Magnetic Composite Carbon from Microcrystalline Cellulose to Tackle Paracetamol Contamination: Kinetics, Mass Transfer, Equilibrium, and Thermodynamic Studies
"> Figure 1
<p>(<b>a</b>) Diffractograms of raw CP (<span style="color:red">red line</span>) and MCC@Fe adsorbent (<span style="color:blue">blue line</span>). (<b>b</b>) VSM hysteresis loops of MCC@Fe at room temperature.</p> "> Figure 2
<p>SEM images of MCC@Fe adsorbent at different magnifications: (<b>a</b>) ×500 (<b>b</b>) ×700 and (<b>c</b>) ×2000.</p> "> Figure 3
<p>(<b>a</b>) FTIR spectra and (<b>b</b>) TGA/DTG curves of MCC@Fe magnetic composite.</p> "> Figure 4
<p>Kinetics curves at (<b>a</b>) 125.0 mg/L and (<b>b</b>) 250.0 mg/L, using MCC@Fe composite adsorbent (pH 7.0, 1.5 g L<sup>−1</sup> of adsorbent dosage, and 25 °C).</p> "> Figure 5
<p>(<b>a</b>,<b>b</b>) Film diffusion model. (<b>c</b>,<b>d</b>) Intraparticle diffusion model of adsorption of paracetamol on MCC@Fe composite. Initial pH at 7, temperature at 25 °C, initial concentrations at 125 mg/L (<b>a</b>,<b>c</b>) and 250 mg/L (<b>b</b>,<b>d</b>), and dose (<b>d</b>) adsorbent at 1.5 g/L.</p> "> Figure 6
<p>(<b>a</b>) Adsorption isotherm of uptake PCT onto MCC@Fe adsorbent at 45 °C. (<b>b</b>) Van’t Hoff graph for uptake of PCT onto MCC@Fe adsorbent. Conditions: 1.5 g L<sup>−1</sup> of adsorbent dosage; contact time, 60 min; and pH 7.</p> "> Figure 7
<p>Possible mechanism of interaction of PCT onto MCC@Fe.</p> "> Figure 8
<p>Desorption experiments of MCC@Fe composite for PCT.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. One-Spot Preparation Process of Magnetic Composite from Microcrystalline Cellulose-MCC@Fe
2.3. Characterization of Magnetic Composite Carbon (MCC@Fe) Adsorbent
2.4. Adsorption Studies
3. Result and Discussion
3.1. X-Ray Diffraction Analysis of Cellulose Microcrystalline (MC) and MCC@Fe
3.2. Magnetic Features
3.3. Textural and Elemental Analysis
3.4. SEM and EDS MCC@Fe
3.5. Acidity Property of the Magnetic MCC@Fe Adsorbent
3.6. FTIR Magnetic MCC@Fe
3.7. TGA Analysis and Thermal Stability of MCC@Fe Adsorbent
3.8. Adsorption Kinetics
3.9. Equilibrium Studies
3.10. Thermodynamics Studies: Mechanism of Adsorption and Regeneration
3.11. Regeneration of the MCC@Fe Composite Material
4. Conclusions and Final Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. 2030 Agenda for Sustainable Development. 2024. Available online: https://sdgs.un.org/2030agenda (accessed on 17 July 2024).
- Nakhle, P.; Stamos, I.; Proietti, P.; Siragusa, A. Environmental monitoring in European regions using the sustainable development goals (SDG) framework. Environ. Sustain. Ind. 2024, 21, 100332. [Google Scholar] [CrossRef]
- Samal, K.; Mahapatra, S.; Hibzur Ali, M. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on the environment and human health. Energy Nexus 2022, 6, 100076. [Google Scholar] [CrossRef]
- Kumar, M.; Sridharan, S.; Sawarkar, A.D.; Shakeel, A.; Anerao, P.; Mannina, G.; Sharma, P.; Pandey, A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Sci. Total Environ. 2023, 859, 160031. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Wang, Z.; Liu, Y.; Jia, Y.; Li, F.; Ren, R.; Ikhlaq, A.; Kumirska, J.; Siedlecka, E.M.; et al. Navigating the complexity of pharmaceutical wastewater treatment by effective strategy, emerging technology, and sustainable solution. J. Water Proc. Eng. 2024, 63, 105404. [Google Scholar] [CrossRef]
- Shaheed, A.C.; Ferreira, G.E.; Dmitritchenko, A.; McLachlan, A.J.; Day, R.O.; Saragiotto, B.; Lin, C.; Langendyk, V.; Stanaway, F.; Latimer, J.; et al. The efficacy and safety of paracetamol for pain relief: An overview of systematic reviews. Med. J. Aust. 2021, 214, 324. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N. Paracetamol—A Contaminant of High Concern: Existence in Environment and Adverse Effect. Pharm. Drug Regul. Aff. J. 2021, 4, 000128. [Google Scholar] [CrossRef]
- Islam, M.A.; Nazal, M.K.; Sajid, M.; Suliman, M.A. Adsorptive removal of paracetamol from aqueous media: A review of adsorbent materials, adsorption mechanisms, advancements, and future perspectives. J. Mol. Liq. 2024, 396, 123976. [Google Scholar] [CrossRef]
- Azri, N.; Chebbi, R.; Ouakouak, A.; Hecini, L.; Isinkaralar, K.; Fadel, A.; Bokov, D.O.; Prakash, C.; Hosseini-Bandegharaei, A. Single and binary adsorption of paracetamol and diclofenac onto biochar produced from pepper stem: Which adsorption properties change in the binary system? Colloid Surf. A 2024, 694, 134136. [Google Scholar] [CrossRef]
- Çifçi, D.İ. Diclofenac sodium and paracetamol removal with ZnCl2 activated carbon produced from rice straw. Int. J. Phytoremediation 2024, 26, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- López-Zavala, M.A.; Jaber-Lara, C.R. Degradation of paracetamol and its oxidation products in surface water by electrochemical oxidation. Environ. Eng. Sci. 2018, 35, 1151–1272. [Google Scholar] [CrossRef]
- Kouadio, K.E.; Kambiré, O.; Koffi, K.S.; Ouattara, L. Electrochemical oxidation of paracetamol on boron-doped diamond electrode: Analytical performance and paracetamol degradation. J. Electrochem. Sci. Eng. 2021, 11, 71–86. [Google Scholar] [CrossRef]
- Jain, M.; Kiran, P.S.; Ghosal, P.S.; Gupta, A.K. Development of microbial fuel cell integrated constructed wetland (CMFC) for removal of paracetamol and diclofenac in hospital wastewater. J. Environ. Manag. 2023, 344, 118686. [Google Scholar] [CrossRef]
- Bhattarai, B.; Dionisi, D.; Afzal, W. Comparison between batch aerobic biodegradation of paracetamol and glucose with open mixed microbial cultures: Experimental data and kinetic modelling. J. Water Process Eng. 2023, 55, 104077. [Google Scholar] [CrossRef]
- Pacheco-Álvarez, M.; Picos-Benítez, R.; Rodríguez-Narváez, O.M.; Brillas, E.; Peralta-Hernández, J.M. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. Chemosphere 2022, 303, 134883. [Google Scholar] [CrossRef]
- Giménez, B.N.; Conte, L.O.; Audino, F.; Schenone, A.V.; Graells, M.; Alfano, O.M.; Pérez-Moya, M. Kinetic model of photo-Fenton degradation of paracetamol in an annular reactor: Main reaction intermediates and cytotoxicity studies. Catal. Today 2023, 413–415, 113958. [Google Scholar] [CrossRef]
- Ivanova, D.; Tzvetkov, G.; Kaneva, N. Degradation of Paracetamol in Distilled and DrinkingWater via Ag/ZnO Photocatalysis under UV and Natural Sunlight. Water 2023, 15, 3549. [Google Scholar] [CrossRef]
- Brillas, E.; Peralta-Hernández, J.M. Removal of paracetamol (acetaminophen) by photocatalysis and photoelectrocatalysis. A critical review. Sep. Purif. Technol. 2023, 309, 122982. [Google Scholar] [CrossRef]
- Nada, A.A.; Orimolade, B.O.; El-Maghrabi, H.H.; Koiki, B.A.; Rivallin, M.; Bekheet, M.F.; Viter, R.; Damberga, D.; Lesage, G.; Iatsunskyi, I.; et al. Photoelectrocatalysis of paracetamol on Pd–ZnO/ N-doped carbon nanofibers electrode. Appl. Mater. Today 2021, 24, 101129. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Meng, H.; Wu, X.; Liu, Y.; Li, L. Cu/N co-doped biochar activating PMS for selective degrading paracetamol via a non-radical pathway dominated by singlet oxygen and electron transfer. Chemosphere 2024, 357, 141858. [Google Scholar] [CrossRef]
- Pareek, D.; Rolaniya, A.; Yadav, A.; Sailani, R. Oxidative Degradation of Paracetamol by N-Bromo Succinimide in Presence of Mercuric Acetate–A Computational Screening and Mechanistic Pathway. Russ. J. Phys. Chem. 2024, 98, 552–559. [Google Scholar] [CrossRef]
- Peralta-Hernández, J.M.; Brillas, E. A critical review over the removal of paracetamol (acetaminophen) from synthetic waters and real wastewaters by direct, hybrid catalytic, and sequential ozonation processes. Chemosphere 2023, 313, 137411. [Google Scholar] [CrossRef] [PubMed]
- Villota, N.; Cruz-Alcalde, A.; Ferreiro, C.; Lombraña, J.I.; Esplugas, S. Changes in solution turbidity and color during paracetamol removal in laboratory and pilot-scale semicontinuous ozonation reactors. Sci. Total Environ. 2024, 854, 158682. [Google Scholar] [CrossRef]
- Romdhani, M.; Aloulou, W.; Aloulou, H.; Duplay, J.; Charcosset, C.; Amar, R.B. Performance Assessment of a New Flat Sepiolite Clay-Based Ultrafiltration Membrane for the Removal of Paracetamol and Indigo Blue Dyes from Two Synthetic Aqueous Solutions. Sustainability 2024, 16, 1860. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, K.H.; Lee, J.W.; Khan, I.A.; Kim, J.O. Structural and performance variation of PES/PVDF membranes after exposure to the pretreated feed water of CECs. Chemosphere 2023, 335, 139096. [Google Scholar] [CrossRef] [PubMed]
- Lumbaque, E.C.; Cardoso, R.M.; Gomes, A.A.; Malato, S.; Sánchez-Pérez, J.A.; Sirtori, C. Removal of pharmaceuticals in hospital wastewater by solar photo-Fenton with Fe3+-EDDS using a pilot raceway pond reactor: Transformation products and in silico toxicity assessment. Microchem. J. 2021, 164, 106014. [Google Scholar] [CrossRef]
- Sanabria, P.; Cuervo-Lumbaque, E.; Becker, R.W.; Jachstet, L.A.; Scunderlick, D.; Ruiz-Padillo, A.; Sirtori, C. Use of multi-criteria ranking method for environmental risk assessment of antineoplastic agents and their transformation products. J. Environ. Chem. Eng. 2023, 11, 109588. [Google Scholar] [CrossRef]
- Lin, Y.L.; Zheng, N.Y.; Hsu, Y.J. Enhancing membrane separation performance in the conditions of different water electrical conductivity and fouling types via surface grafting modification of a nanofiltration membrane, NF90. Environ. Res. 2023, 239, 117346. [Google Scholar] [CrossRef] [PubMed]
- Sophia, A.C.; Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, F.; Ariannezhad, M.; Derakhshandeh, S.H. Sustainable removal of tetracycline and paracetamol from water using Magnetic-activated carbon derived from pine fruit waste. Sci. Rep. 2024, 14, 16346. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, N.E.; Thabede, P.M.; Shooto, N.D. One pot synthesis of Fe3O4-chili carbon composite removing methylene blue, paracetamol, and nickel ions from an aqueous solution. Case Stud. Chem. Environ. Eng. 2024, 10, 100800. [Google Scholar] [CrossRef]
- Shekhawat, H.; Kumari, A.; Raol, H.; Choudhury, T. Preparation and characterization of clay hybrid adsorbents for the removal of paracetamol from model wastewater: A comparative study. Appl. Clay Sci. 2024, 258, 107469. [Google Scholar] [CrossRef]
- González-Hourcade, M.; Simões dos Reis, G.; Grimm, A.; Dinh, V.M.; Lima, E.C.; Larsson, S.H.; Gentili, F.G. Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J. Clean. Prod. 2022, 348, 131280. [Google Scholar] [CrossRef]
- Islam, M.A.; Nazal, M.K.; Akinpelu, A.A.; Sajid, M.; Alhussain, N.A.; Ilyas, M. High-performance adsorptive removal of emerging contaminant paracetamol using a sustainable biobased mesoporous activated carbon prepared from palm leaves waste. J. Anal. Appl. Pyrol. 2024, 180, 106546. [Google Scholar] [CrossRef]
- Solmaz, A.; Turna, T.; Bara, A. Removal of paracetamol from aqueous solution with zinc oxide nanoparticles obtained by green synthesis from purple basil (Ocimum basilicum L.) waste. Biomass Convers. Biorefin. 2024, 14, 10771–10789. [Google Scholar] [CrossRef]
- Mphuthi, B.R.; Thabede, P.M.; Ledwaba, I.P.; Mlambo, M.; Mpelane, S.; Shooto, N.D. Sequestration of hexavalent chromium and paracetamol from water using deoiled hemp stem twigs and roots and activated carbon. Environ. Chall. 2024, 15, 100931. [Google Scholar] [CrossRef]
- Shirmardi, M.; Alavi, N.; Lima, E.C.; Takdastan, A.; Mahvi, A.H.; Babaei, A.A. Removal of atrazine as an organic micro-pollutant from aqueous solutions: A comparative study. Process Saf. Environ. Prot. 2016, 103, 23–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Bian, Y.; Yu, J.; Xu, Y.; Shu, Z.; Shan, S.; Jiao, Y.; Chen, J. Innovative modification of cyclodextrin metal-organic frameworks for enhanced adsorption in wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 113312. [Google Scholar] [CrossRef]
- Mello, B.L.; Thue, P.S.; da Silva, P.V.; Machado, F.M.; Naushad, M.; Sellaoui, L.; Badawi, M.; dos Reis, G.S.; Dotto, G.L.; Lima, E.C. Grafting 3-trimethoxysilylpropyl)diethylenetriamine on microcrystalline cellulose for the adsorption of dyes: Experimental and modeling studies. React. Funct. Polym. 2024, 196, 105836. [Google Scholar] [CrossRef]
- Takdastan, A.; Mahvi, A.H.; Lima, E.C.; Shirmardi, M.; Babaei, A.A.; Goudarzi, G.; Neisi, A.; Farsani, M.H.; Vosoughi, M. Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions. Water Sci. Technol. 2016, 74, 10. [Google Scholar] [CrossRef]
- Thue, P.S.; dos Reis, G.S.; Lima, E.C.; Sieliechi, J.M.; Dotto, G.L.; Wamba AG, N.; Dias SL, P.; Pavan, F.A. Activated carbon obtained from Sapelli wood sawdust by microwave heating for O-cresol adsorption. Res. Chem. Intermed. 2016, 43, 1063–1087. [Google Scholar] [CrossRef]
- Sher, F.; Hanif, K.; Rafey, A.; Khalid, U.; Zafar, A.; Ameen, M.; Lima, E.C. Removal of micropollutants from municipal wastewater using different types of activated carbons. J. Environ. Manag. 2021, 278, 111302. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, S.; Fizer, M.; Mariychuk, R.; Dhaouadi, H. Grape seeds waste activated carbon as an adsorber of paracetamol drug residue: Experimental and theoretical approaches. J. Mol. Liq. 2024, 408, 125325. [Google Scholar] [CrossRef]
- Islam, M.A.; Nazal, M.K.; Akinpelu, A.A.; Sajid, M.; Alhussain NABillah, R.E.K.; Bahsis, L. Novel activated carbon derived from a sustainable and low-cost palm leaves biomass waste for tetracycline removal: Adsorbent preparation, adsorption mechanisms and real application. Diamond Relat. Mater. 2024, 147, 111375. [Google Scholar] [CrossRef]
- Babaei, A.A.; Lima, E.C.; Takdastan, A.; Alavi, N.; Goudarzi, G.; Vosoughi, M.; Hassani, G.; Shirmardi, M. Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: Operational variables, kinetics, and equilibrium studies. Water Sci. Technol. 2016, 74, 5. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Gutierrez, L.; Shewfelt, S.; Xiong, Y.; Gray, K.A. A robust self-regenerating graphene-based adsorbent for pharmaceutical removal in various water environments. Water Res. 2024, 261, 121998. [Google Scholar] [CrossRef] [PubMed]
- Priyanka; Pal, B.; Singh, S.; Bansal, M. Superior adsorptive removal of ciprofloxacin by graphene oxide modified Ni-Al layered double hydroxide composites. J. Alloys Compd. 2024, 976, 173220. [Google Scholar] [CrossRef]
- Shaha, C.K.; Al-Mahmud, M.A.; Saha, S.; Karmaker, S.; Saha, T.K. Efficient removal of sparfloxacin antibiotic from water using sulfonated graphene oxide: Kinetics, thermodynamics, and environmental implications. Heliyon 2024, 10, e33644. [Google Scholar] [CrossRef]
- Ishaq, S.; Nadim, A.H.; Amer, S.M.; Elbalkiny, H.T. Optimization of graphene polypyrrole for enhanced adsorption of moxifloxacin antibiotic: An experimental design approach and isotherm investigation. BMC Chem. 2024, 18, 113. [Google Scholar] [CrossRef]
- Cimirro, N.F.G.M.; Lima, E.C.; Cunha, M.R.; Thue, P.S.; Grimm, A.; dos Reis, G.S.; Rabiee, N.; Saeb, M.R.; Keivanimehr, F.; Habibzadeh, S. Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J. Mol. Liq. 2022, 364, 119979. [Google Scholar] [CrossRef]
- Cunha, M.R.; Naushad, M.; Ponce-Vargas, M.; Lima, E.C.; Sher, F.; Rabiee, N.; Franco, D.S.P.; Thue, P.S.; Tran, H.N.; Badawi, M. Removal of enalapril maleate drug from industry waters using activated biochar prepared from Butia capitata seed. Kinetics, equilibrium, thermodynamic, and DFT calculations. J. Mol. Liq. 2023, 386, 122470. [Google Scholar] [CrossRef]
- Lima, E.C.; Ponce-Vargas, M.; Naushad, M.; Thue, P.S.; dos Reis, G.S.; Mello, B.L.; Rabiee, N.; Abatal, M.; Korany Seliem, M.; Badawi, M. Removal of methylparaben from aqueous effluents using biobased carbon material. Experimental and DFT calculations. J. Mol. Liq. 2024, 397, 124194. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Mustafa, F.S.; Hassan, M.A.; Omer, K.M.; Hama, S. Biochar as green adsorbents for pharmaceutical pollution in aquatic environments: A review. Desalination 2024, 583, 117725. [Google Scholar] [CrossRef]
- Zhang, M.; Li, P.; Guo, D.; Zhao, Z.; Feng, W.; Zhang, Z. Highly Efficient Adsorption of Norfloxacin by Low-Cost Biochar: Performance, Mechanisms, and Machine Learning-Assisted Understanding. ACS Omega 2024, 9, 30813–30825. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Panneerselvam, B.; Huligowda, L.K.D.; Umesh, M.; Gupta, M.; Muzammil, K.; Zahrani, Y.; Malmutheibi, M. Lignocellulosic biomass for biochar production: A green initiative on biowaste conversion for pharmaceutical and other emerging pollutant removal. Chemosphere 2024, 360, 142312. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Chen, K.; Qian, Y.Y.; Sun, S.; Zhao, Y.; Ni, Z.; Wang, Y.; Xu, K. A biomass composite based on natural deep eutectic solvent and magnetic chitosan for the solid phase extraction of PPCPs. Microchem. J. 2024, 204, 110986. [Google Scholar] [CrossRef]
- Costa, H.P.S.; Duarte, E.D.V.; da Silva, F.V.; da Silva, M.G.C.; Vieira, M.G.A. Green synthesis of carbon nanotubes functionalized with iron nanoparticles and coffee husk biomass for efficient removal of losartan and diclofenac: Adsorption kinetics and ANN modeling studies. Environ. Res. 2024, 251, 118733. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, P.A.; Pailañir, M.K.; Mella, S.R.; González-Quijón, M.E.; Bernardi, T.M.; Lemus, M.C. Development of bifunctional biochar/iron oxide composites for tetracycline removal from synthetic wastewater. J. Water Proc. Eng. 2024, 64, 105509. [Google Scholar] [CrossRef]
- Mahgoub, S.M.; Kotp, A.A.; Mohamed, M.A.; Alfassam, H.E.; Rudayni, H.A.; Allam, A.A.; Mahmoud, R.; Moaty, S.A.A. Assessment of activated carbon/alginate for the concurrent removal efficiency of paracetamol and caffeine from wastewater in their binary solutions. Chin. J. Anal. Chem. 2024, 52, 100403. [Google Scholar] [CrossRef]
- Aghaee, M.; Salehipour, M.; Rezaei, S.; Mogharabi-Manzari, M. Bioremediation of organic pollutants by laccase-metal–organic framework composites: A review of current knowledge and future perspective. Bioresour. Technol. 2024, 406, 131072. [Google Scholar] [CrossRef]
- Sharma, A.; Rathore, V.K.; Chakraborty, M. Adsorptive removal of diclofenac sodium from aqueous solution by a highly efficient metal-organic framework (UiO-66)/multi-walled carbon nanotube composite. Environ. Sci. Pollut. Res. 2024, 31, 40142–40155. [Google Scholar] [CrossRef] [PubMed]
- Suhas, G.V.K.; Carrott, P.J.M.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 2016, 216, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Ban, S.E.; Lee, E.J.; Yoon, J.; Lim, D.J.; Kim, I.S.; Lee, J.W. Role of cellulose and lignin on biochar characteristics and removal of diazinon from biochar with a controlled chemical composition. Ind. Crops Prod. 2023, 200, 116913. [Google Scholar] [CrossRef]
- Biti, S.; Mccue, A.; Dionisi, D.; Graça, I.; Martín, C.F. Sustainable microcrystalline cellulose-based activated carbons for a greener carbon capture at post-combustion conditions. Int. J. Greenh. Gas Control 2023, 125, 103876. [Google Scholar] [CrossRef]
- Lima, D.R.; Lima, E.C.; Thue, P.S.; Dias SL, P.; Machado, F.M.; Seliem, M.K.; Sher, F.; dos Reis, G.S.; Saeb, M.R.; Rinklebe, J. Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magnetic-activated biochar. J. Environ. Chem. Eng. 2021, 9, 105865. [Google Scholar] [CrossRef]
- Thue, P.S.; Umpierres, C.S.; Lima, E.C.; Lima, D.R.; Machado, F.M.; dos Reis, G.S.; da Silva, R.S.; Pavan, F.A.; Tran, H.N. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propranolol. J. Hazard. Mater. 2020, 398, 122903. [Google Scholar] [CrossRef]
- Hayasi, M.; Saadatjoo, N. Preparation of magnetic nanoparticles functionalized with poly (styrene-2-acrylamido-2-methyl propanesulfonic acid) as novel adsorbents for removal of pharmaceuticals from aqueous solutions. Adv. Polym. Technol 2017, 37, 1941–1953. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Soltys, L.; Macyk, W. Magnetic adsorbents for removal of pharmaceuticals: A review of adsorption properties. J. Mol. Liq. 2023, 384, 122174. [Google Scholar] [CrossRef]
- Soliman AI, A.; Díaz Baca, J.A.; Fatehi, P. One-pot synthesis of magnetic cellulose nanocrystal and its post-functionalization for doxycycline adsorption. Carbohydr. Polym. 2023, 308, 120619. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhu, C.; Wang, A.; Chen, F. Facile preparation of NiFe2O4/Biochar composite adsorbent for efficient adsorption removal of antibiotics in water. Carbon Res. 2024, 3, 2. [Google Scholar] [CrossRef]
- Chen, C.; Yang, F.; Ma, Y.; Dai, L.; Zhang, Z.; Guo, H.; Ding, Y. Ball milling boosted magnetic cotton husk-derived biochar adsorptive removal of oxytetracycline and ciprofloxacin from water. Carbon Res. 2024, 3, 63. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In Kolloidchemie Ein Lehrbuch; Zsigmondy, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1912; pp. 387–409. [Google Scholar]
- dos Reis, G.S.; Sampaio, C.H.; Lima, E.C.; Wilhelm, M. Preparation of novel adsorbents based on combinations of polysiloxanes and sewage sludge to remove pharmaceuticals from aqueous solutions. Colloids Surf. A 2016, 497, 304–315. [Google Scholar] [CrossRef]
- Lima, E.C.; Dehghani, M.H.; Guleria, A.; Sher, F.; Karri, R.R.; Dotto, G.L.; Tran, H.N. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment. In Green Technologies for the Defluoridation of Water; Dehghani, M.H., Karri, R., Lima, E.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 41–88. [Google Scholar] [CrossRef]
- Haerifar, M.; Azizian, S. Fractal-like kinetics for adsorption on heterogeneous solid surfaces. J. Phys. Chem. C 2014, 118, 1129–1134. [Google Scholar] [CrossRef]
- Yao, C.; Chen, T. A Film diffusion- Adsorption kinetics and its application. Chem. Eng. Res. Des. 2007, 119, 87–92. [Google Scholar] [CrossRef]
- Boyd, G.E.; Adamson, A.W.; Meyers, L.S. The exchange adsorption of ions from aqueous solutions by organic zeolites, II kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J.J.; Morris, J.C. Kinetics of adsorption on Carbon from solution. J. Sanit. Eng. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Urano, K.; Tachikawa, H. Process development for removal and recovery of phosphorus from water by a new adsorbent II. Adsorption rates and breakthrough curves. Ind. Eng. Chem. Res. 1991, 30, 1897–1899. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoff Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2021, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, Y.; Qian, F.; Zhou, C.; Zhang, S.; Chen, J. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol. 2014, 154, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Jiang, P.; Wang, H.; Lu, R.; Liu, Y.; Li, Y.; Gan, Y.; Bolan, N. Influence of biomass feedstocks on magnetic biochar preparation for efficient Pb(II) removal. Environ. Technol. Innov. 2023, 32, 103363. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Lazaridis, N.K. Magnetic modification of microporous carbon for dye adsorption. J. Colloid Interface Sci. 2014, 430, 166–173. [Google Scholar] [CrossRef]
- AGICO CEMENT. Biochar Production Technology Overview. Industrial News. Available online: https://www.cement-plants.com/biochar-production-technology-overview (accessed on 22 August 2024).
- Smith, B. Infrared Spectral Interpretation. A Systematic Approach; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- El-Khaiary, M.I.; Malash, G.F. Common data analysis errors in batch adsorption studies. Hydrometallurgy 2011, 105, 314–320. [Google Scholar] [CrossRef]
- Dotto, G.L.; Buriol, C.; Pinto, L.A.A. Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chem. Eng. Res. Des. 2014, 92, 2324–2332. [Google Scholar] [CrossRef]
- Chang, R.; Thoman, J.W., Jr. Chapter 17-Intermolecular forces. In Physical Chemistry for Chemical Sciences; University Science Books: Melville, NY, USA, 2014; p. 792. [Google Scholar]
- Spessato, L.; Cazetta, A.L.; Melo, S.; Pezoti, O.; Tami, J.; Ronix, A.; Fonseca, J.M.; Martins, A.F.; Silva, T.L.; Almeida, V.C. Synthesis of superparamagnetic activated carbon for paracetamol removal from aqueous solution. J. Mol. Liq. 2020, 300, 112282. [Google Scholar] [CrossRef]
Sample | Particle Size (µm) | SBET (m2 g−1) | %C | %H | %O | Ash | HI | pHpzc |
---|---|---|---|---|---|---|---|---|
Cellulose | ≤100 | 1.50 | 41.78 | 6.05 | 51.17 | 0.00 | 0.318 | 6.52 |
MCC@Fe | 22 | 500.0 | 75.33 | 2.97 | 18.97 | 2.73 | 1.395 | 4.803 |
Paracetamol (PCT) | ||
---|---|---|
Pseudo-first order | 125 mg L−1 | 250 mg L−1 |
qe (mg g−1) | 23.16 | 27.68 |
k1 (min−1) | 0.0415 | 0.04379 |
t1/2 (min) | 11.58 | 13.84 |
t0.95 (min) | 22.00468 | 26.29 |
R2adj | 0.9997 | 0.9990 |
SD (mg g−1) | 0.1696 | 0.3480 |
BIC | −64.097 | −35.340 |
Pseudo-second order | ||
qe (mg g−1) | 26.14 | 31.09 |
k2 (g mg−1 min−1) | 0.002001 | 0.001799 |
t1/2 (min) | 12.29 | 14.67 |
t0.95 (min) | 23.35 | 27.88 |
R2adj | 0.9917 | 0.9926 |
SD (mg g−1) | 0.8538 | 0.9551 |
BIC | 0.56 | 5.04 |
Fractal-PFO order | ||
qe (mg g−1) | 23.3 | 27.89 |
k1,0 (min−1) | 0.0407 | 0.04239 |
N | 0.9557 | 0.9260 |
t1/2 (min) | 11.63 | 13.94 |
t0.95 (min) | 22.10 | 26.49 |
R2adj | 0.9999 | 0.9998 |
SD (mg g−1) | 0.08003 | 0.1670 |
BIC | −92.28 | −62.87 |
Fractal-PSO order | ||
qe (mg g−1) | 24.42 | 29.33 |
k2,0 (g mg−1 min−-n) | 0.001099 | 0.001106 |
N | 1.294 | 1.248 |
t1/2 (min) | 11.93 | 14.31 |
t0.95 (min) | 22.67 | 27.19 |
R2adj | 0.9975 | 0.9970 |
SD (mg g−1) | 0.4664 | 0.6045 |
BIC | −21.78 | −11.40 |
Paracetamol | ||
---|---|---|
Effective diffusion coefficient Di/10−8 cm2 min−1 | 125 mg L−1 | 250 mg L−1 |
0.508 | 0.524 | |
Film diffusion Kf/10−4 cm min−1 | 42.90 | 28.20 |
Bi | 1858 | 1184 |
Langmuir | 10 °C | 20 °C | 25 °C | 30 °C | 35 °C | 40 °C | 45 °C |
---|---|---|---|---|---|---|---|
Qmax (mg g−1) | 24.81 ± 0.33 | 19.49 ± 0.47 | 31.24 ± 1.03 | 31.25 ± 0.47 | 31.11 ± 0.13 | 32.63 ± 0.25 | 28.79 ± 0.57 |
KL (L mg−1) | 0.01644 | 0.06125 | 0.02555 | 0.03328 | 0.04453 | 0.05425 | 0.1125 |
R2adj | 0.9966 | 0.9747 | 0.9761 | 0.9932 | 0.9993 | 0.9999 | 0.9778 |
SD (mg g−1) | 0.3837 | 0.9537 | 1.413 | 0.7480 | 0.2302 | 0.04809 | 1.326 |
BIC | −22.76 | 4.557 | 16.35 | −2.735 | −38.08 | −85.07 | 14.45 |
Freundlich | 10 °C | 20 °C | 25 °C | 30 °C | 35 °C | 40 °C | 45 °C |
KF (mg g−1 (mg L−1)−1/nF) | 2.882 ± 0.53 | 5.408 ± 0.37 | 4.814 ± 1.22 | 5.959 ± 1.08 | 7.618 ± 1.05 | 8.759 ± 1.17 | 9.617 ± 0.70 |
nF | 2.875 | 4.420 | 3.183 | 3.546 | 4.097 | 4.331 | 4.880 |
R2adj | 0.9493 | 0.9833 | 0.8790 | 0.9140 | 0.9387 | 0.9329 | 0.9755 |
SD (mg g−1) | 1.485 | 0.7760 | 3.177 | 2.654 | 2.159 | 2.441 | 1.392 |
BIC | 17.83 | −1.629 | 40.66 | 35.26 | 29.07 | 32.75 | 15.90 |
Liu | 10 °C | 20 °C | 25 °C | 30 °C | 35 °C | 40 °C | 45 °C |
Qmax (mg g−1) | 22.74 ± 0.13 | 25.62 ± 0.028 | 27.12 ± 0.028 | 28.92 ± 0.054 | 30.65 ± 0.21 | 32.49 ± 0.004 | 34.78 ± 0.01 |
Kg (L mg−1) | 0.01944 | 0.02732 | 0.03230 | 0.03812 | 0.04566 | 0.05466 | 0.06541 |
nL | 1.246 | 0.5122 | 1.705 | 1.330 | 1.054 | 1.017 | 0.5621 |
R2adj | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9995 | 0.9999 | 0.9999 |
SD (mg g−1) | 0.1029 | 0.006657 | 0.04688 | 0.06945 | 0.1978 | 0.004457 | 0.004068 |
BIC | −60.74 | −142.9 | −84.32 | −72.53 | −41.12 | −154.9 | −157.7 |
Temperature (K) | 283 | 293 | 298 | 303 | 318 | 313 | 318 |
---|---|---|---|---|---|---|---|
/103 | 2.938 | 4.129 | 4.883 | 5.763 | 6.902 | 8.263 | 9.887 |
ΔG° (kJ mol−1) | −18.79 | −20.28 | −21.04 | −21.81 | −22.64 | −23.47 | −24.32 |
ΔS° (J. K−1.mol−1) | 161.3 ± 2.04 | ||||||
ΔH° (kJ mol−1) | 27.00 ± 0.68 | ||||||
R2adj | 0.9973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thue, P.S.; Wamba, A.G.N.; Mello, B.L.; Machado, F.M.; Petroman, K.F.; Nadaleti, W.C.; Andreazza, R.; dos Reis, G.S.; Abatal, M.; Lima, E.C. Magnetic Composite Carbon from Microcrystalline Cellulose to Tackle Paracetamol Contamination: Kinetics, Mass Transfer, Equilibrium, and Thermodynamic Studies. Polymers 2024, 16, 3538. https://doi.org/10.3390/polym16243538
Thue PS, Wamba AGN, Mello BL, Machado FM, Petroman KF, Nadaleti WC, Andreazza R, dos Reis GS, Abatal M, Lima EC. Magnetic Composite Carbon from Microcrystalline Cellulose to Tackle Paracetamol Contamination: Kinetics, Mass Transfer, Equilibrium, and Thermodynamic Studies. Polymers. 2024; 16(24):3538. https://doi.org/10.3390/polym16243538
Chicago/Turabian StyleThue, Pascal S., Alfred G. N. Wamba, Beatris L. Mello, Fernando M. Machado, Karoline F. Petroman, Willian Cézar Nadaleti, Robson Andreazza, Glaydson S. dos Reis, Mohamed Abatal, and Eder C. Lima. 2024. "Magnetic Composite Carbon from Microcrystalline Cellulose to Tackle Paracetamol Contamination: Kinetics, Mass Transfer, Equilibrium, and Thermodynamic Studies" Polymers 16, no. 24: 3538. https://doi.org/10.3390/polym16243538
APA StyleThue, P. S., Wamba, A. G. N., Mello, B. L., Machado, F. M., Petroman, K. F., Nadaleti, W. C., Andreazza, R., dos Reis, G. S., Abatal, M., & Lima, E. C. (2024). Magnetic Composite Carbon from Microcrystalline Cellulose to Tackle Paracetamol Contamination: Kinetics, Mass Transfer, Equilibrium, and Thermodynamic Studies. Polymers, 16(24), 3538. https://doi.org/10.3390/polym16243538