Mechanical Properties and Degree of Conversion of a Novel 3D-Printing Model Resin
<p>Flexural strength of 3D-printing model resin materials (values with the same superscript are not significantly different (<span class="html-italic">p</span> > 0.05).</p> "> Figure 2
<p>Flexural modulus of 3D-printing model resin materials (values with the same superscript are not significantly different (<span class="html-italic">p</span> > 0.05).</p> "> Figure 3
<p>Modulus of resilience of 3D-printing model resin materials (values with the same superscript are not significantly different (<span class="html-italic">p</span> > 0.05).</p> "> Figure 4
<p>Tensile strength of 3D-printing model resin materials (values with the same superscript are not significantly different (<span class="html-italic">p</span> > 0.05).</p> "> Figure 5
<p>Elongation at break of 3D-printing model resin materials (values with the same superscript are not significantly different (<span class="html-italic">p</span> > 0.05).</p> "> Figure 6
<p>Barcol hardness of 3D-printing model resin materials (values with the same superscript are not significantly different (<span class="html-italic">p</span> > 0.05).</p> "> Figure 7
<p>Impact strength of 3D-printing model resin materials (values with the same superscript are not significantly different (<span class="html-italic">p</span> > 0.05).</p> "> Figure 8
<p>Degree of conversion of 3D-printing model resin materials (values with the same superscript are not significantly different (<span class="html-italic">p</span> > 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Flexural Strength (FS), Flexural Modulus (FM), and Modulus of Resilience (MR)
2.3. Tensile Strength (TS) and Elongation at Break (El)
2.4. Barcol Hardness (BH)
2.5. Impact Strength (IS)
2.6. Degree of Conversion (DC)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Czajkowska, M.; Walejewska, E.; Zadrożny, Ł.; Wieczorek, M.; Święszkowski, W.; Wagner, L.; Mijiritsky, E.; Markowski, J. Comparison of dental stone models and their 3D printed acrylic replicas for the accuracy and mechanical properties. Materials 2020, 13, 4066. [Google Scholar] [CrossRef] [PubMed]
- Salmi, M. Possibilities of preoperative medical models made by 3D printing or additive manufacturing. J. Med. Eng. 2016, 2016, 6191526. [Google Scholar] [CrossRef] [PubMed]
- Sarment, D.P.; Sukovic, P.; Clinthorne, N. Accuracy of implant placement with a stereolithographic surgical guide. Int. J. Oral Maxillofac. Implant. 2003, 18, 571–577. [Google Scholar]
- Di Giacomo, G.A.; Cury, P.R.; da Silva, A.M.; da Silva, J.V.; Ajzen, S.A. A selective laser sintering prototype guide used to fabricate immediate interim fixed complete arch prostheses in flapless dental implant surgery: Technique description and clinical results. J. Prosthet. Dent. 2016, 116, 874–879. [Google Scholar] [CrossRef]
- Salmi, M.; Paloheimo, K.S.; Tuomi, J.; Ingman, T.; Makitie, A. A digital process for additive manufacturing of occlusal splints: A clinical pilot study. J. R. Soc. Interface 2013, 10, 20130203. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.J.; Park, J.M.; Kim, T.H.; Ahn, J.S.; Cha, H.S.; Lee, J.H. 3D Printing of resin material for denture artificial teeth: Chipping and indirect tensile fracture resistance. Materials 2018, 11, 1798. [Google Scholar] [CrossRef]
- Maspero, C.; Tartaglia, G.M. 3D printing of clear orthodontic aligners: Where we are and where we are going. Materials 2020, 13, 5204. [Google Scholar] [CrossRef] [PubMed]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef]
- Abduo, J.; Lyons, K.; Bennamoun, M. Trends in computer-aided manufacturing in prosthodontics: A review of the available streams. Int. J. Dent. 2014, 2014, 783948. [Google Scholar] [CrossRef] [PubMed]
- van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef]
- Dawood, A.; Marti, B.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Nayar, S.; Bhuminathan, S.; Bhat, W.M. Rapid prototyping and stereolithography in dentistry. J. Pharm. Bioallied Sci. 2015, 7, S216–S219. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Lin, Y.M.; Lai, Y.L.; Lee, S.Y. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of BisEMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020, 123, 349–354. [Google Scholar] [CrossRef]
- Revilla-Leon, M.; Ozcan, M. Additive manufacturing technologies used for processing polymers: Current status and potential application in prosthetic dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef]
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef]
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. Br. Dent. J. 2018, 204, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Etemad-Shahidi, Y.; Qallandar, O.B.; Evenden, J.; Alifui-Segbaya, F.; Ahmed, K.E. Accuracy of 3-dimensionally printed full-arch dental models: A systematic review. J. Clin. Med. 2020, 9, 3357. [Google Scholar] [CrossRef] [PubMed]
- Nesic, D.; Schaefer, B.M.; Sun, Y.; Saulacic, N.; Sailer, I. 3D Printing approach in dentistry: The future for personalized oral soft tissue regeneration. J. Clin. Med. 2020, 9, 2238. [Google Scholar] [CrossRef]
- SprintRay. Dental 3D Printing Materials Guide. 2018. Available online: https://sprintray.com/dental-3d-printing-materials-guide/ (accessed on 10 September 2024).
- Ling, L.; Taremi, N.; Malyala, R. A novel low-shrinkage resin for 3D printing. J. Dent. 2022, 118, 103957. [Google Scholar] [CrossRef] [PubMed]
- ASTM D2583-13a; Standard Test Method for Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D256-10; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International: West Conshohocken, PA, USA, 2018.
- Ling, L.; Chen, Y.; Malyala, R. Assessment of degree of conversion and volumetric shrinkage of novel self-adhesive cement. Polymers 2024, 16, 581. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1996. [Google Scholar]
- Moore, D.S.; Notz, W.I.; Flinger, M.A. The Basic Practice of Statistics, 6th ed.; W. H. Freeman and Company: New York, NY, USA, 2013. [Google Scholar]
- Lourinho, C.; Salgado, H.; Correia, A.; Fonseca, P. Mechanical properties of polymethyl methacrylate as denture base material: Heat-polymerized vs. 3D-printed-Systematic review and meta-analysis of in vitro studies. Biomedicines 2022, 10, 2565. [Google Scholar] [CrossRef]
- Liqcreate. What Do Properties of a Resin or 3D-Printed Part Mean? Available online: https://www.liqcreate.com/supportarticles/explanation-properties-resin-or-3d-printed-part/ (accessed on 10 September 2024).
- Formlabs. Choosing a Prototyping Material: 6 Mechanical Properties to Consider. Available online: https://formlabs.com/blog/choosing-prototyping-material-mechanical-properties/ (accessed on 10 September 2024).
- Ling, L.; Ma, Y.; Malyala, R. A novel CAD/CAM resin composite block with high mechanical properties. Dent. Mater. 2021, 37, 1150–1155. [Google Scholar] [CrossRef]
- Alshamrani, A.; Alhotan, A.; Kelly, E.; Ellakwa, A. Mechanical and biocompatibility properties of 3d-printed dental resin reinforced with glass silica and zirconia nanoparticles: In vitro study. Polymers 2023, 5, 2523. [Google Scholar] [CrossRef] [PubMed]
- Reyes, M.G.; Torras, A.B.; Cabrera Carrillo, J.A.; Velasco García, J.M.; Castillo Aguilar, J.J. A study of tensile and bending properties of 3D-printed biocompatible materials used in dental appliances. J. Mater. Sci. 2022, 57, 2953–2968. [Google Scholar] [CrossRef]
- Sürer, E.; Ünal, M.; Aygün, E.B.G.; Ucar, Y. Evaluating the conversion degree of interim restorative materials produced by different 3-dimensional printer technologies. J. Prosthet. Dent. 2023, 130, 654.e1–654.e6. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Makarian, K.; Alvarez, N.J.; Palmese, G.R. Formulation of a model resin system for benchmarking processing-property relationships in high-performance photo 3D printing applications. Materials 2020, 13, 4109. [Google Scholar] [CrossRef] [PubMed]
- Misev, L.; Schmid, O.; Udding-Louwrier, S.; Jong, E.S.d.; Bayards, R. Weather stabilization and pigmentation of UV-curable powder coatings. J. Coatings Tech. 1999, 71, 37–44. [Google Scholar] [CrossRef]
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L. Evaluation of the mechanical properties and degree of conversion of 3D printed splint material. J. Mech. Behav. Biomed. Mater. 2021, 115, 104254. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Kim, D.; Goo, H.; Lee, H. Investigation of the correlation between the different mechanical properties of resin composites. Dent. Mater. J. 2013, 32, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Lee, C.J.; Asaoka, K. Correlation in the mechanical properties of acrylic denture base resins. Dent. Mater. J. 2012, 31, 157–164. [Google Scholar] [CrossRef]
- Ling, L.; Lai, T.; Malyala, R. A newly formulated vinyl polysiloxane impression material with improved mechanical properties. J. Int. Soc. Prev. Community Dent. 2024, 14, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Thomaidis, S.; Kakaboura, A.; Mueller, W.D.; Zinelis, S. Mechanical properties of contemporary composite resins and their interrelations. Dent. Mater. 2013, 29, e132–e141. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.H. The relationship between composition and properties of posterior resin composites. J. Dent. Res. 1990, 69, 852–856. [Google Scholar] [CrossRef]
Material | Manufacturer | Color | Resin Composition |
---|---|---|---|
Exp. Model resin | Glidewell (Irvine, CA, USA) | Tan | Methacrylate monomers, urethane dimethacrylate, photoinitiator, UV stabilizer/blocker, BHT, pigments |
DentaModel | Asiga (Alexandria, Australia) | Light beige | 7,7,9(or 7,9,9)-trimethyl-4,13-dioxo3,14-dioxa-5,12- diazahexadecane-1,16-diyl bismethacrylate, Tetrahydrofurfuryl methacrylate, Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide |
NextDent 2 | 3D System (Rock Hill, SC, USA) | Peach | Methacrylic oligomers, phosphine oxides, pigments |
KeyModel Ultra | Keystone (Myerstown, PA, USA) | Ivory | Urethane oligomer, acrylate monomers, photoinitiator, titanium dioxide |
Rodin Model | Pac-dent (Brea, CA, USA) | Pale yellow | Methacrylic esters, photoinitiators |
Die and Model 2 | SprintRay (Los Angeles, CA, USA) | Tan | Methacrylate monomers, methacrylate oligomers, photoinitiators, pigments |
DMR III | LuxCreo (Belmont, CA, USA) | Orange | Not available |
LCD Grey | Roxel3D (Orange, CA, USA) | Grey | Methacrylate monomer(s), photoinitiators, pigments |
Grey resin | Formlabs (Somerville, MA, USA) | Grey | Urethane dimethacrylate, methacrylate monomer(s), photoinitiator(s), pigments |
FS | FM | MR | BH | TS | El | IS | |
---|---|---|---|---|---|---|---|
Flexural strength (FS) | 1.00 | ||||||
Flexural modulus (FM) | 0.9424 | 1.00 | |||||
Modulus of resilience (RM) | 0.9190 | 0.7396 | 1.00 | ||||
Barcol hardness (BH) | 0.9429 | 0.9145 | 0.8577 | 1.00 | |||
Tensile strength (TS) | 0.7925 | 0.5942 | 0.9205 | 0.7688 | 1.00 | ||
Elongation at break (El) | −0.6759 | −0.6890 | −0.5838 | −0.7432 | −0.5932 | 1.00 | |
Impact strength (IS) | −0.6485 | −0.5377 | −0.7022 | −0.6465 | −0.7233 | 0.4022 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, L.; Lai, T.; Malyala, R. Mechanical Properties and Degree of Conversion of a Novel 3D-Printing Model Resin. Polymers 2024, 16, 3562. https://doi.org/10.3390/polym16243562
Ling L, Lai T, Malyala R. Mechanical Properties and Degree of Conversion of a Novel 3D-Printing Model Resin. Polymers. 2024; 16(24):3562. https://doi.org/10.3390/polym16243562
Chicago/Turabian StyleLing, Long, Theresa Lai, and Raj Malyala. 2024. "Mechanical Properties and Degree of Conversion of a Novel 3D-Printing Model Resin" Polymers 16, no. 24: 3562. https://doi.org/10.3390/polym16243562
APA StyleLing, L., Lai, T., & Malyala, R. (2024). Mechanical Properties and Degree of Conversion of a Novel 3D-Printing Model Resin. Polymers, 16(24), 3562. https://doi.org/10.3390/polym16243562