Effects of the Hot-Drawing Process on the Pore Parameters, Gas Absorption and Mechanical Performances of Activated Carbon-Loaded Porous Poly(m-Phenylene Isophthalamide) Composite Fibres
<p>The hot-drawing and the hot-setting processes of AC-loaded PMIA porous as-spun fibre.</p> "> Figure 2
<p>(<b>a</b>) The schematic diagram and (<b>b</b>) the actual figure of the static adsorption device.</p> "> Figure 3
<p>(<b>a</b>) The schematic diagram and (<b>b</b>) the actual figure of the mechanical friction test.</p> "> Figure 4
<p>(<b>a</b>) Wet-spinning machine used to fabricate AC-filled PMIA porous composite fibre; (<b>b</b>) digital image of AC-filled PMIA porous composite fibre; (<b>c</b>) the evolution of the pore morphologies of AC-filled PMIA porous composite fibre before and after the hot-drawing process; and (<b>d</b>,<b>e</b>) the SEM images of the surface morphologies of AC-filled PMIA porous composite fibres before and after the hot-drawing process.</p> "> Figure 5
<p>(<b>a</b>) N<sub>2</sub> adsorption–desorption isotherm, (<b>b</b>) mesoporous pore size distribution curve, and (<b>c</b>,<b>d</b>) pore parameters of the PEG2K-5% porous fibres before and after drawing.</p> "> Figure 6
<p>Comparison of (<b>a</b>) mechanical properties and (<b>b</b>) benzene adsorption properties of PEG2K-5%-p and PEG2K-5%-p.</p> "> Figure 7
<p>Static adsorption curves of AC powder for different adsorbed substances at various temperatures (<b>a</b>): 15 °C; (<b>b</b>): 25 °C; and (<b>c</b>): 35 °C.</p> "> Figure 8
<p>Static adsorption curves of PEG2K-5%-p porous fibre and FFF02 adsorption layer for different adsorbed substances (benzene, methanol, and n-hexane) at various temperatures (<b>a</b>): 15 °C; (<b>b</b>): 25 °C; and (<b>c</b>): 35 °C.</p> "> Figure 9
<p>Desorption curves of the FFF02 adsorption layer and PEG2K-5%-p porous fibres at (<b>a</b>) 25 °C and (<b>b</b>) 100 °C, respectively.</p> "> Figure 10
<p>Re-adsorption capacity benzene by (<b>a</b>) FFF02 adsorption layer and (<b>b</b>) PEG2K-5%-p po-rous fibre at 25 °C, respectively.</p> "> Figure 11
<p>(<b>a</b>) The images of the FFF02 adsorption layer and the PEG2K-5%-p porous fibres; (<b>b</b>) the friction results of the FFF02 adsorption layer and the PEG2K-5%-p porous fibres.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of the AC-Loaded PMIA Porous As-Spun Fibres
2.3. Hot-Drawing Process of the AC-Loaded PMIA Porous As-Spun Fibres
2.4. Measurements and Characterization
3. Results and Discussion
3.1. Effects of Hot Drawing on the Pore Morphologies
3.2. The Mechanical Properties and Gas-Absorption Capacity
3.3. Static Adsorption Properties
3.4. Static Desorption Properties
3.5. Resorption Properties
3.6. AC-Loaded Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhuiyan, M.A.R.; Wang, L.; Shaid, A.; Shanks, R.A.; Ding, J. Advances and applications of chemical protective clothing system. J. Ind. Text. 2018, 49, 97–138. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, R.; Ding, L.; Zhang, C.; Zheng, X.; Nie, J. An individualized thermoregulatory model for calculating human body thermal response in chemical protective clothing. Int. J. Therm. Sci. 2022, 182, 107780. [Google Scholar] [CrossRef]
- Potter, A.W.; Hunt, A.P.; Cadarette, B.S.; Fogarty, A.; Srinivasan, S.; Santee, W.R.; Blanchard, L.A.; Looney, D.P. Heat Strain Decision Aid (HSDA) accurately predicts individual-based core body temperature rise while wearing chemical protective clothing. Comput. Biol. Med. 2019, 107, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Obendorf, S.K. Barrier effectiveness and thermal comfort of protective clothing materials. J. Text. Inst. 2007, 98, 87–98. [Google Scholar] [CrossRef]
- Du, H.; Li, Z.; Li, H.; Zhao, Y.; Li, X.; Liu, J.; Ji, Z. Preparation of Polymer Composite Selective Permeable Membrane with Graphene Oxide and Application for Chemical Protective Clothing. Processes 2022, 10, 471. [Google Scholar] [CrossRef]
- Ganesan, K.; Gupta, A.K.; Acharya, J.; Thakare, V.B.; Yadav, S.S.; Chaturvedi, A.; Tomar, L.N.S.; Sharma, S.P.; Verma, V.; Tripathi, N.K.; et al. Chemical Protection Studies of Activated Carbon Spheres based Permeable Protective Clothing Against Sulfur Mustard, a Chemical Warfare Agent. Def. Sci. J. 2019, 69, 577–584. [Google Scholar] [CrossRef]
- Rafat, M.T.; Shuchi, T.Z.; Evan, F.R.; Rahman, M.A. Mechanical and absorption properties of carbon-basalt and glass fibre reinforced composites: A comprehensive study with implications for advanced manufacturing technology. Results Mater. 2024, 23, 100615. [Google Scholar] [CrossRef]
- Shen, C.; Ding, L.; Wang, B.; Xu, H.; Zhong, Y.; Zhang, L.; Mao, Z.; Zheng, X.; Sui, X. Superamphiphobic and chemical repellent aramid fabrics for applications in protective clothing. Prog. Org. Coat. 2018, 124, 49–54. [Google Scholar] [CrossRef]
- Song, N.; Zhang, X.; Si, Y.; Yu, J.; Ding, B. Superelastic, Breathable, and High-Barrier Nanofibrous Membranes with Biomimetic ECM Structure for Toxic Chemical Protection. ACS Appl. Mater. Interfaces 2022, 14, 8499–8507. [Google Scholar] [CrossRef]
- Chung, D.D.L. A review of multifunctional polymer-matrix structural composites. Compos. Part B-Eng. 2019, 160, 644–660. [Google Scholar] [CrossRef]
- Thakare, V.B.; Tripathi, N.K.; Singh, V.V.; Sathe, M.; Singh, B. Activated Carbon Fabric: An Adsorbent Material for Chemical Protective Clothing. Defence Sci. J. 2017, 68, 83–90. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Ihara, H.; Guan, M.; Qiu, H. Preparation of porous carbon nanomaterials and their application in sample preparation: A review. TrAC Trends Anal. Chem. 2021, 143, 116421. [Google Scholar] [CrossRef]
- Wang, H.; Kou, X.; Gao, R.; Huang, S.; Chen, G.; Ouyang, G. Enzyme-immobilized porous crystals for environmental applications. Environ. Sci. Technol. 2024, 58, 11869–11886. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Jankowska, K.; Sigurdardóttir, S.B.; Zhang, W.A.; Kaiser, A.; Luo, J.; Pinelo, M. Design of a Novel Multi-Layer Enzyme Membrane Reactor for Low-Fouling, Tailored Production of Oligodextran. Chem. Eng. Sci. 2023, 283, 119367. [Google Scholar] [CrossRef]
- Wang, A.; Ma, Y.; Zhao, D. Pore engineering of Porous Materials: Effects and Applications. ACS Nano 2024, 18, 22829–22854. [Google Scholar] [CrossRef]
- Shobha, D.; Chari, M.A.; Mano, A.; Selvan, S.T.; Mukkanti, K.; Vinu, A. Synthesis of 3,4-dihydropyrimidin-2-ones (DHPMs) using mesoporous aluminosilicate (AlKIT-5) catalyst with cage type pore structure. Tetrahedron 2009, 65, 10608–10611. [Google Scholar] [CrossRef]
- Bhagavathula, K.B.; Meredith, C.S.; Ouellet, S.; Romanyk, D.L.; Hogan, J.D. Density, strain rate and strain effects on mechanical property evolution in polymeric foams. Int. J. Impact Eng. 2022, 161, 104100. [Google Scholar] [CrossRef]
- Jung, S.; Kim, J. Advanced Design of Fibre-Based Particulate Filters: Materials, Morphology, and Construction of Fibrous Assembly. Polymers 2020, 12, 1714. [Google Scholar] [CrossRef]
- Lewis, J.; Al-sayaghi, M.A.Q.; Buelke, C.; Alshami, A. Activated carbon in mixed-matrix membranes. Sep. Purif. Rev. 2019, 50, 1–31. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Q.; Wang, L.; Wang, X.; Long, S.; Yang, J. Porous electrospun ultrafine fibres via a liquid–liquid phase separation method. Colloid Polym. Sci. 2012, 291, 1293–1296. [Google Scholar] [CrossRef]
- Katsogiannis, K.A.G.; Vladisavljević, G.T.; Georgiadou, S. Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur. Polym. J. 2015, 69, 284–295. [Google Scholar] [CrossRef]
- Zhong, T.; Li, J.; Yan, X.; Jiang, C.; Chen, Y.; Xu, Q.; Su, Z.; Liu, P. Preparation and structural control of polyphenylene sulfide porous fibres via thermally induced phase separation method. J. Appl. Polym. Sci. 2021, 138, 50859. [Google Scholar] [CrossRef]
- Rohani Shirvan, A.; Nouri, A.; Sutti, A. A perspective on the wet spinning process and its advancements in biomedical sciences. Eur. Polym. J. 2022, 181, 111681. [Google Scholar] [CrossRef]
- Huang, C.; Thomas, N.L. Fabrication of porous fibres via electrospinning: Strategies and applications. Polym. Rev. 2019, 60, 595–647. [Google Scholar] [CrossRef]
- Lu, Q.; Li, N. Preparation of hydrophilic polyvinylidene fluoride/polyvinyl alcohol ultrafiltration membrane via polymer/non-solvent co-induced phase separation method towards enhance anti-fouling performance. J. Environ. Chem. Eng. 2021, 9, 106431. [Google Scholar] [CrossRef]
- Salim, N.V.; Edrington, S.E.; Morris, E.A.; Weisenberger, M.C. Analyses of closed porosity of carbon fibre precursors using a robust thermoporosimetric method. Polym. Test. 2018, 67, 151–158. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, K.; Chen, X.; Dou, S.; Zhao, J.; Li, Y. Influence of Coagulation Bath Temperature on the Structure and Dielectric Properties of Porous Polyimide Films in Different Solvent Systems. ACS Omega 2020, 5, 29889–29895. [Google Scholar] [CrossRef]
- Li, B.; Zhou, W.; Zhang, S.; Wang, K.; Xu, Q.; Xie, Q.; Lian, T.; Qin, X.; Jiang, M.; Ye, G.; et al. Design and Preparation of Porous Meta-Aramid Fibres Filled with Highly Exposed Activated Carbon for Chemical Hazard Protection Fabrics. ACS Appl. Polym. Mater. 2023, 5, 2716–2726. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, X.; Wang, Y.; Zhang, L.; Zhao, Z.; Li, J. Fabrication and Performance of Novel Poly(piperazine-amide) Composite Nanofiltration Membranes Based on Various Poly(m-phenylene isophthalamide) Substrates. Ind. Eng. Chem. Res. 2021, 60, 18106–18120. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, Q.; Li, Y.; Yuan, B.; Duan, C.; Yan, S. Fabrication and application of TiO2-modified PMIA separators with strong mechanical properties in lithium-ion batteries. Ionics 2021, 28, 117–125. [Google Scholar] [CrossRef]
- Nagashima, R.; Matsuyama, H. Immobilization and Characterization of Inorganic Adsorbents in Porous Polymeric Materials with Effective Cavity. Solvent Extr. Res. Dev. 2010, 17, 43–51. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, C.; Wang, C.; Liu, H. Study on the structural design and performance of novel braid-reinforced and thermostable poly(m-phenylene isophthalamide) hollow fibre membranes. RSC Adv. 2017, 7, 20327–20335. [Google Scholar] [CrossRef]
- Miranda, C.S.; Silva, A.F.G.; Pereira-Lima, S.; Costa, S.P.G.; Homem, N.C.; Felgueiras, H.P. Tunable Spun Fibre Constructs in Biomedicine: Influence of Processing Parameters in the Fibres’ Architecture. Pharmaceutics 2022, 14, 164. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, N.; Li, L.; Wang, Q. Structure evolution of melt-spun poly(vinyl alcohol) fibres during hot-drawing. J. Appl. Polym. Sci. 2011, 124, 421–428. [Google Scholar] [CrossRef]
- Siripitayananon, J.; Molloy, R.; Bunkird, S.; Kleawkla, A.; Panjakha, R.; Chooprayoon, P. Effects of Hot-drawing and Annealing on the Morphology and Mechanical Properties of Biodegradable Polyester Monofilament Fibres. Int. Polym. Proc. 2008, 23, 161–167. [Google Scholar] [CrossRef]
- Zhao, X.; Ye, L. Structure and properties of highly oriented polyoxymethylene produced by hot stretching. Mater. Sci. Eng. A 2011, 528, 4585–4591. [Google Scholar] [CrossRef]
- Chawla, S.; Cai, J.; Naraghi, M. Mechanical tests on individual carbon nanofibres reveals the strong effect of graphitic alignment achieved via precursor hot-drawing. Carbon 2017, 117, 208–219. [Google Scholar] [CrossRef]
- Han, S.W.; Woo, S.M.; Kim, D.J.; Park, O.O.; Nam, S.Y. Effect of annealing on the morphology of porous polypropylene hollow fibre membranes. Macromol. Res. 2014, 22, 618–623. [Google Scholar] [CrossRef]
- Lin, C.-E.; Wang, J.; Zhou, M.-Y.; Zhu, B.-K.; Zhu, L.-P.; Gao, C.-J. Poly(m-phenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes. J. Membr. Sci. 2016, 518, 72–78. [Google Scholar] [CrossRef]
- Yu, J.; Tian, X.; Xin, B.; Xu, J. Preparation and Characterization of PMIA Nanofibre Filter Membrane for Air Filter. Fibre Polym. 2021, 22, 2413–2423. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Xiao, C.; Wang, C.; Chen, D.; Sun, K. Robust Preparation and Multiple Pore Structure Design of Poly (Tetrafluoroethylene-Co-Hexafluoropropylene) Hollow Fibre Membrane by Melt Spinning and Post-Treatment. J. Taiwan Inst. Chem. Eng. 2019, 97, 441–449. [Google Scholar] [CrossRef]
- Dou, H.; Bai, J.; Lu, H.; Zhang, T.; Kong, L.; Bai, Z.; Li, W. Effect of TiO2 on Preparation Condition, Mechanical Properties and Alkali Resistance of Continuous Basalt Fibres. Constr. Build. Mater. 2023, 136, 104861. [Google Scholar] [CrossRef]
- Li, N.; Xiao, C.; Mei, S.; Zhang, S. The Multi-Pore-Structure of Polymer–Silicon Hollow Fibre Membranes Fabricated via Thermally Induced Phase Separation Combining with Stretching. Desalination 2011, 274, 284–291. [Google Scholar] [CrossRef]
- Attia, N.F.; Jung, M.; Park, J.; Jang, H.; Lee, K.; Oh, H. Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation. Chem. Eng. Sci. 2020, 379, 122367. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Zhang, X.; Wang, X. Antibacterial and absorbent acrylonitrile-vinylidene chloride copolymer fibres. J. Text. Inst. 2010, 101, 128–134. [Google Scholar] [CrossRef]
Adsorbates | Kinetic Diameter (nm) | Polarity | Boiling Point (°C) | Saturated Vapour Pressure at 20 °C (kPa) |
---|---|---|---|---|
Methanol | 0.36 | 6.00 | 64.7 | 12.97 |
Benzene | 0.58 | 3.30 | 80.0 | 10.03 |
n-Hexane | 0.43 | 0.06 | 69.0 | 16.16 |
Samples | Temperatures | Total Static Adsorption Amount (mg/g) | ||
---|---|---|---|---|
Methanol | Benzene | n-Hexane | ||
PEG2K-5%-p | 15 °C | 57.40 ± 3.66 | 107.35 ± 1.95 | 62.18 ± 0.96 |
25 °C | 47.12 ± 1.60 | 98.53 ± 1.58 | 60.13 ± 1.60 | |
35 °C | 35.83 ± 3.60 | 84.13 ± 0.73 | 43.79 ± 1.28 | |
FFF02 | 15 °C | 61.35 ± 0.98 | 115.36 ± 0.40 | 70.50 ± 1.70 |
25 °C | 60.64 ± 1.04 | 113.14 ± 0.14 | 64.80 ± 1.81 | |
35 °C | 42.74 ± 2.91 | 85.85 ± 3.77 | 44.85 ± 3.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, B.; Xu, Q.; Meng, L.; Wu, D.; Liu, P.; Salaün, F.; Zhang, S. Effects of the Hot-Drawing Process on the Pore Parameters, Gas Absorption and Mechanical Performances of Activated Carbon-Loaded Porous Poly(m-Phenylene Isophthalamide) Composite Fibres. Polymers 2024, 16, 3452. https://doi.org/10.3390/polym16243452
Li X, Li B, Xu Q, Meng L, Wu D, Liu P, Salaün F, Zhang S. Effects of the Hot-Drawing Process on the Pore Parameters, Gas Absorption and Mechanical Performances of Activated Carbon-Loaded Porous Poly(m-Phenylene Isophthalamide) Composite Fibres. Polymers. 2024; 16(24):3452. https://doi.org/10.3390/polym16243452
Chicago/Turabian StyleLi, Xiaosong, Bo Li, Qibin Xu, Lingcheng Meng, Deyang Wu, Pengqing Liu, Fabien Salaün, and Shengchang Zhang. 2024. "Effects of the Hot-Drawing Process on the Pore Parameters, Gas Absorption and Mechanical Performances of Activated Carbon-Loaded Porous Poly(m-Phenylene Isophthalamide) Composite Fibres" Polymers 16, no. 24: 3452. https://doi.org/10.3390/polym16243452
APA StyleLi, X., Li, B., Xu, Q., Meng, L., Wu, D., Liu, P., Salaün, F., & Zhang, S. (2024). Effects of the Hot-Drawing Process on the Pore Parameters, Gas Absorption and Mechanical Performances of Activated Carbon-Loaded Porous Poly(m-Phenylene Isophthalamide) Composite Fibres. Polymers, 16(24), 3452. https://doi.org/10.3390/polym16243452