Microcrystalline Cellulose—A Green Alternative to Conventional Soil Stabilizers
<p>Gradation curve of kaolin.</p> "> Figure 2
<p>SEM micrograph of kaolin.</p> "> Figure 3
<p>Molecular structure of MCC [<a href="#B20-polymers-16-02043" class="html-bibr">20</a>].</p> "> Figure 4
<p>Effect of MCC on the plastic behavior of kaolin.</p> "> Figure 5
<p>(<b>a</b>) Effect of MCC on compaction curves. (<b>b</b>) Effect of MCC on MDUW and OMC.</p> "> Figure 6
<p>Stress–strain response of MCC-treated soil. (<b>a</b>) 1 day, (<b>b</b>) 7 day, (<b>c</b>) 28 day, (<b>d</b>) 56 day and (<b>e</b>) 90 day.</p> "> Figure 7
<p>Effect of aging on the 2% MCC-treated kaolin.</p> "> Figure 8
<p>Effect of MCC dosage and aging on the UCS of treated kaolin.</p> "> Figure 9
<p>FTIR spectrum for koalin and MCC-treated kaolin.</p> "> Figure 10
<p>XRD diffractogram of (<b>a</b>) kaolin and (<b>b</b>) MCC-treated aolin.</p> "> Figure 11
<p>SEM micrographs. (<b>a</b>) kaolin and (<b>b</b>) MCC-treated kaolin.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Microcrystalline Cellulose (MCC)
3. Experimental Investigation
4. Results and Discussion
4.1. Plasticity of MCC-Treated Soil
4.2. Compaction Behavior of MCC-Treated Soil
4.3. Deformation Behavior and Strength of MCC-Treated Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholson, P.G. Soil Improvement and Ground Modification Methods; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Chang, I.; Lee, M.; Cho, G.-C. Global CO2 Emission-Related Geotechnical Engineering Hazards and the Mission for Sustainable Geotechnical Engineering. Energies 2019, 12, 2567. [Google Scholar] [CrossRef]
- Fatehi, H.; Ong, D.E.; Yu, J.; Chang, I. Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosciences 2021, 11, 291. [Google Scholar] [CrossRef]
- Rahgozar, M.A.; Saberian, M.; Li, J. Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transp. Geotech. 2018, 14, 52–60. [Google Scholar] [CrossRef]
- Girod, B.; van Vuuren, D.P.; de Vries, B. Influence of travel behavior on global CO2 emissions. Transp. Res. Part A Policy Pract. 2013, 50, 183–197. [Google Scholar] [CrossRef]
- La Rosa, A. Life cycle assessment of biopolymers. In Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 57–78. [Google Scholar]
- Khatami, H.; O’Kelly, B.C. Prevention of bleeding of particulate grouts using biopolymers. Constr. Build. Mater. 2018, 192, 202–209. [Google Scholar] [CrossRef]
- Chang, I.; Lee, M.; Tran, A.T.P.; Lee, S.; Kwon, Y.-M.; Im, J.; Cho, G.-C. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 2020, 24, 100385. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Prasidhi, A.K.; Cho, G.-C. Effects of Xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 2015, 74, 65–72. [Google Scholar] [CrossRef]
- Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Abd Majid, M.Z.; Tahir, M.M.; Mohamad, E.T. Improvement of problematic soils with biopolymer—An environmentally friendly soil stabilizer. J. Mater. Civ. Eng. 2017, 29, 04016204. [Google Scholar] [CrossRef]
- Chang, I.; Prasidhi, A.K.; Im, J.; Cho, G.-C. Soil strengthening using thermo-gelation biopolymers. Constr. Build. Mater. 2015, 77, 430–438. [Google Scholar] [CrossRef]
- Fatehi, H.; Ong, D.E.; Yu, J.; Chang, I. Sustainable soil treatment: Investigating the efficacy of carrageenan biopolymer on the geotechnical properties of soil. Constr. Build. Mater. 2024, 411, 134627. [Google Scholar] [CrossRef]
- Bakhshizadeh, A.; Khayat, N.; Horpibulsuk, S. Surface stabilization of clay using sodium alginate. Case Stud. Constr. Mater. 2022, 16, e01006. [Google Scholar] [CrossRef]
- Kumar, S.A.; Sujatha, E.R. Performance evaluation of β- glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement. Geomech. Eng. 2020, 21, 413–422. [Google Scholar]
- Ojuri, O.O.; Ramdas, V.; Aderibigbe, E.A.; Williams, C.G.; Ramchuran, S.; Al-Nageim, H. Improving strength and hydraulic characteristics of regional clayey soils using biopolymers. Case Stud. Constr. Mater. 2022, 17, e01319. [Google Scholar] [CrossRef]
- Adamczuk, A.; Jozefaciuk, G. Impact of Chitosan on the Mechanical Stability of Soils. Molecules 2022, 27, 2273. [Google Scholar] [CrossRef] [PubMed]
- Iftime, M.M.; Ailieseia, G.L.; Ungureanub, E.; Marina, L. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention. Carbohydr. Polym. 2019, 223, 115040. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chang, P.R.; Yu, J. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr. Polym. 2008, 72, 369–375. [Google Scholar] [CrossRef]
- Trache, D.; Hussin, M.H.; Chuin, C.T.; Sabar, S.; Fazita, M.N.; Taiwo, O.F.; Hassan, T.M.; Haafiz, M.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Kasperek, R.; Polski, A.; Sobótka-Polska, K.; Poleszak, E. Influence of polymer type on the physical properties and the release study of papaverine hydrochloride from tablets. Polim. Med. 2014, 44, 5–12. [Google Scholar]
- ASTM (2017b) D 4318; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D698-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-Lbf/ft3 (600 kN-M/m3)). ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM D2166/D2166M-16; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2016.
- Kannan, G.; O’Kelly, B.C.; Sujatha, E.R. Effect of chitin, chitosan and NaCMC biopolymers on the consistency limits of organic silt. Int. J. Environ. Sci. Technol. 2024, 21, 2121–2128. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Kannan, G. An investigation on the potential of cellulose for soil stabilization. Sustainability 2022, 14, 16277. [Google Scholar] [CrossRef]
- Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter. 2013, 9, 952–959. [Google Scholar] [CrossRef]
- Zhong, F.; Nsor-Atindana, J. Microcrystalline cellulose and nanocrystalline cellulose. In Handbook of Hydrocolloids; Woodhead Publishing: Sawston, UK, 2021; pp. 509–536. [Google Scholar]
- Bhattacharja, S.; Bhatty, J. Comparative performance of portland cement and lime stabilization of moderate to high plasticity clay soils. Portl. Cem. Assoc. 2003, 2066, 60–67. [Google Scholar]
- Babatunde, Q.O.; Byun, Y.H. Soil stabilization using zein biopolymer. Sustainability 2023, 15, 2075. [Google Scholar] [CrossRef]
- Dewi, R.; Agusnar, H.; Alfian, Z.; Tamrin. Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1116, p. 042010. [Google Scholar]
- Awinash, C.; Prafulla, S. Molecular docking study and antibacterial activity of novel chalcone derivatives. Pharma Innov. 2020, 9, 39–42. [Google Scholar]
Geotechnical Properties | Value |
---|---|
Liquid limit (%) | 52 |
Plasticity Index (%) | 24 |
Optimum moisture content (OMC, %) | 30 |
Maximum dry unit weight (MDUW, kN/m3) | 15.5 |
Unconfined compressive strength (UCS, kN/m2) | 26 |
Co-efficient of permeability (k, m/s) | 2 × 10−9 |
Soil Properties | Soil (CH) | 6% Cement Stabilization | 6% Lime Stabilization | 2% MCC Stabilization | |
---|---|---|---|---|---|
From Literature [28] | Current Study | From Literature [28] | From Literature [28] | Current Study | |
OMC (%) | 17 | 30 | 18 | 20 | 30 |
MDU (kN/m3) | 15.40 | 15.5 | 14.6 | 14 | 14.53 |
UCS at 1 d (kN/m2) | 413 | 26 | 1654 | 517 | 70 |
Deformation Modulus (kPa) | |||||
---|---|---|---|---|---|
Curing Period | Soil | 0.5% MCC | 1.0% MCC | 1.5% MCC | 2.0% MCC |
1 | 314 | 413 | 438 | 542 | 760 |
7 | 471 | 576 | 592 | 637 | 808 |
28 | 599 | 644 | 662 | 695 | 1169 |
56 | 732 | 1563 | 3694 | 4915 | 5130 |
90 | 1056 | 3420 | 3952 | 5122 | 5609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arun, L.; Sujatha, E.R.; Baldovino, J.A.; Nuñez de la Rosa, Y.E. Microcrystalline Cellulose—A Green Alternative to Conventional Soil Stabilizers. Polymers 2024, 16, 2043. https://doi.org/10.3390/polym16142043
Arun L, Sujatha ER, Baldovino JA, Nuñez de la Rosa YE. Microcrystalline Cellulose—A Green Alternative to Conventional Soil Stabilizers. Polymers. 2024; 16(14):2043. https://doi.org/10.3390/polym16142043
Chicago/Turabian StyleArun, Lazar, Evangelin Ramani Sujatha, Jair Arrieta Baldovino, and Yamid E. Nuñez de la Rosa. 2024. "Microcrystalline Cellulose—A Green Alternative to Conventional Soil Stabilizers" Polymers 16, no. 14: 2043. https://doi.org/10.3390/polym16142043
APA StyleArun, L., Sujatha, E. R., Baldovino, J. A., & Nuñez de la Rosa, Y. E. (2024). Microcrystalline Cellulose—A Green Alternative to Conventional Soil Stabilizers. Polymers, 16(14), 2043. https://doi.org/10.3390/polym16142043