Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene
<p>FTIR spectrum of prepared reduced graphene oxide.</p> "> Figure 2
<p>(<b>a</b>) Nonisothermal CL spectra recorded on pristine SIS samples subjected to a thermal ageing treatment at 80 °C at various heating times. (1) 0 h; (2) 5 h; (3) 10 h; (4) 15 h; (5) 20 h. Measurement heating rate: 10 °C·min<sup>−1</sup>; (<b>b</b>) histogram of CL intensity determined at two main temperatures (the color code is identical for the both figures).</p> "> Figure 3
<p>(<b>a</b>) Nonisothermal CL spectra recorded on SIS/graphene (1 wt%) samples after their thermal ageing treatment at 80 °C at various heating times. (1) 0 h; (2) 5 h; (3) 10 h; (4) 15 h; (5) 20 h; (<b>b</b>) nonisothermal CL spectra recorded on SIS (6) and SIS/graphene (1 wt%)/rosemary (0.5 wt%) (7) samples without pre-ageing. The heating rate of all measurement: 10 °C min<sup>−1</sup>.</p> "> Figure 4
<p>The nonisothermal CL curves recorded on the SIS samples improved by graphene (1 wt%)/rosemary (0.5 wt%) couple after their thermal ageing at 80 °C at various heating times. Heating rate: 10 °C min<sup>−1</sup>.</p> "> Figure 5
<p>Isothermal CL spectra for neat SIS samples after their thermal treatment at 80 °C for various heating times. Heating temperature: 80 °C. Testing temperature: 130 °C. The mentioned figures denote the time of thermal treatment.</p> "> Figure 6
<p>Isothermal CL spectra recorded on the samples of SIS containing different graphene loadings; measurement temperature: 130 °C.</p> "> Figure 7
<p>The isothermal CL spectra recorded on SIS samples modified by various graphene loadings. (<b>a</b>) free of additive; (<b>b</b>) graphene 1 wt%; (<b>c</b>) graphene 2 wt%; (<b>d</b>) graphene 3 wt%; Testing temperatures: (1) 130 °C; (2) 140 °C; (3) 150 °C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Reduced Graphene Oxide
2.2.1. Preparation of Graphene Oxide
2.2.2. Preparation of Reduced Graphene Oxide
2.2.3. Structural Qualification of Reduced Graphene Oxide
2.3. Sample Processing
2.3.1. Preparation
2.3.2. Thermal Treatment
2.4. Measurements
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, T.; Lim, Y.; Cho, J.; Lawler, R.; Min, B.J.; Goddard, W.A., III; Jang, S.S.; Kim, J.Y. Antioxidant technology for durability enhancement in polymer electrolyte membranes for fuel cell applications. Mater. Today 2022, 58, 135–163. [Google Scholar] [CrossRef]
- Shishatskiy, S.; Makrushin, V.; Levin, I.; Merten, P.; Matson, S.; Khotimskiy, V. Effect of immobilization of phenolic antioxidant on thermo-oxidative stability and aging of poly(1-trimethylsilyl-1-propyne) in view of membrane application. Polymers 2022, 14, 462. [Google Scholar] [CrossRef] [PubMed]
- Mosibo, O.K.; Scampicchio, M.; Ferrentino, G. Calorimetric adaptation of the inhibited autoxidation method to determine the activity of individual antioxidants and natural extracts. J. Therm. Anal. Calorim. 2022, 147, 12829–12836. [Google Scholar] [CrossRef]
- Masłowski, M.; Aleksieiev, A.; Miedzianowska, J.; Efenberger-Szmechtyk, M.; Strzelec, K. Antioxidant and anti–aging activity of freeze–dried alcohol–water extracts from common nettle (Urtica dioica L.) and peppermint (Mentha piperita L.) in elastomer vulcanizates. Polymers 2022, 14, 1460. [Google Scholar] [CrossRef] [PubMed]
- Cerruti, P.; Malinconico, M.; Rychly, J.; Matisova-Rychla, L.; Carfagna, C. Effect of natural antioxidants on the stability of polypropylene films. Polym. Degrad. Stab. 2009, 94, 2095. [Google Scholar] [CrossRef]
- Zaharescu, T. Stabilization effects of doped inorganic filler on EPDM for space and terrestrial applications. Mater. Chem. Phys. 2019, 234, 102. [Google Scholar] [CrossRef]
- Ata, S.; Banerjee, S.L.; Singha, N.K. Polymer nano-hybrid material based on graphene oxide/POSS via surface initiated atom transfer radical polymerization (SI-ATRP): Its application in specialty hydrogel system. Polymer 2016, 103, 46. [Google Scholar] [CrossRef]
- Prządka, D.; Andrzejewska, E.; Marcinkowska, A. Multimethacryloxy-POSS as a crosslinker for hydrogel materials. Eur. Polym. J. 2015, 72, 34. [Google Scholar] [CrossRef]
- Zaharescu, T.; Ilieș, D.-C.; Rosu, T. Thermal and spectroscopic analysis of stabilization effect of copper complexes in EPDM. J. Therm. Anal. Calorim. 2016, 123, 231. [Google Scholar] [CrossRef]
- Kimura, A.; Yoshida, F.; Ueno, M.; Taguchi, M. Application of radiation crosslinking technique to development of gelatin scaffold for tissue engineering. Radiat. Phys. Chem. 2021, 180, 109287. [Google Scholar] [CrossRef]
- Alcântara, M.; Lincopan, N.; Santos, P.; Ramirez, P.; Brant, A.; Riella, H.; Lugão, A. Simultaneous hydrogel crosslinking and silver nanoparticle formation by using ionizing radiation to obtain antimicrobial hydrogels. Radiat. Phys. Chem. 2020, 169, 108777. [Google Scholar] [CrossRef]
- Fazolin, G.N.; Varca, G.H.C.; de Freitas, L.F.; Rokita, B.; Kadlubowski, S.; Lugão, A.B. Simultaneous intramolecular cross-linking and sterilization of papain nanoparticles by gamma radiation. Radiat. Phys. Chem. 2020, 171, 108697. [Google Scholar] [CrossRef]
- Karlsson, M.E.; Xu, X.; Hillborg, H.; Ström, V.; Hedenqvist, M.S.; Nilsson, F.; Olsson, R.T. Lamellae-controlled electrical properties of polyethylene—Morphology, oxidation and effects of antioxidant on the DC conductivity. RSC Adv. 2020, 10, 4698. [Google Scholar] [CrossRef] [PubMed]
- Maraveas, C.; Bayer, I.; Bartzanas, T. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers 2021, 13, 2465. [Google Scholar] [CrossRef]
- Allen, N.S.; Edge, M.; Hussain, S. Perspectives on yellowing in the degradation of polymer materials: Inter-relationship of structure, mechanisms and modes of stabilisation. Polym. Degrad. Stab. 2022, 201, 109977. [Google Scholar] [CrossRef]
- Juan-Polo, A.; Maestre Pérez, S.E.; Monedero Prieto, M.; Sánchez Reig, C.; Tone, A.M.; Solana, N.H.; Sanahuja, A.B. Oxygen scavenger and antioxidant LDPE/EVOH/PET-based films containing β-carotene intended for fried peanuts (Arachis hypogaea L.) packaging: Pilot scale processing and validation studies. Polymers 2022, 14, 3550. [Google Scholar] [CrossRef]
- Homthawornchoo, W.; Han, J.; Kaewprachu, P.; Romruen, O.; Rawdkuen, S. Green Tea Extract Enrichment: Mechanical and Physicochemical Properties Improvement of Rice Starch-Pectin Composite Film. Polymers 2022, 14, 2696. [Google Scholar] [CrossRef]
- Das, B.; Kundu, R.; Chakravarty, S. Preparation and characterization of graphene oxide from coal. Mater. Chem. Phys. 2022, 290, 126597. [Google Scholar] [CrossRef]
- Yang, G.; Lu, M.; Cheng, Y.; Liu, H.; Shen, J.; Li, L.; Wang, W.; Chen, Y.; Li, X. Preparation of super thin and defect rich graphene shell and its application for high performance supercapacitor electrode and novel ORR catalyst support. Carbon 2023, 202, 368–377. [Google Scholar] [CrossRef]
- Han, F.; Mao, J.; Liu, S. Preparation of reduced graphene oxide-carbon nanotubes membranes for conductive heating membrane distillation treatment of humic acid. Sep. Purif. Technol. 2022, 302, 122181. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, S.; Liu, Z.; Yan, J.; Liu, H. Preparation and performance evaluation of graphene/hydroxypropyl methyl-cellulose composite aerogel for high viscosity oil adsorption. J. Environ. Chem. Eng. 2022, 10, 108312. [Google Scholar] [CrossRef]
- Li, S.; Zhou, W.; Hu, Y.; Huang, C.; Gao, Q.; Chen, Y. Preparation of graphene-starch composite film and its application in sensor materials. Int. J. Biol. Macromol. 2022, 207, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, Y.; Wang, X.; An, H.; Liang, S.; Wang, R.; Li, N.; Sun, Z.; Xiao, J.; Zhao, X. Preparation and properties of a self-crosslinking styrene acrylic emulsion using amino-functional graphene oxide as a crosslinking agent and anti-corrosion filler. J. Mater. Res. Technol. 2022, 16, 1814–1823. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Z.; Owens, A.C.E.; Kulaots, I.; Chen, Y.; Kane, A.B.; Hurt, R.H. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 2014, 6, 11744–11755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayouri, M.I.; Estaji, S.; Mousavi, S.R.; Khasraghi, S.S.; Jahanmardi, R.; Nouranian, S.; Arjmand, M.; Khonakdar, H.A. Degradation of polymer nanocomposites filled with graphene oxide and reduced graphene oxide nanoparticles: A review of current status. Polym. Degrad. Stab. 2022, 206, 110179. [Google Scholar] [CrossRef]
- Li, S.; Kong, L.; Wang, H.; Xu, H.; Li, J.; Shi, H. Thermal performance and shape-stabilization of comb-like polymeric phase change materials enhanced by octadecylamine-functionalized graphene oxide. Energy Convers. Manag. 2018, 168, 119–127. [Google Scholar] [CrossRef]
- Nagarajan, S.; Nagarajan, R.; Kumar, J.; Salemme, A.; Togna, A.R.; Saso, L.; Bruno, F. Antioxidant Activity of Synthetic Polymers of Phenolic Compounds. Polymers 2020, 12, 1646. [Google Scholar] [CrossRef]
- Mun, S.C.; Park, J.J.; Park, Y.T.; Kim, D.Y.; Lee, S.W.; Cobos, M.; Ye, S.J.; Macosko, C.W.; Park, O.O. High electrical conductivity and oxygen barrier property of polymer stabilized graphene thin film. Carbon 2017, 125, 492–499. [Google Scholar] [CrossRef]
- Lobo, C.A.C.; Fascio, M.L.; D’Accorso, N.B. Ring opening in epoxidized SIS block copolymer with thiolated nucleophiles and their antioxidant activity. React. Funct. Polym. 2022, 181, 105455. [Google Scholar] [CrossRef]
- Chen, S.; Gao, M.; Fang, X.; Ma, Z. Modifications and multiple roles of graphene film in SIS structural solar cells. Sol. Energy 2015, 122, 658–666. [Google Scholar] [CrossRef]
- Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M.; Mardani, H. Polymer grafting on graphene layers by controlled radical polymerization. Adv. Colloid Interface Sci. 2019, 273, 102021. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Malamal Neelanchery, M.; Ushus, D. Graphene/poly(styrene-b-isoprene-b-styrene) nanocomposite optical actuators. J. Appl. Polym. Sci. 2013, 130, 3902–3908. [Google Scholar] [CrossRef]
- Gijsman, P. Polymer stabilization. In Applied Plastics Engineering Handbook, 1st ed.; Kutz, M., Ed.; Elsevier: New York, NY, USA, 2017; Chapter 18; pp. 395–421. [Google Scholar]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Amiryaghoubi, N.; Fathi, M.; Barar, J.; Omidian, H.; Omidi, Y. Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. J. Drug Deliv. Sci. Technol. 2022, 72, 103360. [Google Scholar] [CrossRef]
- Wu, N.; Che, S.; Li, H.W.; Wang, C.N.; Tian, X.J.; Li, Y.F. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: Construction and applications. New Carbon Mater. 2021, 36, 911–929. [Google Scholar] [CrossRef]
- Fatima, N.; Qazi, U.Y.; Mansha, A.; Bhatti, I.A.; Javaid, R.; Abbas, Q.; Nadeem, N.; Rehan, Z.A.; Noreen, S.; Zahid, M. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. J. Ind. Eng. Chem. 2021, 100, 40–58. [Google Scholar] [CrossRef]
- Florêncio, L.; Luzardo, J.; Pojucan, M.; Cunha, V.; Silva, A.; Valaski, R.; Araujo, J. Prototyping and evaluation of graphene-based piezoresistive sensors. Electron. Mater. 2022, 3, 218–226. [Google Scholar] [CrossRef]
- Jipa, S.; Zaharescu, T.; Santos, C.; Gigante, B.; Setnescu, R.; Setnescu, T.; Dumitru, M.; Kappel, W.; Gorghiu, L.M.; Mihalcea, I.; et al. The antioxidant effect of some carbon materials in polypropylene. Mater. Plast. 2002, 39, 67–72. [Google Scholar]
- Nebol’Sin, V.; Galstyan, V.; Silina, Y. Graphene oxide and its chemical nature: Multi-stage interactions between the oxygen and graphene. Surf. Interfaces 2020, 21, 100763. [Google Scholar] [CrossRef]
- Huang, S.; Panes-Ruiz, L.A.; Croy, A.; Löffler, M.; Khavrus, V.; Bezugly, V.; Cuniberti, G. Highly sensitive room temperature ammonia gas sensor using pristine graphene: The role of biocompatible stabilizer. Carbon 2021, 173, 262–270. [Google Scholar] [CrossRef]
- Istrate, O.M.; Paton, K.R.; Khan, U.; O’Neill, A.; Bell, A.P.; Coleman, J.N. Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 2014, 78, 243–248. [Google Scholar] [CrossRef]
- Richaud, E.; Fayolle, B.; Verdu, J. Polypropylene stabilization by hindered phenols—Kinetic aspects. Polym. Degrad. Stab. 2011, 96, 1. [Google Scholar] [CrossRef] [Green Version]
- Ghoshal, D.; Jain, R.; Koratkar, N.A. Graphene’s Partial Transparency to van der Waals and Electrostatic Interactions. Langmuir 2019, 35, 12306–12316. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, S.; Kuila, T.; Murmu, N.C. Graphene composites. In Graphene Technology; Nazarpour, S., Waite, S.R., Eds.; Wiley: New York, NY, USA, 2016; Chapter 3; pp. 63–111. [Google Scholar]
- Kaviya, M.; Ramakrishnan, P.; Mohamed, S.B.; Ramakrishnan, R.; Gimbun, J.; Veerabadran, K.M.; Kuppusamy, M.R.; Kaviyarasu, K.; Sridhar, T.M. Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Mater. Today. Proc. 2021, 36, 204–207. [Google Scholar] [CrossRef]
- Naseem, Z.; Shamsaei, E.; Sagoe-Crentsil, K.; Duan, W. Antifoaming effect of graphene oxide nanosheets in polymer-modified cement composites for enhanced microstructure and mechanical performance. Cem. Concr. Res. 2022, 158, 106843. [Google Scholar] [CrossRef]
- Maegawa, K.; Nagai, H.; Kumar, R.; Abdel-Galeil, M.M.; Tan, W.K.; Matsuda, A. Development of polybenzimidazole modification with open-edges/porous-reduced graphene oxide composite membranes for excellent stability and improved PEM fuel cell performance. Mater. Phys. Chem. 2023, 294, 126994. [Google Scholar] [CrossRef]
- Bi, J.C.; Yun, H.; Cho, M.; Kwak, M.-G.; Ju, B.-K.; Kim, Y. Thermal conductivity and mechanical durability of graphene composite films containing polymer-filled connected multilayer graphene patterns. Ceram. Int. 2022, 48, 17789–17794. [Google Scholar] [CrossRef]
- Akpotu, S.O.; Diagboya, P.N.; Lawal, I.A.; Sanni, S.O.; Pholosi, A.; Peleyeju, M.G.; Mtunzi, F.M.; Ofomaja, A.E. Designer composite of montmorillonite-reduced graphene oxide-PEG polymer for water treatment: Enrofloxacin sequestration and cost analysis. Chem. Eng. J. 2023, 453, 139771. [Google Scholar] [CrossRef]
- Lin, W.; Zhuang, P. Holes distribution in bilayer graphene. Appl. Surf. Sci. 2022, 595, 153517. [Google Scholar] [CrossRef]
- Sharma, S.S.A.; Bashir, S.; Kasi, R.; Subramaniam, R.T. The significance of graphene based composite hydrogels as smart materials: A review on the fabrication, properties, and its applications. FlatChem 2022, 33, 100352. [Google Scholar] [CrossRef]
- Fan, X.; Xia, Y.; Wu, S.; Zhang, D.; Oliver, S.; Chen, X.; Lei, L.; Shi, S. Covalently immobilization of modified graphene oxide with waterborne hydroxyl acrylic resin for anticorrosive reinforcement of its coatings. Prog. Polym. Coat. 2022, 163, 106685. [Google Scholar] [CrossRef]
- Jain, D.; Hashmi, S.; Kaur, A. Surfactant assisted polyaniline nanofibres—Reduced graphene oxide (SPG) composite as electrode material for supercapacitors with high rate performance. Electrochim. Acta 2018, 222, 570–579. [Google Scholar] [CrossRef]
- Zuñiga, J.; Akashi, L.; Pinheiro, T.; Rivera, M.; Barreto, L.; Albertin, K.F.; Champ, A. Synthesis of lysozyme-reduced graphene oxide films for biosensor applications. Diam. Relat. Mater. 2022, 126, 109093. [Google Scholar] [CrossRef]
- Kovaleva, P.A.; Pariy, I.O.; Chernozem, R.V.; Zadorozhnyy, M.Y.; Permyakova, E.S.; Kolesnikov, E.A.; Surmeneva, M.A.; Surmenev, R.A.; Senatov, F.S. Shape memory effect in hybrid polylactide-based polymer scaffolds functionalized with reduced graphene oxide for tissue engineering. Eur. Polym. J. 2022, 181, 111694. [Google Scholar] [CrossRef]
- Botta, L.; La Mantia, F.P.; Ceraulo, M.; Mistretta, M.C. Effect of processing temperature and mixing time on the properties of PP/GnP nanocomposites. Polym. Degrad. Stab. 2020, 181, 109321. [Google Scholar] [CrossRef]
- Wang, G.; Zhuo, S.; Xing, W. Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells. Mater. Lett. 2012, 69, 27–29. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offerman, R.E. Preparation of graphite oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160. [Google Scholar] [CrossRef] [Green Version]
- Therma, F.T.; Dikio, E.D.; Moloto, M.J.; Khemfouch, M.; Nyangiwe, N.N.; Kotsdi, L.; Maaza, M. Synthesis and characterization of graphene thin films via Hummers method. In Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, Santa Clara, FL, USA, 12–21 June 2012. [Google Scholar]
- Gulmine, J.; Janissek, P.; Heise, H.; Akcelrud, L. Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stab. 2003, 79, 385–397. [Google Scholar] [CrossRef]
- Bumbac, M.; Gorghiu, L.M.; Dumitrescu, C.; Jipa, S.; Setnescu, R. Investigation of rosemary and sage extracts for the protection of polyethylene against thermal oxidation. Mater. Plast. 2005, 42, 313–316. [Google Scholar]
- Zaharescu, T.; Mateescu, C. Investigation on Some Algal Extracts as Appropriate Stabilizers for Radiation-Processed Polymers. Polymers 2022, 14, 4971. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Maio, A. Influence of oxidation level of graphene oxide on the mechanical performance and photor Resistance of a polyamide 6. Polymers 2019, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Toto, E.; Laurenzi, S.; Santonicola, M.G. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers 2022, 14, 1030. [Google Scholar] [CrossRef] [PubMed]
- Zotti, A.; Zuppolini, S.; Borriello, A.; Zarrelli, M. Polymer nanocomposites based on Graphite Nanoplatelets and amphiphilic graphene platelets. Compos. Part B Eng. 2022, 146, 110223. [Google Scholar] [CrossRef]
- Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide. Adv. Mater. 2010, 22, 4467–4472. [Google Scholar] [CrossRef] [PubMed]
- Lundie, M.; Šljivančanin, Ž.; Tomić, S. Electronic and optical properties of reduced graphene oxide. J. Mater. Chem. C 2015, 3, 7632–7641. [Google Scholar] [CrossRef] [Green Version]
- Ponomarev, A.; Gohs, U.; Ratnam, C.T.; Horak, C. Keystone and stumbling blocks in the use of ionizing radiation for recycling plastics. Radiat. Phys. Chem. 2022, 201, 110397. [Google Scholar] [CrossRef]
- Kröhnke, C.; Schacker, O.; Zäh, M. Antioxidants. In Ullmann’s Encyclopedia of industrial Chemistry; Wiley: Weinheim, Germany, 2015. [Google Scholar] [CrossRef]
- Zlatkevich, L. Radiothermoluminescence and Transitions in Polymers. In Polymers—Properties and Applications; Cantow, H.-J., Harwood, H.J., Kennedy, J.P., Ledwith, A., Meissner, J., Okamura, S., Henrici-Olive, G., Olive, S., Eds.; Springer: Heidelberg, Germany, 2019; Volume 12, pp. 81–101. [Google Scholar]
- Zaharescu, T.; Jipa, S. Radiochemical modifications in polymers. In Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology; Group VIII; Springer: Berlin/Heidelberg, Germany, 2013; Volume 6, pp. 93–184. [Google Scholar]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Han, X.; Kong, H.; Chen, T.; Gao, J.; Zhao, Y.; Sang, Y.; Hu, G. Effect of π–π Stacking Interfacial Interaction on the Properties of Graphene/Poly(styrene-b-isoprene-b-styrene) Composites. Nanomaterials 2021, 11, 2158. [Google Scholar] [CrossRef]
- Das, R.S.; Kumar, A.; Wankhade, A.V.; Mandavgane, S.A. Antioxidant analysis of ultra-fast selectively recovered 4-hydroxy benzoic acid from fruits and vegetable peel waste using graphene oxide based molecularly imprinted composite. Food Chem. 2022, 376, 131926. [Google Scholar] [CrossRef]
- Abdelhalim, A.O.; Meshcheriakov, A.A.; Maistrenko, D.N.; Molchanov, O.E.; Ageev, S.V.; Ivanova, D.A.; Iamalova, N.R.; Luttsev, M.D.; Vasina, L.V.; Sharoyko, V.V.; et al. Graphene oxide enriched with oxygen-containing groups: On the way to an increase of antioxidant activity and biocompatibility. Colloids Surf. B Biointerfaces 2022, 210, 112232. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.B.; Koo, S.H.; Kim, I.H.; Kim, J.G.; Jayaraman, B.; Lim, J.; Kim, S.O. Characteristic dual-domain composite structure of reduced graphene oxide and its application to higher specific capacitance. Chem. Eng. J. 2022, 446, 137390. [Google Scholar] [CrossRef]
- Wijerathne, D.; Gong, Y.; Afroj, S.; Karim, N.; Abeykoon, C. Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate composites. Int. J. Lightweight Mater. Manufact. 2023, 6, 117–128. [Google Scholar] [CrossRef]
- Katsiropoulos, C.; Pappas, P.; Koutroumanis, N.; Kokkinos, A.; Galiotis, C. Enhancement of damping response in polymers and composites by the addition of graphene nanoplatelets. Compos. Sci. Technol. 2022, 227, 109562. [Google Scholar] [CrossRef]
- Vieira, O.; Ribeiro, R.S.; de Tuesta, J.L.D.; Gomes, H.T.; Silva, A.M. A systematic literature review on the conversion of plastic wastes into valuable 2D graphene-based materials. Chem. Eng. J. 2021, 428, 131399. [Google Scholar] [CrossRef]
- McDonald, M.P.; Morozov, Y.; Hodak, J.H.; Kuno, M. Spectroscopy and microscopy of graphene oxide and reduced graphene oxide. In The Chemistry of Graphene Oxide. Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications; Gao, W., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 61–95. [Google Scholar]
- Azizi, B.; Shariati, M.; Souq, S.S.M.N.; Hosseini, M. Bending and stretching behavior of graphene structures using continuum models calibrated with modal analysis. Appl. Math. Model. 2023, 114, 466–487. [Google Scholar] [CrossRef]
- Jang, H.-K.; Kim, H.-I.; Dodge, T.; Sun, P.; Zhu, H.; Nam, J.-D.; Suhr, J. Interfacial shear strength of reduced graphene oxide polymer composites. Carbon 2014, 77, 390–397. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Hou, S.; Lin, H.; Chen, S.; Wang, Q.; Wei, H.; Zhou, J.; Zhuo, S. Thiophene-diketopyrrolopyrrole-based polymer derivatives/reduced graphene oxide composite materials as organic anode materials for lithium-ion batteries. Chem. Eng. J. 2022, 438, 135540. [Google Scholar] [CrossRef]
- Peng, H.; Wang, X.; Zhao, Y.; Tan, T.; Bakenov, Z.; Zhang, Y. Synthesis of a flexible freestanding sulfur/Polyacrylonitrile/Graphene oxide as the cathode for lithium/sulfur batteries. Polymers 2018, 10, 399. [Google Scholar] [CrossRef] [Green Version]
- Borge-Durán, I.; Grinberg, I.; Vega-Baudrit, J.R.; Nguyen, M.T.; Pereira-Pinheiro, M.; Thiel, K.; Noeske, P.-L.M.; Rischka, K.; Corrales-Ureña, Y.R. Application of poly-L-lysine for tailoring graphene oxide mediated contact formation between lithium titanium oxide LTO surfaces for batteries. Polymers 2022, 14, 2150. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, X.; Yuan, A.; Xu, J. Honeycomb-like three-dimensional reduced graphene oxide supported NiCoO2/rGO composite anode material to boost lithium storage performance. Mater. Sci. Eng. B 2023, 287, 116101. [Google Scholar] [CrossRef]
- Ahmed, A.; Singh, A.; Young, S.-J.; Gupta, V.; Singh, M.; Arya, S. Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) Composites: A review. Compos. A 2023, 165, 107373. [Google Scholar] [CrossRef]
- Javed, R.M.N.; Al-Othman, A.; Tawalbeh, M.; Olabi, A.G. Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renew. Sustain. Energy Rev. 2022, 168, 112836. [Google Scholar] [CrossRef]
- Trivedi, D.N.; Rachchh, N.V. Graphene and its application in thermoplastic polymers as nano-filler—A review. Polymer 2022, 240, 124486. [Google Scholar] [CrossRef]
Heating Time (h) | OOT (°C) | ||
---|---|---|---|
Pristine SIS | SIS + Graphene | SIS + Graphene + Rosemary Extract | |
0 | 202 | 215 | 219 |
5 | 201 | 207 | 220 |
10 | 198 | 201 | 219 |
15 | 196 | 198 | 215 |
20 | 190 | 196 | 205 |
Reduced Graphene Oxide Content (%) | OIT (min) | Correlation Factor | Activation Energy (kJ mol−1) | ||
---|---|---|---|---|---|
130 °C | 140 °C | 150 °C | |||
0 | 130 | 43 | 18 | 0.99851 | 142 |
1 | 292 | 90 | 36 | 0.99833 | 148 |
2 | 185 | 98 | 31 | 0.99936 | 158 |
3 | 380 | 88 | 35 | 0.99325 | 169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaharescu, T.; Banciu, C. Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene. Polymers 2023, 15, 353. https://doi.org/10.3390/polym15020353
Zaharescu T, Banciu C. Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene. Polymers. 2023; 15(2):353. https://doi.org/10.3390/polym15020353
Chicago/Turabian StyleZaharescu, Traian, and Cristina Banciu. 2023. "Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene" Polymers 15, no. 2: 353. https://doi.org/10.3390/polym15020353
APA StyleZaharescu, T., & Banciu, C. (2023). Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene. Polymers, 15(2), 353. https://doi.org/10.3390/polym15020353