Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications
"> Figure 1
<p>General distribution and application of plastics.</p> "> Figure 2
<p>Classification of bio-based plastics.</p> "> Figure 3
<p>Forecast of the bioplastics production in tons from 2019 to 2024.</p> "> Figure 4
<p>Percent (%) of global bio-based plastics production, by type.</p> "> Figure 5
<p>Market segments for bio-based plastics.</p> "> Figure 6
<p>General scheme for Bio-PE production.</p> "> Figure 7
<p>General chemical structure of (<b>a</b>) HDPE, (<b>b</b>) LLDPE and (<b>c</b>) LDPE polymers.</p> "> Figure 8
<p>General scheme for Bio-PP.</p> "> Figure 9
<p>General scheme for Bio-EG and Bio-PTA monomers production.</p> "> Figure 10
<p>Schematic representation of the methods used to achieve Bio-PTA.</p> "> Figure 11
<p>Development stages for emerging bio-based polymers.</p> ">
Abstract
:1. Introduction
- 1.
- bio-plastics that are based on renewable resources and that are biodegradable, like starch plastic, cellulose polymers, proteins, lignin and chitosan plastics, polylactic acid (PLA), polyhydroxy alkanoates (PHAs), but also polyhydroxybutyrates (PHBs), polyhydroxyvalerate (PHV) and their copolymers in different percentages (PHBV); this class now includes polymers such as PVC, PE, PP, PET, nylon and polyamides (PA), named as bio-plastics because the starting monomers could be obtained from biological resources;
- 2.
- bio-plastics based on petroleum resources, which are 100% biodegradable, like polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene adipate (PBA) and its copolymers with synthetic polyesters like polybutylene adipate-terephthalate (PBAT) and polyvinyl alcohol (PVOH);
- 3.
- bio-plastics obtained by using monomers coming from mixed biological and petroleum resources like polyesters obtained with petroleum-derived terephthalic acid and biologically derived ethanol, 1,4-butanediol and 1,3-propanediol, such as polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene-co-isorbite terephthalate (PEIT), polyurethane (PUR) and epoxy resins (thermoset plastic).
2. Bioplastics Market and General Application
3. Bio-Based Polyethylene (Bio-PE)
4. Bio-Based Polypropylene (Bio-PP)
5. Bio-Based Polyethylene Terephthalate (Bio-PET)
6. Discussions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, H.T.H.; Qi, P.; Rostagno, M.; Feteha, A.; Miller, S.A. The quest for high glass transition temperature bioplastics. J. Mater. Chem. A 2018, 6, 9298–9331. [Google Scholar] [CrossRef]
- Niaounakis, M. Recycling of biopolymers—The patent perspective. Eur. Polym. J. 2019, 114, 464–475. [Google Scholar] [CrossRef]
- Shen, L.; Haufe, J.; Patel, M.K. Product Overview and Market Projection of Emerging Biobased Plastics; Report No: NWS-E-2009-32; Utrecht University: Utrecht, The Netherlands, 2009; pp. 1–243. [Google Scholar]
- Muniyasamy, S.; Reddy, M.M.; Misra, M.; Mohanty, A. Biodegradable green composites from bioethanol co-product and poly(butylene adipate-co-terephthalate). Ind. Crops Prod. 2013, 43, 812–819. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications; William Andrew: Norwich, NY, USA, 2012; pp. 1–462. [Google Scholar]
- Mulhaupt, R. Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality. Macromol. Chem. Phys. 2013, 214, 159–174. [Google Scholar] [CrossRef]
- Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef]
- Molina-Besch, K.; Palsson, H. A Supply Chain Perspective on Green Packaging Development-Theory Versus Practice. Pack. Technol. Sci. 2016, 29, 45–63. [Google Scholar] [CrossRef]
- European Bioplastics—Report Bioplastics. Available online: https://docs.europeanbioplastics.org/publications/market_data/Report_Bioplastics_Market_Data_2019.pdf (accessed on 25 May 2020).
- van Beilen, J.B.; Poirier, Y. Plants as factories for bioplastics and other novel biomaterials. In Plant Biotechnology and Agriculture; Academic Press: Cambridge, MA, USA, 2012; pp. 481–494. [Google Scholar]
- Kimura, Y. Molecular, Structural, and Material Design of Bio-Based Polymers. Polym. J. 2009, 41, 797–807. [Google Scholar] [CrossRef]
- Nakajima, H.; Kimura, Y. Chapter 1, General introduction: Overview of the current development of biobased polymers. In Bio-Based Polymers, 1st ed.; Kimura, Y., Ed.; CMC Publishing Co., Ltd.: Tokyo, Japan, 2013; pp. 1–23. ISBN 978-4-7813-0271-3. [Google Scholar]
- Pion, F.; Ducrot, P.-H.; Allais, F. Renewable Alternating Aliphatic–Aromatic Copolyesters Derived from Biobased Ferulic Acid, Diols, and Diacids: Sustainable Polymers with Tunable Thermal Properties. Macromol. Chem. Phys. 2014, 215, 431–439. [Google Scholar] [CrossRef]
- Philp, J.C.; Ritchie, R.J.; Allan, J.E.M. Biobased chemicals: The convergence of green chemistry with industrial Biotechnology. Trends Biotechnol. 2013, 31, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Cooper, T.A. Developments in bioplastic materials for packaging food, beverages and other fast- moving consumer goods. In Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG); Woodhead Publishing: Cambridge, UK, 2013; pp. 108–152. [Google Scholar]
- Hottle, T.A.; Bilec, M.M.; Landis, A.E. Sustainability assessments of bio-based polymers. Polym. Deg. Stab. 2013, 98, 1898–1907. [Google Scholar] [CrossRef]
- Philp, J.C.; Ritchie, R.J.; Guy, K. Biobased plastics in a bioeconomy. Trends Biotechnol. 2013, 31, 65–67. [Google Scholar] [CrossRef]
- Philp, J.C.; Bartsev, A.; Ritchie, R.J.; Baucher, M.-A.; Guy, K. Bioplastics science from a policy vantage point. New Biotechnol. 2013, 30, 635–646. [Google Scholar] [CrossRef]
- Chen, Y.J. Bioplastics and their role in achieving global sustainability. J. Chem. Pharm. Res. 2014, 6, 226–231. [Google Scholar]
- Blanco, I.; Ingrao, C.; Siracusa, V. Life-Cycle Assessment in the Polymeric Sector: A Comprehensive Review of Application Experiences on the Italian Scale. Polymers 2020, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Ingrao, C.; Gigli, M.; Siracusa, V. An attributional Life Cycle Assessment application experience to highlight environmental hotspots in the production of foamy polylactic acid trays for fresh-food packaging usage. J. Clean. Prod. 2017, 150, 93–103. [Google Scholar] [CrossRef]
- Ingrao, C.; Siracusa, V. Quality and sustainability-related issues associated with biopolymers for food packaging applications: A comprehensive review. In Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications; Shimpi, N.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–433. ISBN 978-008100970-3/978-008101058-7. [Google Scholar] [CrossRef]
- Chen, L.; Pelton, R.E.O.; Smith, T.M. Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. J. Clean. Prod. 2016, 137, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Lackner, M. Biopolymers. In Handbook of Climate Change Mitigation and Adaptation, 2nd ed.; Springer: New York, NY, USA, 2016; Volume 4, pp. 3211–3230. [Google Scholar]
- Whitehouse, R.S. New bio-based polymers for extrusion blow molding. In Proceedings of the Society of Plastics Engineers—27th Annual Blow Molding Conference, ABC, Chicago Marriott O’Hare, Chicago, IL, USA, 12–13 October 2011. [Google Scholar]
- Miller, S.A. Sustainable Polymers: Opportunities for the Next Decade. ACS Macro Lett. 2013, 2, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Morschbacker, A. Bio-Ethanol Based Ethylene. Polym. Rev. 2009, 49, 79–84. [Google Scholar] [CrossRef]
- Robertson, G.L. Food Packaging: Principles and Practice, 2nd ed.; Marcel Dekker: New York, NY, USA, 2006. [Google Scholar]
- Wheals, A.E.; Basso, L.C.; Alves, D.M.G.; Amorim, H.V. Fuel Ethanol after 25 years. Trends Biotechnol. 1999, 17, 482–487. [Google Scholar] [CrossRef]
- Braskem Report. Development of Bio-Based Olefins. Available online: http://www.inda.org/BIO/vision2014_659_PPT.pdf (accessed on 22 August 2017).
- Alvarenga, R.A.F.; Dewulf, J. Plastic vs. fuel: Which use of the Brazilian ethanol can bring more environmental gains? Renew. Energy 2013, 59, 49–52. [Google Scholar] [CrossRef]
- Available online: https/www.uu.nl/sites/default/files/copernicus_probip2009_final_june_2009_revised_in_november_09 (accessed on 2 June 2020).
- Enriquez, E.; Mohanty, A.K.; Misra, M. Biobased polymer blends of poly(trimethylene terephthalate) and high density polyethylene. Mater. Des. 2016, 90, 984–990. [Google Scholar] [CrossRef]
- Brito, G.F.; Agrawal, P.; Araújo, E.M.; de Mélo, T.J.A. Polylactide/biopolyethylene bioblends. Polímeros 2012, 22, 427–429. [Google Scholar] [CrossRef] [Green Version]
- Castro, D.O.; Ruvolo-Filho, A.; Frollini, E. Materials prepared from biopolyethylene and curaua fibers: Composites from biomass. Polym. Test. 2012, 31, 880–888. [Google Scholar] [CrossRef]
- Kuciel, S.; Jakubowska, P.; Kuźniar, P. A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Compos. Part B Eng. 2014, 64, 72–77. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Natural Fibers, Biopolymers, and Their Biocomposites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Czaplicka-Kolarz, K.; Burchart-Korol, D.; Korol, J. Environmental assessment of biocomposites based on LCA. Polimery 2013, 58, 476–481. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Comp. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- European Bioplastics. Available online: https://www.europeanbioplastics.org/bioplastics/materials/biobased/ (accessed on 28 May 2020).
- Chen, G.Q.; Patel, M.K. Plastics derived from biological sources: Present and future: A technical and environmental review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Munari, A. Poly(propylene 2,5-thiophenedicarboxylate) vs. Poly(propylene 2,5-furandicarboxylate): Two examples of high gas barrier bio-based polyesters. Polymers 2018, 10, 785. [Google Scholar] [CrossRef] [Green Version]
- Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: The current status and future outlook for polyesters in the packaging industry. Green Chem. 2017, 19, 4737–4753. [Google Scholar] [CrossRef]
- Xiao, B.; Zheng, M.; Pang, J.; Jiang, Y.; Wang, H.; Sun, R.; Wang, A.; Wang, X.; Zhang, T. Synthesis and Characterization of Poly(ethylene terephthalate) from Biomass-Based Ethylene Glycol: Effects of Miscellaneous Diols. Ind. Eng. Chem. Res. 2015, 54, 5862–5869. [Google Scholar] [CrossRef]
- Reddy, M.M.; Vivekanandhan, S.; Misra, M.; Bhatia, S.K.; Mohanty, A.K. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013, 38, 1653–1689. [Google Scholar] [CrossRef]
- Nakajima, H.; Dijkstra, P.; Loos, K. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers 2017, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Collias, D.I.; Harris, A.M.; Nagpal, V.; Cottrell, I.W.; Schultheis, M.W. Biobased Terephthalic Acid Technologies: A Literature Review. Ind. Biotech. 2014, 10, 91–105. [Google Scholar] [CrossRef]
- Rebsdat, S.; Mayer, D. Ethylene oxide. In Ullmann’s Encyclopedia Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2001; Volume 13, pp. 547–572. [Google Scholar]
- Kopnick, H.; Schmidt, M.; Brugging, W.; Ruter, J.; Kaminsky, W. Polyesters. In Ullmann’s Encyclopedia Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000; Volume 28, pp. 623–649. [Google Scholar]
- Petersen, G. Top Value Added Chemicals from Biomass Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA; National Renewable Energy Laboratory (NREL): Golden, CO, USA; 2004. [Google Scholar]
- The Coca Cola Company Website. Available online: http://www.coca-colacompany.com/plantbottle-technology (accessed on 14 June 2020).
- Salvador, M.; Abdulmutalib, U.; Gonzalez, J.; Kim, J.; Smith, A.A.; Faulon, J.-L.; Wei, R.; Zimmermann, W.; Jimenez, J.I. Microbial Genes for a Circular and Sustainable Bio-PET Economy. Genes 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Uranukul, B.; Woolston, B.M.; Fink, G.R.; Stephanopoulos, G. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes. Metab. Eng. 2019, 51, 20–31. [Google Scholar] [CrossRef]
- Pereira, B.; Zhang, H.; De Mey, M.; Lim, C.G.; Li, Z.-J.; Stephanopoulos, G. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol. Biotechnol. Bioeng. 2016, 113, 376–383. [Google Scholar] [CrossRef]
- Islam, M.A.; Hadadi, N.; Ataman, M.; Hatzimanikatis, V.; Stephanopoulos, G. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Metab. Eng. 2017, 41, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.H.; Koryakina, I.; Case, A.E.; Toney, M.D.; Atsumi, S. Biological conversion of gaseous alkenes to liquid chemicals. Metab. Eng. 2016, 38, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Carraher, J.M.; Pfennig, T.; Rao, R.G.; Shanks, B.H.; Tessonnier, J.-P. Cis,cis-Muconic acid isomerization and catalytic conversion to biobased cyclic-C6-1,4-diacid monomers. Green Chem. 2017, 19, 3042–3050. [Google Scholar] [CrossRef] [Green Version]
- Matthiesen, J.E.; Carraher, J.M.; Vasiliu, M.; Dixon, D.A.; Tessonnier, J.-P. Electrochemical Conversion of Muconic Acid to Biobased Diacid Monomers. ACS Sustain. Chem. Eng. 2016, 4, 3575–3585. [Google Scholar] [CrossRef]
- Colonna, M.; Berti, C.; Fiorini, M.; Binassi, E.; Mazzacurati, M.; Vannini, M.; Karanam, S. Synthesis and radiocarbon evidence of terephthalate polyesters completely prepared from renewable resources. Green Chem. 2011, 13, 2543–2548. [Google Scholar] [CrossRef]
- Shiramizu, M.; Toste, F.D. On the Diels-alder Approach to Solely Biomass-derived Polyethylene terephthalate (PET): Conversion of 2,5-Dimethylfuran and Acrolein into p-Xylene. Chem. Eur. J. 2011, 17, 12452–12457. [Google Scholar] [CrossRef]
- Agirrezabal-Telleria, I.; Gandarias, I.; Arias, P.L. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates. Rev. Catal. Today 2014, 234, 42–58. [Google Scholar] [CrossRef]
- Tachibana, Y.; Kimura, S.; Kasuya, K. Synthesis and Verification of Biobased Terephthalic Acid from Furfural. Sci. Rep. 2015, 5, 8249. [Google Scholar] [CrossRef]
- Eerhart, A.J.J.E.; Patel, M.K.; Faaij, A.P.C. Fuels and plastics from lignocellulosic biomass via the furan pathway: An economic analysis. Biofuels Bioprod. Bioref. 2015, 9, 307–325. [Google Scholar] [CrossRef]
- Pacheco, J.J.; Labinger, J.A.; Sessions, A.L.; Davis, M.E. Route to Renewable PET: Reaction Pathways and Energetics of Diels−Alder and Dehydrative Aromatization Reactions Between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves. ACS Catal. 2015, 5, 5904–5913. [Google Scholar] [CrossRef]
- Tachibana, Y.; Yamahata, M.; Kasuya, K. Synthesis and characterization of renewable polyester containing oxabicyclic dicarboxylate derived from furfural. Green Chem. 2013, 15, 1318–1325. [Google Scholar] [CrossRef]
- Schenk, N.J.; Biesbroek, A.; Heeres, A.; Heeres, H.J. Process for the Preparation of Aromatic Compounds. Patent WO 2,015,047,085 A1, 2 April 2015. [Google Scholar]
- Blanco, I.; Cicala, G.; Latteri, A.; Saccullo, G.; El-Sabbagh, A.M.M.; Ziegmann, G. Thermal characterization of a series of lignin-based polypropylene blends. J. Therm. Anal. Calorim. 2017, 127, 147–153. [Google Scholar] [CrossRef]
- Furtwengler, P.; Avérous, L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym. Chem. 2018, 9, 4258–4287. [Google Scholar] [CrossRef]
- Ju, R.M.; Macario, K.D.; Carvalho, C.; Dias, R.S.; Brum, M.C.; Cunha, F.R.; Ferreira, C.G.; Chanca, I.S. Biogenic fraction in the synthesis of polyethylene terephthalate. Int. J. Mass Spectrom. 2015, 388, 65–68. [Google Scholar] [CrossRef]
- Montava-Jorda, S.; Lascano, D.; Quiles-Carrillo, L.; Montanes, N.; Boronat, T.; Martinez-Sanz, A.V.; Ferrandiz-Bou, S.; Torres-Giner, S. Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate). Polymers 2020, 12, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidotti, G.; Soccio, M.; Garcia-Guitiérrez, M.-C.; Guitiérrez-Fernandez, E.; Ezquerra, T.A.; Siracusa, V.; Munari, A.; Lotti, N. Evidence of a 2D-Ordered Structure in Biobased Poly(pentamethylene furanoate) Responsible for Its Outstanding Barrier and Mechanical Properties. ACS Sustain. Chem. Eng. 2019, 7, 17863–17871. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Lotti, N.; Siracusa, V.; Gazzano, M.; Munari, A. New multi-block copolyester of 2,5-furandicarboxylic acid containing PEG-like sequences to form flexible and degradable films for sustainable packaging. Polym. Degrad. Stab. 2019, 169, 108963. [Google Scholar] [CrossRef]
- Genovese, L.; Lotti, N.; Siracusa, V.; Munari, A. Poly(neopentyl glycol furanoate): A member of the furan-based polyester family with smart barrier performances for sustainable food packaging applications. Materials 2017, 10, 1028. [Google Scholar] [CrossRef] [Green Version]
- Frollini, E.; Rodrigues, B.V.M.; Da Silva, C.G.; Castro, D.O.; Ramires, E.C.; De Oliveira, F.; Santos, R.P.O. Polymeric materials from renewable resources. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016. [Google Scholar]
- Volanti, M.; Cespi, D.; Passarini, F.; Neri, E.; Cavani, F.; Mizsey, P.; Fozer, D. Terephthalic acid from renewable sources: Early-stage sustainability analysis of a bio-PET precursor. Green Chem. 2019, 21, 885–896. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641. https://doi.org/10.3390/polym12081641
Siracusa V, Blanco I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers. 2020; 12(8):1641. https://doi.org/10.3390/polym12081641
Chicago/Turabian StyleSiracusa, Valentina, and Ignazio Blanco. 2020. "Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications" Polymers 12, no. 8: 1641. https://doi.org/10.3390/polym12081641
APA StyleSiracusa, V., & Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers, 12(8), 1641. https://doi.org/10.3390/polym12081641