Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study
<p>(Color online) Time evolution of root mean square deviation (RMSD) of the protein 1BBL exposed in the external electric fields with different strengths (<b>a</b>), along opposite <span class="html-italic">z</span>-directions (<b>b</b>), and along three different directions (<b>c</b>), respectively.</p> "> Figure 2
<p>(Color online) Time evolution of radius of gyration <span class="html-italic">R<sub>g</sub></span> of the protein 1BBL exposed in the external electric fields with different electric strengths (<b>a</b>), along three different directions (<b>b</b>), and the numerical comparison of <span class="html-italic">R<sub>g</sub></span> and RMSD (<b>c</b>), respectively.</p> "> Figure 2 Cont.
<p>(Color online) Time evolution of radius of gyration <span class="html-italic">R<sub>g</sub></span> of the protein 1BBL exposed in the external electric fields with different electric strengths (<b>a</b>), along three different directions (<b>b</b>), and the numerical comparison of <span class="html-italic">R<sub>g</sub></span> and RMSD (<b>c</b>), respectively.</p> "> Figure 3
<p>(Color online) Stride evolution of secondary structures of the protein 1BBL exposed in the external electric fields along the <span class="html-italic">z</span>-direction with the strength (<b>a</b>) <span class="html-italic">Ez</span> = 0 V/nm, (<b>b</b>) <span class="html-italic">Ez</span> = 0.5 V/nm, and (<b>c</b>) <span class="html-italic">Ez</span> = 0.6 V/nm, respectively.</p> "> Figure 4
<p>(Colored) Typical conformation of the protein 1BBL exposed in the electric fields with the strength <span class="html-italic">Ex,y,z</span> = 0 V/nm, 0.5 V/nm, and 0.6 V/nm during the simulation process, respectively.</p> "> Figure 5
<p>(Color online) Time evolution of total dipole moment of the protein 1BBL exposed in the electric fields along the <span class="html-italic">z</span>-direction with different strengths (<b>a</b>), and three components of the dipole moment in the condition of electric strength (<b>b</b>) <span class="html-italic">E</span> = 0 V/nm, (<b>c</b>) <span class="html-italic">Ez</span> = ±0.3 V/nm, (<b>d</b>) <span class="html-italic">Ez</span> = ±0.6 V/nm, (<b>e</b>) <span class="html-italic">Ex,y,z</span> = 0.3 V/nm, and (<b>f</b>) <span class="html-italic">Ex,y,z</span> = 0.6 V/nm, respectively.</p> "> Figure 5 Cont.
<p>(Color online) Time evolution of total dipole moment of the protein 1BBL exposed in the electric fields along the <span class="html-italic">z</span>-direction with different strengths (<b>a</b>), and three components of the dipole moment in the condition of electric strength (<b>b</b>) <span class="html-italic">E</span> = 0 V/nm, (<b>c</b>) <span class="html-italic">Ez</span> = ±0.3 V/nm, (<b>d</b>) <span class="html-italic">Ez</span> = ±0.6 V/nm, (<b>e</b>) <span class="html-italic">Ex,y,z</span> = 0.3 V/nm, and (<b>f</b>) <span class="html-italic">Ex,y,z</span> = 0.6 V/nm, respectively.</p> "> Figure 6
<p>(Color online) Average number of hydrogen bonds (HBs) with respect to the radius of gyration <span class="html-italic">R<sub>g</sub></span> of the protein 1BBL exposed in the external fields along the <span class="html-italic">z</span>-direction with different electric strengths and opposite directions.</p> ">
Abstract
:1. Introduction
2. Simulation Details and Methods
3. Results and Discussions
3.1. Root Mean Square Deviation (RMSD)
3.2. Radius of Gyration (Rg)
3.3. Secondary Structure Analysis
3.4. Dipole Moment
3.5. Hydrogen Bonds (HBs)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anfinsen, C.B. Principles that govern folding of protein chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.V.; Ishtikhar, M.; Rabbani, G.; Zaman, M.; Abdelhameed, A.S.; Khan, R.H. Polyols(glycerol and ethylene glycol) mediated amorphous aggregate inhibition and secondary structure restoration of metalloproteinase-conalbumin (ovotransferrin). Int. J. Biol. Macromol. 2017, 94, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Olzscha, H.; Fedorov, O.; Kessler, B.M.; Knapp, S.; La Thangue, N.B. Cbp/p300 bromodomains regulate amyloid-like protein aggregation upon aberrant lysine acetylation. Cell Chem. Biol. 2017, 24, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhou, Z.; Bai, Y. A protein folding pathway with multiple folding intermediates at atomic resolution. Proc. Natl. Acad. Sci. USA 2005, 102, 5026–5031. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, Y.; Takeda, K. Critical Temperature of Secondary Structural Change of Myoglobin in Thermal Denaturation up to 130 degrees C and Effect of Sodium Dodecyl Sulfate on the Change. J. Phys. Chem. B 2010, 114, 2430–2434. [Google Scholar] [CrossRef] [PubMed]
- Day, R.; Bennion, B.J.; Ham, S.; Daggett, V. Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J. Mol. Biol. 2002, 322, 189–203. [Google Scholar] [CrossRef]
- Stigter, D.; Alonso, D.O.; Dill, K.A. Protein Stability-Electrostatics and Compact Denatured States. Proc. Natl. Acad. Sci. USA 1991, 88, 4176–4180. [Google Scholar] [CrossRef]
- Konermann, L.; Rosell, F.I.; Mauk, A.G.; Douglas, D.J. Acid-induced denaturation of myoglobin studied by time-resolved electrospray ionization mass spectrometry. Biochemistry 1997, 36, 6448–6454. [Google Scholar] [CrossRef]
- Wiedersich, J.; Kohler, S.; Skerra, A.; Friedrich, J. Temperature and pressure dependence of protein stability: The engineered fluorescein-binding lipocalin FluA shows an elliptic phase diagram. Proc. Natl. Acad. Sci. USA 2008, 105, 5756–5761. [Google Scholar] [CrossRef]
- Freedman, K.J.; Haq, S.R.; Edel, J.B.; Jemth, P.; Kim, M.J. Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Sci. Rep. 2013, 3, 1638. [Google Scholar] [CrossRef]
- Amadei, A.; Daidone, I.; Di Nola, A.; Aschi, M. Theoretical-computational modelling of infrared spectra in peptides and proteins: A new frontier for combined theoretical-experimental investigations. Curr. Opin. Struct. Biol. 2010, 20, 155–161. [Google Scholar] [CrossRef]
- Katagiri, D.; Fuji, H.; Neya, S.; Hoshino, T. Ab initio protein structure prediction with force field parameters derived from water-phase quantum chemical calculation. J. Comput. Chem. 2008, 29, 1930–1944. [Google Scholar] [CrossRef]
- Pereira, R.N.; Souza, B.W.S.; Cerqueira, M.A.; Teixeira, J.A.; Vicente, A.A. Effects of Electric Fields on Protein Unfolding and Aggregation: Influence on Edible Films Formation. Biomacromolecules 2010, 11, 2912–2918. [Google Scholar] [CrossRef] [PubMed]
- Sofronova, A.A.; Lzumrudov, V.A.; Muronetz, V.I.; Semenyuk, P.I. Similarly charged polyelectrolyte can be the most efficient suppressor of the protein aggregation. Polymer 2017, 108, 281–287. [Google Scholar] [CrossRef]
- Ly, H.K.; Sezer, M.; Wisitruangsakul, N.; Feng, J.J.; Kranich, A.; Millo, D.; Weidinger, I.M.; Zebger, I.; Murgida, D.H.; Hildebrandt, P. Surface-enhanced vibrational spectroscopy for probing transient interactions of proteins with biomimetic interfaces: Electric field effects on structure, dynamics and function of cytochrome c. Febs. J. 2011, 278, 1382–1390. [Google Scholar] [PubMed]
- Xie, Y.; Liao, C.; Zhou, J. Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations. Biophys. Chem. 2013, 179, 26–34. [Google Scholar] [CrossRef]
- Stigter, D.; Dill, K.A. Charge Effects on Folded and Unfolded Proteins. Biochemistry 1990, 29, 1262–1271. [Google Scholar] [CrossRef]
- Costabel, M.; Vallejo, D.F.; Grigera, J.R. Electrostatic recognition between enzyme and inhibitor: Interaction between papain and leupeptin. Arch. Biochem. Biophys. 2001, 394, 161–166. [Google Scholar] [CrossRef]
- Ficici, E.; Jeong, D.; Andricioaei, I. Electric-Field-Induced Protein Translocation via a Conformational Transition in SecDF: An MD Study. Biophys. J. 2017, 112, 2520–2528. [Google Scholar] [CrossRef]
- Rivas, L.; Soares, C.M.; Baptista, A.M.; Simaan, J.; Paolo, R.E.D.; Murgida, D.H.; Hildebrandt, P. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: Surface-enhanced resonance Raman spectroscopy and simulation studies. Biophys. J. 2005, 88, 4188–4199. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.F.; Wernet, W. Adsorption of proteins on electro-conductive polymer films. Thin Solid Films 1997, 300, 265–271. [Google Scholar] [CrossRef]
- Burns, N.L.; Holmberg, K.; Brink, C. Influence of Surface Charge on Protein Adsorption at an Amphoteric Surface: Effects of Varying Acid to Base Ratio. J. Colloid Interface Sci. 1996, 178, 116–122. [Google Scholar] [CrossRef]
- Phillips, R.K.R.; Omanovic, S.; Roscoe, S.G. Electrochemical Studies of the Effect of Temperature on the Adsorption of Yeast Alcohol Dehydrogenase at Pt. Langmuir 2001, 17, 2471–2477. [Google Scholar] [CrossRef]
- Barten, D.; Kleijn, J.M.; Stuart, M.A.C. Adsorption of a linear polyelectrolyte on a gold electrode. Phys. Chem. Chem. Phys. 2003, 5, 4258–4264. [Google Scholar] [CrossRef]
- Amadei, A.; Marracino, P. Theoretical-computational modelling of the electric field effects on protein unfolding thermodynamics. Rsc Adv. 2015, 5, 96551–96561. [Google Scholar] [CrossRef]
- Piana, S.; Lindorff-Larsen, K.; Shaw, D.E. How robust are protein folding simulations with respect to force field parameterization? Biophys. J. 2011, 100, 47–49. [Google Scholar] [CrossRef]
- Budi, A.; Legge, F.S.; Treutlein, H.; Yarovsky, I. Electric field effects on insulin chain-B conformation. J. Phys Chem. B 2005, 109, 22641–22648. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Y.; He, X.; Chen, S.; Zhang, J.Z. Effect of strong electric field on the conformational integrity of insulin. J. Phys. Chem. A 2014, 118, 8942–8952. [Google Scholar] [CrossRef]
- Marracino, P.; Apollonio, F.; Liberti, M.; d’lnzeo, G.; Amadei, A. Effect of high exogenous electric pulses on protein conformation: Myoglobin as a case study. J. Phys. Chem. B 2013, 117, 2273–2279. [Google Scholar] [CrossRef]
- Solomentsev, G.Y.; English, N.J.; Mooney, D.A. Effects of external electromagnetic fields on the conformational sampling of a short alanine peptide. J. Comput. Chem. 2012, 33, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Dou, W.; Shen, Y.; Sun, T.; Xu, P. Residual occurrence and energy property of proteins in HNP model. Chin. Phys. B 2015, 24, 116802. [Google Scholar] [CrossRef]
- Robertson, B.; Huang, M.; Chen, J.; Kapral, R. Synthetic Nanomotors: Working Together through Chemistry. Acc. Chem. Res. 2018, 51, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Y.; Kapral, R. Chemically Propelled Motors Navigate Chemical Patterns. Adv. Sci. 2018, 5, 1800028. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, T.J.; Ailey, B.; Brenner, S.E.; Murzin, A.G.; Chothia, C. SCOP: A Structural Classification of Proteins database. Nucleic Acids Res. 1999, 27, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Robien, M.A.; Clore, G.M.; Omichinski, J.G.; Perham, R.N.; Appella, E.; Sakaguchi, K.; Gronenborn, A.M. Three-Dimensional Solution Structure of the E3-Binding Domain of the Dihydrolipoamide Succinyltransferase Core from the 2-Oxoglutarate Dehydrogenase Multienzyme Complex of Escherichia coli. Biochemistry 1992, 31, 3463–3471. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple protential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Singh, A.; Orsat, V.; Raghavan, V. Comprehensive Review on Electrohydrodynamic Drying and High-Voltage Electric Field in the Context of Food and Bioprocessing. Dry. Technol. 2012, 30, 1812–1820. [Google Scholar] [CrossRef]
- Alizadeh, H.; Davoodi, J.; Tabar, H.R. Deconstruction of the human connexin 26 hemichannel due to an applied electric field; A molecular dynamics simulation study. J. Mol. Gr. Model. 2017, 73, 108–114. [Google Scholar] [CrossRef]
- Eargle, J.; Wright, D.; Luthey-Schulten, Z. Multiple Alignment of protein structures and sequences for VMD. Bioinformatics 2006, 22, 504–506. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; You, L.; Dou, W.; Sun, T.; Xu, P. Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study. Polymers 2019, 11, 282. https://doi.org/10.3390/polym11020282
Jiang Z, You L, Dou W, Sun T, Xu P. Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study. Polymers. 2019; 11(2):282. https://doi.org/10.3390/polym11020282
Chicago/Turabian StyleJiang, Zhouting, Le You, Wenhui Dou, Tingting Sun, and Peng Xu. 2019. "Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study" Polymers 11, no. 2: 282. https://doi.org/10.3390/polym11020282
APA StyleJiang, Z., You, L., Dou, W., Sun, T., & Xu, P. (2019). Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study. Polymers, 11(2), 282. https://doi.org/10.3390/polym11020282