Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays
<p>Flow rheograms of gel (gel) and GA-loaded gel (gel + gallic acid). Symbols representupcurve and white symbols represent downcurve. SDs have been omitted for clarity; however, in all cases, the coefficient of variation of triplicate analyses was less than 10%. Data were collected at 32 ± 0.5 °C.</p> "> Figure 2
<p>Frequency sweep profile of storage modulus G’ (closed symbols) and loss modulus G’’ (white symbols) of both gel (gel) and GA-loaded gel (gel + gallic acid). SDs have been omitted for clarity; however, in all cases, the coefficient of variation of triplicate analyses was less than 10%. Data were collected at 32 ± 0.5 °C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gallic Acid Gel Formulation
2.2. Rheological Analysis
2.2.1. Determination of Flow Properties
2.2.2. Oscillatory Analyses
2.3. Texture Profile Analyses
2.4. In Vitro Evaluation of Bioadhesive Force
2.5. Non-Invasive TBARS Assay to Quantify Reduction of Lipid Peroxides by Gallic Acid Formulation
3. Results and Discussion
3.1. Rheological Study
3.2. Texture Profile Analyses
3.3. Bioadhesion Studies
3.4. Non-Invasive TBARS Assay to Quantify Lipid Peroxide Reduction by Gallic Acid Formulation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Poljsak, B.; Dahmane, R. Free Radicals and Extrinsic Skin Aging. Dermatol. Res. Pract. 2012, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Abla, M.J.; Banga, A.K. Quantification of skin penetration of antioxidants of varying lipophilicity. Int. J. Cosmet. Sci. 2012, 3, 1468–2494. [Google Scholar] [CrossRef] [PubMed]
- Pescia, A.C.; Astolfi, P.C.; Bonina, F.; Rosario, P.; Bernd, H.; Domiani, E. On the assessment of photostability of sunscreens exposed to UVA irradiation: From glass plates to pig/human skin, which is best? Int. J. Pharm. 2012, 427, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Weyemi, U.; Parekh, P.; Redon, C.E.; Bonner, W.M. SOD2 deficiency promotes aging phenotypes in mouse skin. Aging (Albany NY) 2012, 4, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Kohen, R. Skin antioxidants: Their role in aging and in oxidative stress—New approaches for their evaluation. Biomed. Pharmacother. 1999, 53, 181–192. [Google Scholar] [CrossRef]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011, 19, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2010, 13, 572–584. [Google Scholar] [CrossRef]
- Hammerstone, J.F. Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using High-performance Liquid Chromatography/Mass Spectrometry. J. Agric. Food Chem. 2009, 47, 490–496. [Google Scholar] [CrossRef]
- Angelo, P.M.; Jorge, N. Compostos fenólicos em alimentos—Uma breve revisão. Rev. Inst. Adolfo Lutz 2007, 66, 232–240. [Google Scholar]
- Behl, G.; Sharma, M.; Sikka, M.; Dahiya, S.; Chhikara, A.; Chopra, M. Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: Synthesis, characterization, and antioxidant activity. J. Biomater. Sci. Polym. Ed. 2013, 24, 865–881. [Google Scholar] [CrossRef] [PubMed]
- Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Duh, P.D.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- Abdelwahed, A.; Bouhlel, I.; Skandrani, I.; Valenti, K.; Kadri, M.; Guiraud, P.; Steiman, R.; Mariotte, A.M.; Ghedira, K.; Laporte, F.; et al. Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling. Chem. Biol. Interact. 2007, 165, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Monteiro e Silva, S.A.; Leonardi, G.R. Passive and iontophoretic permeation and retention study of gel containing gallic acid and residual antioxidant activity. In International Federation of Societies of Cosmetic Chemists (IFSCC Conference); Congress Paper; International Federation of Societies of Cosmetic Chemists: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Manosroi, A.; Jantrawut, P.; Akazawa, H.; Akihisa, T.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement of gel containing elastic niosomes loaded with gallic acid from Terminalia chebula galls. Pharm. Biol. 2011, 49, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Pung, Y.Y.; Khor, B.K.; Kong, W.E.; Tan, C.T.; Teo, S.Y. Lipid-Based Delivery System for Topical Phenytoin. J. Appl. Pharm. Sci. 2016, 6, 014–020. [Google Scholar] [CrossRef]
- Safety Assessment of Acryloyldimethyltaurate Polymers as Used in Cosmetics. Available online: www.cir-safety.org/sites/default/files/ACTAPY092016TR%20-%20final.pdf (accessed on 14 August 2017).
- Kalka, K. Biomelanin Antioxidants in Cosmetics: Assessment Based on Inhibition of Lipid Peroxidation. Skin Pharmacol. Physiol. 2000, 13, 143–149. [Google Scholar] [CrossRef]
- Scholtmann, K.; Kaeten, M.; Black, A.F.; Damour, O.; Waldmann-Laue, M.; Förster, T. Cosmetic efficacy claims in vitro using a three-dimension skin model. Int. J. Cosmet. Sci. 2008, 5, 309–318. [Google Scholar]
- Zhu, W.; Gao, J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. J. Investig. Dermatol. Symp. Proc. 2008, 13, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Kanlayayattanakul, M.; Lorith, N.S. Arabica Coffee as a Rich Source of Antioxidant Appraisal for Cosmetic Applications. Adv. Sci. Eng. Med. 2013, 5, 173–176. [Google Scholar] [CrossRef]
- Di Sansebastiano, G.P.; De Benedictis, M.; Carati, D.; Lofrumento, D.; Durante, M.; Montefusco, A.; Zuccarello, V.; Dalessandro, G.; Piro, G. Quality and Efficacy of Tribulus terrestris as an Ingredient for Dermatological Formulations. Open Dermatol. J. 2013, 7, 1–7. [Google Scholar] [CrossRef]
- Alonso, C. An ex vivo methodology to assess the lipid peroxidation in stratum corneum. J. Photochem. Photobiol. B 2009, 97, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.A. 8-Isoprostane is a dose-related biomarker for photo-oxidative ultraviolet (UV) B damage in vivo: A pilot study with personal UV dosimetry. Br. J. Dermatol. 2006, 154, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Moeskops, B.W. Real-time trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo. Physiol. Meas. 2006, 27, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Olensen, B.W. Thermal comfort. Tech. Rev. 1982, 2, 3–37. [Google Scholar]
- Ueda, C.T.; Shah, V.P.; Derdzinski, K.; Ewing, G.; Flynn, G.; Maibach, H.; Marques, M.; Rytting, H.; Shaw, S.; Thakker, K.; et al. Topical and transdermal drug products. Pharm. Forum 2009, 35, 750–764. [Google Scholar] [CrossRef]
- Calixto, G.; Yoshii, A.C.; Rocha e Silva, H.; Stringhetti Ferreira Cury, B.; Chorilli, M. Polyacrylic acid polymers hydrogels intended to topical drug delivery: Preparation and characterization. Pharm. Dev. Technol. 2015, 20, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Salmazi, R.; Calixto, G.; Bernegossi, J.; dos Santos Ramos, M.A.; Bauab, T.M.; Chorilli, M. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis. Int. J. Nanomed. 2015, 10, 4815–4824. [Google Scholar]
- Carvalho, F.C.; Calixto, G.; Hatakeyama, I.N.; Luz, G.M.; Gremião, M.P.D.; Chorilli, M. Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. Drug Dev. Ind. Pharm. 2012, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chorilli, M.; Rigon, R.B.; Calixto, G.; Cartezani, P.M.; Ribeiro, M.C.; Polacow, M.L.; Cerri, P.S.; Sarmento, V.H.; Scarpa, M.V. Rheological characterization and safety evaluation of non-ionic lamellar liquid crystalline systems containing retinyl palmitate. J. Biomed. Nanotechnol. 2016, 12, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Cintra, G.A.D.S.; Pinto, L.A.; Calixto, G.M.F.; Soares, C.P.; Von Zuben, E.D.S.; Scarpa, M.V.; Gremião, M.P.D.; Chorilli, M. Bioadhesive Surfactant Systems for Methotrexate Skin Delivery. Molecules 2016, 21, 231. [Google Scholar] [CrossRef] [PubMed]
- Gonçalez, M.L.; Marcussi, D.G.; Calixto, G.M.F.; Corrêa, M.A.; Chorilli, M. Structural Characterization and In Vitro Antioxidant Activity of Kojic Dipalmitate Loaded W/O/W Multiple Emulsions Intended for Skin Disorders. BioMed Res. Int. 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lupi, F.R.; Gabriele, D.; Seta, L.; Baldino, N.; de Cindio, B.; Marino, R. Rheological investigation of pectin-based emulsion gels for pharmaceutical and cosmetic uses. Rheol. Acta 2015, 54, 41–52. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Calixto, G.; Graminha, M.; Cerecetto, H.; González, M.; Chorilli, M. Development, characterization and in vitro biological performance of fluconazole-loaded microemulsions for the topical treatment of cutaneous leishmaniasis. J. Biomed. Biotechnol. 2015, 12, 394–398. [Google Scholar]
- Valenzuela, A. Malondialdehyde in biological simples. Life Sci. 1991, 48, 301–309. [Google Scholar] [CrossRef]
- Xie, M.; Hu, B.; Wang, Y.; Zeng, X. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J. Agric. Food Chem. 2014, 62, 9128–9136. [Google Scholar] [CrossRef] [PubMed]
- Zürcher, S.; Graule, T. Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions. J. Eur. Ceram. Soc. 2005, 25, s863–s873. [Google Scholar] [CrossRef]
Compound | Quantity (%, w/w) |
---|---|
Gallic Acid | 0.6 |
Acryloyldimethyl taurate | 1.50 |
Propylene glycol | 5.00 |
Izotyazolinones | 0.001 |
Distilled water | 92.89 |
Formulation | Flow index (n) | Consistency index (K) |
---|---|---|
Gel + Gallic Acid | 0.400 ± 0.005 | 12.77 ± 0.31 |
Gel | 0.417 ± 0.008 | 9.75 ± 0.31 |
Formulation | Gel strength (S) | Viscoelastic exponent (n) |
---|---|---|
Gel + Gallic Acid | 7.35 ± 0.16 | 0.50 ± 0.01 |
Gel | 3.37 ± 0.14 | 0.60 ± 0.01 |
Formulation | Hardness (mN) | Compressibility (mN·s) | Cohesion |
---|---|---|---|
Gel + Gallic Acid | 11.7 ± 0.001 | 100.2 ± 0.006 | 0.9 ± 0.032 |
Gel | 11.4 ± 0.001 | 96.5 ± 0.006 | 0.8 ± 0.016 |
Formulation | Work of bioadhesion (mN·s) |
---|---|
Gel + Gallic Acid | 25.8 ± 0.57 |
Gel | 110.3 ± 0.15 |
Volunteer | Lipid peroxide reduction (%) Mean ± SD |
---|---|
1 | 23.61 ± 1.26 |
2 | 25.74 ± 4.9 |
3 | 28.83 ± 4.9 |
4 | 16.84 ± 3.9 |
5 | 43.28 ± 2.3 |
6 | 49.00 ± 1.3 |
7 | 40.21 ± 5.1 |
8 | 44.30 ± 4.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro e Silva, S.A.; Calixto, G.M.F.; Cajado, J.; De Carvalho, P.C.A.; Rodero, C.F.; Chorilli, M.; Leonardi, G.R. Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays. Polymers 2017, 9, 391. https://doi.org/10.3390/polym9090391
Monteiro e Silva SA, Calixto GMF, Cajado J, De Carvalho PCA, Rodero CF, Chorilli M, Leonardi GR. Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays. Polymers. 2017; 9(9):391. https://doi.org/10.3390/polym9090391
Chicago/Turabian StyleMonteiro e Silva, Silas Arandas, Giovana Maria Fioramonti Calixto, Juliana Cajado, Patrícia Caballieri Antunes De Carvalho, Camila Fernanda Rodero, Marlus Chorilli, and Gislaine Ricci Leonardi. 2017. "Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays" Polymers 9, no. 9: 391. https://doi.org/10.3390/polym9090391
APA StyleMonteiro e Silva, S. A., Calixto, G. M. F., Cajado, J., De Carvalho, P. C. A., Rodero, C. F., Chorilli, M., & Leonardi, G. R. (2017). Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays. Polymers, 9(9), 391. https://doi.org/10.3390/polym9090391