Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers
"> Figure 1
<p>SAXD patterns of original Dellite 67G (D67G) and as-spun PE-based nanocomposite fibers at different clay content (3, 5 and 10 wt %, respectively).</p> "> Figure 2
<p>ATR-FTIR spectra of Dellite 67G, PE and PE/5D67G as-spun fibers in the range 600–4000 cm<sup>−1</sup>. Detail of the regions 1650–1850 cm<sup>−1</sup> and 800–1200 cm<sup>−1</sup> are also reported.</p> "> Figure 3
<p>TEM image of as-spun PE/5D67G fiber (section parallel to fiber axis).</p> "> Figure 4
<p>WAXD patterns of nanocomposite fibers.</p> "> Figure 5
<p>Tensile stress (σ)/strain (ε) curves of as-spun PE, PE/3D67G, PE/5D67G and PE/10D67G fibers.</p> "> Figure 6
<p>As-spun fibers elastic modulus and stress at yield correlated to the nanoclay wt % (0, 3, 5 and 10, respectively).</p> "> Figure 7
<p>WAXD patterns for the investigated composite fibers at the different DRs (as-spun, 7.25, 16 and 19, respectively).</p> "> Figure 8
<p>Changes of FWHM in equatorial (110) and (200) reflection against draw ratio of the investigated fibers.</p> "> Figure 9
<p>ATR-FTIR of PE/5D67G fibers at different draw ratios (i.e., as-spun, 7.25 and 19) in the range 1200–800 cm<sup>−1</sup>.</p> "> Figure 10
<p>TEM images of longitudinal sections of PE/5D67G fibers: as-spun (<b>left</b>); drawn at <span class="html-italic">DR</span> 7.25 (<b>center</b>); and at <span class="html-italic">DR</span> 19 (<b>right</b>), respectively.</p> "> Figure 11
<p>Relative diameter variation after drawing for the investigated fibers (i.e., PE, PE/3D67G, PE/5D67G and PE/10D67G).</p> "> Figure 12
<p>SEM micrographs (2000×) of PE/3D67G fibers surface: (<b>a</b>) as-spun fiber; (<b>b</b>) <span class="html-italic">DR</span> = 7.25; (<b>c</b>) <span class="html-italic">DR</span> = 13.50; and (<b>d</b>) <span class="html-italic">DR</span> = 19.</p> "> Figure 13
<p>SEM micrographs (2000×) of fibers surface at their respective highest <span class="html-italic">DR</span>: (<b>a</b>) PE at <span class="html-italic">DR</span> 16; (<b>b</b>) PE/3D67G; (<b>c</b>) PE/5D67G; and (<b>d</b>) PE/10D67G, at <span class="html-italic">DR</span> 19.</p> "> Figure 14
<p>SEM micrographs (10000×) of etched fibers: (<b>a</b>) PE/3D67G; (<b>b</b>) PE/5D67G; and (<b>c</b>) PE/10D67G, at <span class="html-italic">DR</span> 19 (white arrow indicates the fiber axis).</p> "> Figure 15
<p>Stress/strain curve for PE/3D67G drawn fibers at different <span class="html-italic">DR</span>s (7.25, 10, 13.5, 16 and 19).</p> "> Figure 16
<p>Increase of the elastic modulus at increasing draw ratios (<span class="html-italic">DR</span>s) of PE, PE/3D67G, PE/5D67G and PE/10D67G fibers, standard deviation ±10%.</p> "> Figure 17
<p>Tensile strength (σ<sub>b</sub>) of PE, PE/3D67G, PE/5D67G and PE/10D67G drawn fibers at the investigated <span class="html-italic">DR</span>s (7.25, 10, 13.5, 16 and 19), standard deviation ±5%.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Nanocomposites
2.3. Fibers Drawing
2.4. Characterization
3. Results
3.1. Morphology of As-Spun Fibers
3.2. Mechanical Properties of As-Spun Fibers
3.3. Structural and Morphological Characterization of Drawn Fibers
3.4. Mechanical Properties of Drawn Fibers
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hearle, J.W. High-Performance Fibres; Woodhead Publishing: Cambridge, UK, 2001. [Google Scholar]
- Coppola, B.; Scarfato, P.; Incarnato, L.; Di Maio, L. Durability and mechanical properties of nanocomposite fiber reinforced concrete. City Saf. Energy 2014, 2, 127–136. [Google Scholar] [CrossRef]
- De Leon, A.C.; Chen, Q.; Palaganas, N.B.; Palaganas, J.O.; Manapat, J.; Advincula, R.C. High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 2016, 103, 141–155. [Google Scholar] [CrossRef]
- Alateyah, A.I.; Dhakal, N.H.; Zhang, Z.Y. Processing, properties, and applications of polymer nanocomposites based on layer silicates: A review. Adv. Polym. Technol. 2013, 32, 21368. [Google Scholar] [CrossRef]
- Garofalo, E.; Fariello, M.L.; Di Maio, L.; Incarnato, L. Effect of biaxial drawing on morphology and properties of copolyamide nanocomposites produced by film blowing. Eur. Polym. J. 2013, 49, 80–89. [Google Scholar] [CrossRef]
- Di Maio, L.; Scarfato, P.; Milana, M.R.; Feliciani, R.; Denaro, M.; Padula, G.; Incarnato, L. Bionanocomposite polylactic acid/organoclay films: Functional properties and measurement of total and lactic acid specific migration. Packag. Technol. Sci. 2014, 27, 535–547. [Google Scholar] [CrossRef]
- Russo, G.; Simon, G.; Incarnato, L. Correlation between rheological, mechanical, and barrier properties in new copolyamide-based nanocomposite films. Macromolecules 2006, 39, 3855–3864. [Google Scholar] [CrossRef]
- Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P.; Sun, T.; Garces, J.M.; Jérôme, R. Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: Synthesis and mechanical properties. Polymer 2002, 43, 2123–2132. [Google Scholar] [CrossRef]
- D’Amato, M.; Dorigato, A.; Fambri, L.; Pegoretti, A. High performance polyethylene nanocomposite fibers. Express Polym. Lett. 2012, 6, 954. [Google Scholar] [CrossRef]
- Scarfato, P.; Incarnato, L.; Di Maio, L.; Dittrich, B.; Schartel, B. Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites. Compos. B Eng. 2016, 98, 444–452. [Google Scholar] [CrossRef]
- Mistretta, M.; Morreale, M.; La Mantia, F. Thermomechanical degradation of polyethylene/polyamide 6 blend-clay nanocomposites. Polym. Degrad. Stab. 2014, 99, 61–67. [Google Scholar] [CrossRef]
- Russo, G.; Nicolais, V.; Di Maio, L.; Montesano, S.; Incarnato, L. Rheological and mechanical properties of nylon 6 nanocomposites submitted to reprocessing with single and twin screw extruders. Polym. Degrad. Stab. 2007, 92, 1925–1933. [Google Scholar] [CrossRef]
- Scarfato, P.; Di Maio, L.; Milana, M.R.; Giamberardini, S.; Denaro, M.; Incarnato, L. Study of performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly(lactic acid)/nanoclay multilayer films for food packaging. Food Addit. Contam. A 2017. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, E.; Scarfato, P.; Di Maio, L.; Incarnato, L. Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging. Polym. Compos. 2017. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mater. Sci. 2015, 73, 1–43. [Google Scholar] [CrossRef]
- Tsirka, K.; Foteinidis, G.; Dimos, K.; Tzounis, L.; Gournis, D.; Paipetis, A.S. Production of hierarchical all graphitic structures: A systematic study. J. Colloid Interface Sci. 2017, 487, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Felisberto, M.; Tzounis, L.; Sacco, L.; Stamm, M.; Candal, R.; Rubiolo, G.H.; Goyanes, S. Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites. Compos. Commun. 2017, 3, 33–37. [Google Scholar] [CrossRef]
- Tzounis, L.; Liebscher, M.; Tzounis, A.; Petinakis, E.; Paipetis, A.S.; Mäder, E.; Stamm, M. CNT-grafted glass fibers as a smart tool for epoxy cure monitoring, UV-sensing and thermal energy harvesting in model composites. RSC Adv. 2016, 6, 55514–55525. [Google Scholar] [CrossRef]
- Coppola, B.; Di Maio, L.; Scarfato, P.; Incarnato, L. Use of polypropylene fibers coated with nano-silica particles into a cementitious mortar. In Polymer Processing with Resulting Morphology and Properties: Feet in the Present and Eyes at the Future, Proceedings of the GT70 International Conference, Salerno, Italy, 15–17 October 2015; Pantani, R., De Santis, F., Speranza, V., Eds.; AIP Publishing: Melville, NY, USA, 2015. [Google Scholar]
- Cricrì, G.; Garofalo, E.; Naddeo, F.; Incarnato, L. Stiffness constants prediction of nanocomposites using a periodic 3D-FEM model. J. Polym. Sci. 2012, 50, 207–220. [Google Scholar] [CrossRef]
- Joshi, M.; Shaw, M.; Butola, B. Studies on composite filaments from nanoclay reinforced polypropylene. Fibers Polym. 2004, 5, 59–67. [Google Scholar] [CrossRef]
- Lee, S.H.; Youn, J.R. Properties of polypropylene/layered-silicate nanocomposites and melt-spun fibers. J. Appl. Polym. Sci. 2008, 109, 1221–1231. [Google Scholar] [CrossRef]
- Rangasamy, L.; Shim, E.; Pourdeyhimi, B. Structure and tensile properties of nanoclay–polypropylene fibers produced by melt spinning. J. Appl. Polym. Sci. 2011, 121, 410–419. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Arrigo, R.; Morreale, M. Effect of the orientation and rheological behaviour of biodegradable polymer nanocomposites. Eur. Polym. J. 2014, 54, 11–17. [Google Scholar] [CrossRef]
- Incarnato, L.; Scarfato, P.; Scatteia, L.; Acierno, D. Rheological behavior of new melt compounded copolyamide nanocomposites. Polymer 2004, 45, 3487–3496. [Google Scholar] [CrossRef]
- Garofalo, E.; Russo, G.M.; Di Maio, L.; Incarnato, L. Study on the effect of uniaxial elongational flow on polyamide based nanocomposites. Macromol. Symp. 2007, 247, 110–119. [Google Scholar] [CrossRef]
- Chantrasakul, S.; Amornsakchai, T. High strength polyethylene fibers from high density polyethylene/organoclay composites. Polym. Eng. Sci. 2007, 47, 943–950. [Google Scholar] [CrossRef]
- Wang, K.H.; Choi, M.H.; Koo, C.M.; Choi, Y.S.; Chung, I.J. Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer 2001, 42, 9819–9826. [Google Scholar] [CrossRef]
- Zhai, H.; Xu, W.; Guo, H.; Zhou, Z.; Shen, S.; Song, Q. Preparation and characterization of pe and PE–g–mah/montmorillonite nanocomposites. Eur. Polym. J. 2004, 40, 2539–2545. [Google Scholar] [CrossRef]
- Morawiec, J.; Pawlak, A.; Slouf, M.; Galeski, A.; Piorkowska, E.; Krasnikowa, N. Preparation and properties of compatibilized ldpe/organo-modified montmorillonite nanocomposites. Eur. Polym. J. 2005, 41, 1115–1122. [Google Scholar] [CrossRef]
- Pegoretti, A.; Dorigato, A.; Penati, A. Tensile mechanical response of polyethylene–clay nanocomposites. Express Polym. Lett. 2007, 1, 123–131. [Google Scholar] [CrossRef]
- Coppola, B.; Di Maio, L.; Scarfato, P.; Incarnato, L. Production and Characterization of Polyethylene/Organoclay Oriented Fiber. In Proceedings of the VIII International Conference on Times of Polymers and Composites, Ischia, Italy, 19–23 June 2016; D’Amore, A., Acierno, D., Grassia, L., Eds.; AIP Publishing: Melville, NY, USA, 2016. [Google Scholar]
- Amornsakchai, T.; Olley, R.; Bassett, D.; Al-Hussein, M.; Unwin, A.; Ward, I. On the influence of initial morphology on the internal structure of highly drawn polyethylene. Polymer 2000, 41, 8291–8298. [Google Scholar] [CrossRef]
- Liparoti, S.; Sorrentino, A.; Guzman, G.; Cakmak, M.; Titomanlio, G. Fast mold surface temperature evolution: Relevance of asymmetric surface heating for morphology of ipp molded samples. RSC Adv. 2015, 5, 36434–36448. [Google Scholar] [CrossRef]
- Galimberti, M. Rubber-Clay Nanocomposites: Science, technoLogy, and Applications; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- IJdo, W.L.; Kemnetz, S.; Benderly, D. An infrared method to assess organoclay delamination and orientation in organoclay polymer nanocomposites. Polym. Eng. Sci. 2006, 46, 1031–1039. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds; John Wiley & Sons: New York, NY, USA, 2014. [Google Scholar]
- La Mantia, F.P.; Dintcheva, N.T.; Scaffaro, R.; Marino, R. Morphology and properties of polyethylene/clay nanocomposite drawn fibers. Macromol. Mater. Eng. 2008, 293, 83–91. [Google Scholar] [CrossRef]
- Guo, Z.; Hagström, B. Preparation of polypropylene/nanoclay composite fibers. Polym. Eng. Sci. 2013, 53, 2035–2044. [Google Scholar] [CrossRef]
- Pavliková, S.; Thomann, R.; Reichert, P.; Mülhaupt, R.; Marcinčin, A.; Borsig, E. Fiber spinning from poly (propylene)–organoclay nanocomposite. J. Appl. Polym. Sci. 2003, 89, 604–611. [Google Scholar] [CrossRef]
- Gopakumar, T.; Lee, J.; Kontopoulou, M.; Parent, J. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 2002, 43, 5483–5491. [Google Scholar] [CrossRef]
- Garofalo, E.; Russo, G.; Scarfato, P.; Incarnato, L. Nanostructural modifications of polyamide/mmt hybrids under isothermal and nonisothermal elongational flow. J. Polym. Sci. B 2009, 47, 981–993. [Google Scholar] [CrossRef]
- Di Maio, L.; Garofalo, E.; Scarfato, P.; Incarnato, L. Effect of polymer/organoclay composition on morphology and rheological properties of polylactide nanocomposites. Polym. Compos. 2015, 36, 1135–1144. [Google Scholar] [CrossRef]
- Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32, 4390–4403. [Google Scholar] [CrossRef]
- Peterlin, A. Crystalline character in polymers. J. Polym. Sci. C 1965, 9, 61–89. [Google Scholar] [CrossRef]
- Wang, K.H.; Chung, I.J.; Jang, M.C.; Keum, J.K.; Song, H.H. Deformation behavior of polyethylene/silicate nanocomposites as studied by real-time wide-angle X-ray scattering. Macromolecules 2002, 35, 5529–5535. [Google Scholar] [CrossRef]
- Okamoto, M.; Nam, P.H.; Maiti, P.; Kotaka, T.; Hasegawa, N.; Usuki, A. A house of cards structure in polypropylene/clay nanocomposites under elongational flow. Nano Lett. 2001, 1, 295–298. [Google Scholar] [CrossRef]
- Mittal, K.L. Polymer Surface Modification: Relevance to Adhesion; CRC Press: Leiden, The Netherlands, 2004. [Google Scholar]
- Alonso, Y.; Martini, R.E.; Iannoni, A.; Terenzi, A.; Kenny, J.M.; Barbosa, S.E. Polyethylene/sepiolite fibers. Influence of drawing and nanofiller content on the crystal morphology and mechanical properties. Polym. Eng. Sci. 2015, 55, 1096–1103. [Google Scholar] [CrossRef]
- Amornsakchai, T.; Songtipya, P. On the influence of molecular weight and crystallisation condition on the development of defect in highly drawn polyethylene. Polymer 2002, 43, 4231–4236. [Google Scholar] [CrossRef]
- Amornsakchai, T.; Bassett, D.; Olley, R.; Unwin, A.; Ward, I. Remnant morphologies in highly-drawn polyethylene after annealing. Polymer 2001, 42, 4117–4126. [Google Scholar] [CrossRef]
- El Maaty, M.A.; Bassett, D.; Olley, R.; Dobb, M.; Tomka, J.; Wang, I.-C. On the formation of defects in drawn polypropylene fibres. Polymer 1996, 37, 213–218. [Google Scholar] [CrossRef]
- Zuiderduin, W.; Westzaan, C.; Huetink, J.; Gaymans, R. Toughening of polypropylene with calcium carbonate particles. Polymer 2003, 44, 261–275. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M.; Scaffaro, R.; Tulone, S. Rheological and mechanical behavior of ldpe/calcium carbonate nanocomposites and microcomposites. J. Appl. Polym. Sci. 2013, 127, 2544–2552. [Google Scholar] [CrossRef]
Bands (cm−1) | Assignments |
---|---|
3600–3200 | –OH stretching vibration |
2913 | –CH2 asymmetric stretching |
2847 | –CH2 symmetric stretching |
1790 | C=O symmetric stretching |
1710 | C=O symmetric stretching |
1470 | –CH2 bending deformation |
1070 | Si–O out of plane bending |
1045, 1021 | Si–O in plane bending |
919 | Ring stretching vibration of saturated cyclic anhydride |
729 | –CH2 rocking vibration |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, B.; Scarfato, P.; Incarnato, L.; Di Maio, L. Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers. Polymers 2017, 9, 235. https://doi.org/10.3390/polym9060235
Coppola B, Scarfato P, Incarnato L, Di Maio L. Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers. Polymers. 2017; 9(6):235. https://doi.org/10.3390/polym9060235
Chicago/Turabian StyleCoppola, Bartolomeo, Paola Scarfato, Loredana Incarnato, and Luciano Di Maio. 2017. "Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers" Polymers 9, no. 6: 235. https://doi.org/10.3390/polym9060235
APA StyleCoppola, B., Scarfato, P., Incarnato, L., & Di Maio, L. (2017). Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers. Polymers, 9(6), 235. https://doi.org/10.3390/polym9060235