Conformation Change, Tension Propagation and Drift-Diffusion Properties of Polyelectrolyte in Nanopore Translocation
"> Figure 1
<p>An illustration of the system. The negatively-charged polyelectrolyte is colored in yellow bead-spring chains. The counterions ((<math display="inline"> <semantics> <mrow> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math>)-ions) are represented in white beads, and the coions ((<math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </semantics> </math>)-ions) are in green beads. A hallow wall separates the space into the cis region (Region I) and the trans region (Region III), connected by a pore channel (Region II) at the center. An electric field <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>E</mi> <mo stretchy="false">→</mo> </mover> <mo>=</mo> <mo>−</mo> <mi>E</mi> <mover accent="true"> <mi>z</mi> <mo>^</mo> </mover> </mrow> </semantics> </math> is applied inside the pore where the unit vector <math display="inline"> <semantics> <mover accent="true"> <mi>z</mi> <mo>^</mo> </mover> </semantics> </math> points to the right, along the channel axis. The chain threads through the pore and is gradually transported from the cis region to the trans region by the electric field. In order to visualize the chain section inside the pore, the wall beads (in gray color) have been plotted with a certain degree of transparency.</p> "> Figure 2
<p>Shape factor <math display="inline"> <semantics> <mrow> <mi>η</mi> <mo>=</mo> <mrow> <mo>〈</mo> <msubsup> <mi>R</mi> <mrow> <mi mathvariant="normal">e</mi> </mrow> <mn>2</mn> </msubsup> <mo>〉</mo> </mrow> <mo>/</mo> <mrow> <mo>〈</mo> <msubsup> <mi>R</mi> <mrow> <mi mathvariant="normal">g</mi> </mrow> <mn>2</mn> </msubsup> <mo>〉</mo> </mrow> </mrow> </semantics> </math> in the cis region (I) and trans region (III) for <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics> </math> as a function of the scaled time <math display="inline"> <semantics> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> at five driving electric fields <span class="html-italic">E</span> whose values are indicated in the plots.</p> "> Figure 3
<p>Average variations of (<b>a</b>) the asphericity <math display="inline"> <semantics> <mrow> <mo>〈</mo> <mi>A</mi> <mo>〉</mo> </mrow> </semantics> </math> and of (<b>b</b>) the prolateness <math display="inline"> <semantics> <mrow> <mo>〈</mo> <mi>P</mi> <mo>〉</mo> </mrow> </semantics> </math> in the cis region (I) and trans-region (III) as a function of the scaled time <math display="inline"> <semantics> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math>, for <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics> </math> at different driving electric fields <span class="html-italic">E</span> (indicated in the plots).</p> "> Figure 4
<p>Variations of the averaged polar angle (<b>a</b>) <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mi>θ</mi> <mi mathvariant="normal">I</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> and (<b>b</b>) <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mi>θ</mi> <mi>III</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> in degrees <math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>, as a function of the scaled time <math display="inline"> <semantics> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> at different driving electric fields <span class="html-italic">E</span>. The number of monomers of the chain <span class="html-italic">N</span> is 256.</p> "> Figure 5
<p>Intensity plots of the bond tension <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> in the scaled <math display="inline"> <semantics> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math>-<math display="inline"> <semantics> <mover accent="true"> <mi>n</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> space for <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics> </math> at four field strengths <span class="html-italic">E</span> (indicated in the figures). The strength of tension is represented by color, and the color scale is given at the right of the figure. The dashed line shows the scaled translocation coordinate <math display="inline"> <semantics> <mrow> <mo>〈</mo> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> <mo>〉</mo> </mrow> </semantics> </math>, which depicts the progress of threading.</p> "> Figure 6
<p>Variation of the bond tension <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> (the black curves) for <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics> </math> at a set of scaled time points <math display="inline"> <semantics> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> (values indicated in the figures) at the driving fields: (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>4</mn> <mo>.</mo> <mn>0</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mn>8</mn> <mo>.</mo> <mn>0</mn> </mrow> </semantics> </math>; and (<b>c</b>) <math display="inline"> <semantics> <mrow> <mn>32</mn> <mo>.</mo> <mn>0</mn> </mrow> </semantics> </math>. The direction of the scaled <math display="inline"> <semantics> <mover accent="true"> <mi>n</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math>-axis is reversed so that the monomers entering the trans region stay on the right-hand side of the plot while the cis monomers rest on the left-hand side. The sky-blue region indicates the monomers in the pore region. The direct distance <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mi>D</mi> <mi>n</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> and the contour distance <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>n</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> to the pore are plotted in red and green colors, respectively. The values of <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mi>D</mi> <mi>n</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>n</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> are read from the right <span class="html-italic">y</span>-axis of the figure. In each plot, a downward arrow indicates the location of the tension front, whereas a dashed line marks the boundary for the straightened chain section.</p> "> Figure 7
<p>Normalized waiting time function <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>w</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mo>(</mo> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> <mo>)</mo> </mrow> </mrow> </semantics> </math> for <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics> </math> at different field strengths <span class="html-italic">E</span> indicated at the left of the curves. <math display="inline"> <semantics> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> is defined as <math display="inline"> <semantics> <mrow> <mi>s</mi> <mo>/</mo> <mi>N</mi> </mrow> </semantics> </math>. The curves have been shifted upward with a fixed value, one after the other.</p> "> Figure 8
<p>(<b>a</b>) Hump position <math display="inline"> <semantics> <msup> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> <mo>*</mo> </msup> </semantics> </math> of the normalized waiting time function <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>w</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mo>(</mo> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> <mo>)</mo> </mrow> </mrow> </semantics> </math>, as a function of <span class="html-italic">E</span>. The number of monomers <span class="html-italic">N</span> is indicated in the figure. (<b>b</b>) <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>N</mi> <mo>−</mo> <msup> <mi>s</mi> <mo>*</mo> </msup> <mo>)</mo> </mrow> </semantics> </math> vs. <span class="html-italic">N</span> at different field strengths <span class="html-italic">E</span>.</p> "> Figure 9
<p>Drift velocity <math display="inline"> <semantics> <mrow> <mi>v</mi> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics> </math> for: (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>128</mn> </mrow> </semantics> </math>; (<b>b</b>) 256; and (<b>c</b>) 384. <math display="inline"> <semantics> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> is the scaled translocation coordinate. The strength of the driving field <span class="html-italic">E</span> is indicated near the curve. In panel (c), the estimated drift velocity <math display="inline"> <semantics> <mrow> <msub> <mi>v</mi> <mi>es</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> is plotted in thin dashed curves in the same color code.</p> "> Figure 10
<p>(<b>a</b>) Variance of the translocation coordinate <math display="inline"> <semantics> <mrow> <mo>〈</mo> <mo>Δ</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>〉</mo> </mrow> </semantics> </math> versus the scaled time <math display="inline"> <semantics> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mo>〈</mo> <mo>Δ</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>〉</mo> </mrow> </semantics> </math> plotted as a function of the real time <span class="html-italic">t</span> in the log-log plot. The chain has 256 monomers. The field strength <span class="html-italic">E</span> is indicated in the figures.</p> "> Figure 11
<p>Probability densities <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics> </math> versus the scaled time <math display="inline"> <semantics> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> for (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics> </math>, (<b>b</b>) <math display="inline"> <semantics> <mrow> <mn>2</mn> <mo>.</mo> <mn>0</mn> </mrow> </semantics> </math> and (<b>c</b>) <math display="inline"> <semantics> <mrow> <mn>32</mn> <mo>.</mo> <mn>0</mn> </mrow> </semantics> </math> at different translocation coordinates <span class="html-italic">s</span> indicated near the curves. For clarity, the curves have been shifted upward, one by one, by a fixed step. The dashed curves superimposed on the data are the results of fitting from Equation (<a href="#FD19-polymers-08-00378" class="html-disp-formula">19</a>). The number of monomers of the chain <span class="html-italic">N</span> is 256.</p> "> Figure 12
<p>(<b>a</b>) Fitting parameter <math display="inline"> <semantics> <msub> <mi>σ</mi> <mi>s</mi> </msub> </semantics> </math> as a function of the scaled coordinate <math display="inline"> <semantics> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> at different <span class="html-italic">E</span> fields; (<b>b</b>) relative width <math display="inline"> <semantics> <msub> <mover accent="true"> <mi>W</mi> <mo stretchy="false">˜</mo> </mover> <mi>s</mi> </msub> </semantics> </math> of the log-normal distribution, calculated by <math display="inline"> <semantics> <mrow> <mn>2</mn> <mo form="prefix">sinh</mo> <mrow> <mo>(</mo> <msqrt> <mrow> <mn>2</mn> <mo form="prefix">ln</mo> <mn>2</mn> </mrow> </msqrt> <msub> <mi>σ</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo form="prefix">exp</mo> <mrow> <mo>(</mo> <mo>−</mo> <msubsup> <mi>σ</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msub> <mi>μ</mi> <mi>s</mi> </msub> <mo>/</mo> <mrow> <mo>〈</mo> <mi>τ</mi> <mo>〉</mo> </mrow> </mrow> </semantics> </math>, versus <math display="inline"> <semantics> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math>. The field strengths <span class="html-italic">E</span> are indicated in the figure. The number of monomers <span class="html-italic">N</span> is equal to 256.</p> "> Figure 13
<p>(<b>a</b>) <math display="inline"> <semantics> <mrow> <mo>〈</mo> <msub> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> <mi>s</mi> </msub> <mo>〉</mo> </mrow> </semantics> </math> calculated by <math display="inline"> <semantics> <mrow> <msub> <mi>μ</mi> <mi>s</mi> </msub> <mo form="prefix">exp</mo> <mrow> <mo>(</mo> <msubsup> <mi>σ</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math>, plotted in the scaled coordinate <math display="inline"> <semantics> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math> at different <span class="html-italic">E</span>. For clarity, the curves have been shifted upward, one by one, by a fixed value. The strengths of <span class="html-italic">E</span> are indicated in the figure. The chain has 256 monomers. The dashed curves are the mean time obtained directly from the simulations, superimposed here for comparison. (<b>b</b>) Retardation <math display="inline"> <semantics> <msub> <mi>δ</mi> <mi>s</mi> </msub> </semantics> </math> as a function of the scaled coordinate <math display="inline"> <semantics> <mover accent="true"> <mi>s</mi> <mo stretchy="false">˜</mo> </mover> </semantics> </math>.</p> ">
Abstract
:1. Introduction
2. Model and Setup
3. Mapping Simulation Units to Real Units
4. Results and Discussion
4.1. Chain Conformation and Orientation
4.2. Tension Propagation on a Chain
4.3. Waiting Time
4.4. Drift-Diffusion Properties
5. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
List of Symbols:
Mean value of physical quantity X | |
, , | Values of physical quantity X in the cis (I), pore (II) and trans (III) regions |
A | Asphericity |
α, δ | Exponents for the scaling behavior of |
Retardation | |
Salt concentration | |
Direct distance from the n-th monomer to the pore | |
Diffusion coefficient | |
E | Strength of electric field (applied only inside the pore) |
e | Charge unit |
(, ), (, ) | Energy and length parameters of WCA potential for bead-bead (bb) and bead-wall (bw) interactions |
tensile force on the n-th bond | |
I | Ionic strength |
Gyration tensor | |
κ | Inverse Debye length |
k | Spring constant of bond |
Boltzmann constant | |
Equilibrium bond length | |
Charge distance on the chain backbone | |
Length of the n-th bond | |
, , | Persistence length, intrinsic and electrostatic persistence lengths |
η | Shape factor () |
Contour distance from the n-th monomer to the pore | |
Bjerrum length | |
, , | Eigenvalues of the gyration tensor |
Mean of the eigenvalues () | |
m | Mass unit of simulation |
N | Number of monomers of a chain |
, | Number of condensed -ions, number of condensed -ions |
Number of monomers in a region | |
n, | Monomer ID number, scaled n () |
ϕ | Azimuthal angle |
P | Prolateness |
Probability density distribution | |
Square of the end-to-end distance | |
Square of the radius of gyration | |
σ | Length unit of simulation |
, | Fitting parameters for Equation (19) |
s, | Translocation coordinate, scaled s () |
, | Hump position of the function, scaled () |
θ | Polar angle |
T | Temperature |
t, | Time, scaled time () |
, | Time needed to reach the translocation coordinate s, |
τ | Translocation time |
Time unit of simulation | |
, | Drift velocity, estimated drift velocity |
Mean threading velocity () | |
, | Full width at half maximum of a log-normal distribution, |
, | Waiting time function, normalized waiting time function |
ξ | Exponent for the scaling behavior of |
ζ | Friction coefficient |
References
- Oosawa, F. Polyelectrolytes; Marcel Dekker: New York, NY, USA, 1971. [Google Scholar]
- Bloomfield, V.A. DNA condensation. Curr. Opin. Struct. Biol. 1996, 6, 334–341. [Google Scholar] [CrossRef]
- Radeva, T. Physical Chemistry of Polyelectrolytes; CRC Press: Boca Raton, FL, USA, 2001; Volume 99. [Google Scholar]
- Grosberg, A.Y.; Nguyen, T.; Shklovskii, B. Colloquium: The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 2002, 74, 329–345. [Google Scholar] [CrossRef]
- Holm, C.; Joanny, J.; Kremer, K.; Netz, R.; Reineker, P.; Seidel, C.; Vilgis, T.A.; Winkler, R. Polyelectrolyte theory. Adv. Polym. Sci. 2004, 166, 67–111. [Google Scholar]
- Dobrynin, A.V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005, 30, 1049–1118. [Google Scholar] [CrossRef]
- Dobrynin, A.V. Theory and simulations of charged polymers: From solution properties to polymeric nanomaterials. Curr. Opin. Colloid Interface Sci. 2008, 13, 376–388. [Google Scholar] [CrossRef]
- Visakh, P.M.; Bayraktar, O.; Picó, G. Polyelectrolytes: Thermodynamics and Rheology; Springer: Berlin, Germany, 2014. [Google Scholar]
- Stevens, M.J.; Kremer, K. The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study. J. Chem. Phys. 1995, 103, 1669. [Google Scholar] [CrossRef]
- Sarraguça, J.; Skepö, M.; Pais, A.; Linse, P. Structure of polyelectrolytes in 3:1 salt solutions. J. Chem. Phys. 2003, 119, 12621. [Google Scholar] [CrossRef]
- Hsiao, P.Y.; Luijten, E. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes. Phys. Rev. Lett. 2006, 97, 148301. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.Y. Linear polyelectrolytes in tetravalent salt solutions. J. Chem. Phys. 2006, 124, 044904. [Google Scholar] [CrossRef] [PubMed]
- Dobrynin, A.V. Effect of counterion condensation on rigidity of semiflexible polyelectrolytes. Macromolecules 2006, 39, 9519–9527. [Google Scholar] [CrossRef]
- Grass, K.; Holm, C. Polyelectrolytes in electric fields: Measuring the dynamical effective charge and effective friction. Soft Matter 2009, 5, 2079–2092. [Google Scholar] [CrossRef]
- Wei, Y.F.; Hsiao, P.Y. Effect of chain stiffness on ion distributions around a polyelectrolyte in multivalent salt solutions. J. Chem. Phys. 2010, 132, 024905. [Google Scholar] [CrossRef] [PubMed]
- Carnal, F.; Stoll, S. Chain stiffness, salt valency, and concentration influences on titration curves of polyelectrolytes: Monte Carlo simulations. J. Chem. Phys. 2011, 134, 044909. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.; Colby, R. Polymer Physics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Odijk, T. Polyelectrolytes near the rod limit. J. Polym. Sci. B Polym. Phys. 1977, 15, 477–483. [Google Scholar] [CrossRef]
- Skolnick, J.; Fixman, M. Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 1977, 10, 944–948. [Google Scholar] [CrossRef]
- Ha, B.Y.; Thirumalai, D. Electrostatic persistence length of a polyelectrolyte chain. Macromolecules 1995, 28, 577–581. [Google Scholar] [CrossRef]
- Dobrynin, A.V. Electrostatic persistence length of semiflexible and flexible polyelectrolytes. Macromolecules 2005, 38, 9304–9314. [Google Scholar] [CrossRef]
- Manning, G.S. The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophys. J. 2006, 91, 3607–3616. [Google Scholar] [CrossRef] [PubMed]
- Savelyev, A.; Papoian, G.A. Chemically accurate coarse graining of double-stranded DNA. Proc. Natl. Acad. Sci. USA 2010, 107, 20340–20345. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Meisburger, S.P.; Pabit, S.A.; Sutton, J.L.; Webb, W.W.; Pollack, L. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc. Natl. Acad. Sci. USA 2012, 109, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Brunet, A.; Tardin, C.; Salomé, L.; Rousseau, P.; Destainville, N.; Manghi, M. Dependence of DNA persistence length on ionic strength of solutions with monovalent and divalent salts: A joint theory–experiment study. Macromolecules 2015, 48, 3641–3652. [Google Scholar] [CrossRef]
- Hsiao, P.Y. Chain morphology, swelling exponent, persistence length, like-charge attraction, and charge distribution around a chain in polyelectrolyte solutions: Effects of salt concentration and ion size studied by molecular dynamics simulations. Macromolecules 2006, 39, 7125–7137. [Google Scholar] [CrossRef]
- Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. [Google Scholar] [CrossRef] [PubMed]
- Kasianowicz, J.J.; Robertson, J.W.; Chan, E.R.; Reiner, J.E.; Stanford, V.M. Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 2008, 1, 737–766. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, B.M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Reiner, J.E.; Balijepalli, A.; Robertson, J.W.; Campbell, J.; Suehle, J.; Kasianowicz, J.J. Disease detection and management via single nanopore-based sensors. Chem. Rev. 2012, 112, 6431–6451. [Google Scholar] [CrossRef] [PubMed]
- Fyta, M. Threading DNA through nanopores for biosensing applications. J. Phys. Condens. Matter 2015, 27, 273101. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, M. Polymer Translocation; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Milchev, A. Single-polymer dynamics under constraints: Scaling theory and computer experiment. J. Phys. Condens. Matter 2011, 23, 103101. [Google Scholar] [CrossRef] [PubMed]
- Panja, D.; Barkema, G.T.; Kolomeisky, A.B. Through the eye of the needle: Recent advances in understanding biopolymer translocation. J. Phys. Condens. Matter 2013, 25, 413101. [Google Scholar] [CrossRef] [PubMed]
- Palyulin, V.V.; Ala-Nissila, T.; Metzler, R. Polymer translocation: The first two decades and the recent diversification. Soft Matter 2014, 10, 9016–9037. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Smith, G.D. Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study. J. Chem. Phys. 2003, 119, 11475. [Google Scholar] [CrossRef]
- Huopaniemi, I.; Luo, K.; Ala-Nissila, T.; Ying, S.C. Langevin dynamics simulations of polymer translocation through nanopores. J. Chem. Phys. 2006, 125, 124901. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, S.; Montesi, A.; Pasquali, M.; Kolomeisky, A.B.; Clementi, C. Dynamics of polymer translocation through nanopores: Theory meets experiment. Phys. Rev. Lett. 2006, 96, 118103. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Morrison, W.H.; Luo, K.; Ala-Nissila, T.; Ying, S.C.; Milchev, A.; Binder, K. Scaling exponents of forced polymer translocation through a nanopore. Eur. Phys. J. E 2009, 29, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Alapati, S.; Fernandes, D.V.; Suh, Y.K. Numerical and theoretical study on the mechanism of biopolymer translocation process through a nano-pore. J. Chem. Phys. 2011, 135, 055103. [Google Scholar] [CrossRef] [PubMed]
- Ikonen, T.; Bhattacharya, A.; Ala-Nissila, T.; Sung, W. Influence of non-universal effects on dynamical scaling in driven polymer translocation. J. Chem. Phys. 2012, 137, 085101. [Google Scholar] [CrossRef] [PubMed]
- Suhonen, P.; Kaski, K.; Linna, R. Criteria for minimal model of driven polymer translocation. Phys. Rev. E 2014, 90, 042702. [Google Scholar] [CrossRef] [PubMed]
- Sean, D.; Haan, H.W.; Slater, G.W. Translocation of a polymer through a nanopore starting from a confining nanotube. Electrophoresis 2015, 36, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.Y. Polyelectrolyte threading through a nanopore. Polymers 2016, 8, 73. [Google Scholar] [CrossRef]
- Bishop, M.; Saltiel, C.J. Application of the pivot algorithm for investigating the shapes of two-and three-dimensional lattice polymers. J. Chem. Phys. 1988, 88, 6594. [Google Scholar] [CrossRef]
- Jagodzinski, O.; Eisenriegler, E.; Kremer, K. Universal shape properties of open and closed polymer chains: Renormalization group analysis and Monte Carlo experiments. J. Phys. I Fr. 1992, 2, 2243–2279. [Google Scholar] [CrossRef]
- Nakamura, I.; Wang, Z.G. Effects of dielectric inhomogeneity in polyelectrolyte solutions. Soft Matter 2013, 9, 5686–5690. [Google Scholar] [CrossRef]
- Farahpour, F.; Maleknejad, A.; Varnik, F.; Ejtehadi, M.R. Chain deformation in translocation phenomena. Soft Matter 2013, 9, 2750–2759. [Google Scholar] [CrossRef]
- Sakaue, T. Sucking genes into pores: Insight into driven translocation. Phys. Rev. E 2010, 81, 041808. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Sakaue, T. Dynamical diagram and scaling in polymer driven translocation. Eur. Phys. J. E 2011, 34, 135. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Sakaue, T. Process time distribution of driven polymer transport. Phys. Rev. E 2012, 85, 061803. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.M.; Zhen, Y. Dynamic scaling theory of the forced translocation of a semi-flexible polymer through a nanopore. J. Stat. Phys. 2015, 161, 197–209. [Google Scholar] [CrossRef]
- Meller, A.; Nivon, L.; Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 2001, 86, 3435–3438. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M.J.; Golovchenko, J.A. Ion-beam sculpting at nanometre length scales. Nature 2001, 412, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Storm, A.J.; Storm, C.; Chen, J.; Zandbergen, H.; Joanny, J.F.; Dekker, C. Fast DNA translocation through a solid-state nanopore. Nano Lett. 2005, 5, 1193–1197. [Google Scholar] [CrossRef] [PubMed]
- Wanunu, M.; Sutin, J.; McNally, B.; Chow, A.; Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 2008, 95, 4716–4725. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.F.; Kowalczyk, S.W.; Calado, V.E.; Pandraud, G.; Zandbergen, H.W.; Vandersypen, L.M.; Dekker, C. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 3163–3167. [Google Scholar] [CrossRef] [PubMed]
- Merchant, C.A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M.D.; Venta, K.; Luo, Z.; Johnson, A.C.; et al. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 2915–2921. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Doi, K.; Uehara, S.; Morita, K.; Kawano, S. Theoretical Study of the Transpore velocity control of single-stranded DNA. Int. J. Mol. Sci. 2014, 15, 13817–13832. [Google Scholar] [CrossRef] [PubMed]
- Shankla, M.; Aksimentiev, A. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene. Nat. Commun. 2014, 5, 5171. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Yang, J.; Bi, K.; Ni, Z.; Li, D.; Chen, Y. Molecular dynamics study of DNA translocation through graphene nanopores. Phys. Rev. E 2013, 87, 062707. [Google Scholar] [CrossRef] [PubMed]
- Piguet, F.; Foster, D. Translocation of short and long polymers through an interacting pore. J. Chem. Phys. 2013, 138, 084902. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Ala-Nissila, T.; Ying, S.C. Polymer translocation through a nanopore: A two-dimensional Monte Carlo study. J. Chem. Phys. 2006, 124, 034714. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Bhattacharya, A. Driven translocation of a semi-flexible chain through a nanopore: A Brownian dynamics simulation study in two dimensions. J. Chem. Phys. 2013, 138, 204909. [Google Scholar] [CrossRef] [PubMed]
- Sarabadani, J.; Ikonen, T.; Ala-Nissila, T. Iso-flux tension propagation theory of driven polymer translocation: The role of initial configurations. J. Chem. Phys. 2014, 141, 214907. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.; Park, P. Polymer translocation through a pore in a membrane. Phys. Rev. Lett. 1996, 77, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Park, P.J.; Sung, W. Polymer translocation induced by adsorption. J. Chem. Phys. 1998, 108, 3013–3018. [Google Scholar] [CrossRef]
- Lubensky, D.K.; Nelson, D.R. Driven polymer translocation through a narrow pore. Biophys. J. 1999, 77, 1824–1838. [Google Scholar] [CrossRef]
- Muthukumar, M. Polymer translocation through a hole. J. Chem. Phys. 1999, 111, 10371. [Google Scholar] [CrossRef]
- Gardiner, C.W. Handbook of Stochastic Methods, 3rd ed.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Risken, H. Fokker-Planck Equation, 2nd ed.; Springer: Berlin, Germany, 1989. [Google Scholar]
- Slonkina, E.; Kolomeisky, A.B. Polymer translocation through a long nanopore. J. Chem. Phys. 2003, 118, 7112. [Google Scholar] [CrossRef]
- Panja, D.; Barkema, G.T. Passage times for polymer translocation pulled through a narrow pore. Biophys. J. 2008, 94, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Vocks, H.; Panja, D.; Barkema, G.T.; Ball, R.C. Pore-blockade times for field-driven polymer translocation. J. Phys. Condens. Matter 2008, 20, 095224. [Google Scholar] [CrossRef]
- Sakaue, T. Memory effect and fluctuating anomalous dynamics of a tagged monomer. Phys. Rev. E 2013, 87, 040601. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. When translocation dynamics becomes anomalous. Biophys. J. 2003, 85, 2776–2779. [Google Scholar] [CrossRef]
- Dubbeldam, J.; Milchev, A.; Rostiashvili, V.; Vilgis, T.A. Polymer translocation through a nanopore: A showcase of anomalous diffusion. Phys. Rev. E 2007, 76, 010801. [Google Scholar] [CrossRef] [PubMed]
- Sakaue, T. Nonequilibrium dynamics of polymer translocation and straightening. Phys. Rev. E 2007, 76, 021803. [Google Scholar] [CrossRef] [PubMed]
- Rowghanian, P.; Grosberg, A.Y. Force-driven polymer translocation through a nanopore: An old problem revisited. J. Phys. Chem. B 2011, 115, 14127–14135. [Google Scholar] [CrossRef] [PubMed]
- Dubbeldam, J.; Rostiashvili, V.; Milchev, A.; Vilgis, T.A. Forced translocation of a polymer: Dynamical scaling versus molecular dynamics simulation. Phys. Rev. E 2012, 85, 041801. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Sakaue, T. Driven anomalous diffusion: An example from polymer stretching. Phys. Rev. E 2015, 92, 012601. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Sakaue, T. Cis-trans dynamical asymmetry in driven polymer translocation. Phys. Rev. E 2013, 88, 042606. [Google Scholar] [CrossRef] [PubMed]
- Dubbeldam, J.L.; Rostiashvili, V.G.; Vilgis, T.A. Driven translocation of a polymer: Role of pore friction and crowding. J. Chem. Phys. 2014, 141, 124112. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.Z.; Luo, M.B. Study on the polymer translocation induced blockade ionic current inside a nanopore by Langevin dynamics simulation. J. Phys. Condens. Matter 2013, 25, 465101. [Google Scholar] [CrossRef] [PubMed]
- Katkar, H.; Muthukumar, M. Effect of charge patterns along a solid-state nanopore on polyelectrolyte translocation. J. Chem. Phys. 2014, 140, 135102. [Google Scholar] [CrossRef] [PubMed]
- Weeks, J.D.; Chandler, D.; Andersen, H.C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54, 5237–5247. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Chuang, J.; Kantor, Y.; Kardar, M. Anomalous dynamics of translocation. Phys. Rev. E 2001, 65, 011802. [Google Scholar] [CrossRef] [PubMed]
- Eisenriegler, E. Polymers Near Surfaces: Conformation Properties and Relation to Critical Phenomena; World Scientific: Singapore, 1993. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical RecipesThe Art of Scientific Computing, 3rd ed.; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Ariga, K.; Ji, Q.; Hill, J.P.; Vinu, A. Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. Soft Matter 2009, 5, 3562–3571. [Google Scholar] [CrossRef]
- Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q.; Yonamine, Y.; Wu, K.C.W.; Hill, J.P. Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution. Chem. Lett. 2014, 43, 36–68. [Google Scholar] [CrossRef]
© 2016 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, P.-Y. Conformation Change, Tension Propagation and Drift-Diffusion Properties of Polyelectrolyte in Nanopore Translocation. Polymers 2016, 8, 378. https://doi.org/10.3390/polym8100378
Hsiao P-Y. Conformation Change, Tension Propagation and Drift-Diffusion Properties of Polyelectrolyte in Nanopore Translocation. Polymers. 2016; 8(10):378. https://doi.org/10.3390/polym8100378
Chicago/Turabian StyleHsiao, Pai-Yi. 2016. "Conformation Change, Tension Propagation and Drift-Diffusion Properties of Polyelectrolyte in Nanopore Translocation" Polymers 8, no. 10: 378. https://doi.org/10.3390/polym8100378
APA StyleHsiao, P.-Y. (2016). Conformation Change, Tension Propagation and Drift-Diffusion Properties of Polyelectrolyte in Nanopore Translocation. Polymers, 8(10), 378. https://doi.org/10.3390/polym8100378