Properties of Polymer Composites Used in High-Voltage Applications
"> Figure 1
<p>The next generation of high-voltage applications employing polymer based nanocomposites.</p> "> Figure 2
<p>Evolution of the engineering materials (Redraw and adapted figure from [<a href="#B8-polymers-08-00173" class="html-bibr">8</a>]).</p> "> Figure 3
<p>Vacuum pressure impregnation and resin rich processes in manufacturing high-voltage insulation composites of rotating machines stator bars (Redrawn and adapted figure from [<a href="#B13-polymers-08-00173" class="html-bibr">13</a>,<a href="#B14-polymers-08-00173" class="html-bibr">14</a>]).</p> "> Figure 4
<p>Schematic representation of the ratio particles/interfaces changes with the size of the filler (Redrawn and adapted figure from [<a href="#B30-polymers-08-00173" class="html-bibr">30</a>]).</p> "> Figure 5
<p>Schematic representation the surface functionalization of inorganic particles via condensation reaction of functional silanes (Redraw and adapted figure from [<a href="#B69-polymers-08-00173" class="html-bibr">69</a>]).</p> "> Figure 6
<p>Schematic representation the surface functionalization of inorganic particles by (<b>a</b>) “grafting onto” and (<b>b</b>) “grafting from” reactions (Redraw and adapted figure from [<a href="#B72-polymers-08-00173" class="html-bibr">72</a>]).</p> "> Figure 7
<p>Surface statistic consequence of dividing a cube, where <span class="html-italic">N</span> is the total number of atoms and <span class="html-italic">n</span> is the number of surface atoms (Redraw and adapted figure from [<a href="#B73-polymers-08-00173" class="html-bibr">73</a>]).</p> "> Figure 8
<p>Wilkes’ model of the interface formed between silica nanoparticles and polymer matrix (© 2016 IEEE. Reprinted, with permission, from [<a href="#B76-polymers-08-00173" class="html-bibr">76</a>]).</p> "> Figure 9
<p>Tsagaropoulos’ schematic representation model of the morphological changes in the polymer matrix filled with silica filler in different concentrations: (<b>a</b>) less than 10 wt %; (<b>b</b>) circa 10 wt %; (<b>c</b>) over 20 wt % and (<b>d</b>) over 50 wt % (Redraw and adapted figure from [<a href="#B77-polymers-08-00173" class="html-bibr">77</a>]).</p> "> Figure 10
<p>Intensity model of Lewis showing the interface <span class="html-italic">ab</span> between two phases A and B are defined by the intensity <span class="html-italic">I</span><sub>α</sub> and the changes of the property α suffered when crosses the interface (© IOP Publishing. Reproduced with permission. All rights reserved [<a href="#B79-polymers-08-00173" class="html-bibr">79</a>]).</p> "> Figure 11
<p>Distribution of the electrical potential in Stern layer and Gouy-Chapman diffuse mobile ion double layer of the interface <span class="html-italic">ab</span> in response to a charge A (© IOP Publishing. Reproduced with permission. All rights reserved [<a href="#B79-polymers-08-00173" class="html-bibr">79</a>]).</p> "> Figure 12
<p>Tanaka’s multi-core model (© 2016 IEEE. Reprinted, with permission, from [<a href="#B76-polymers-08-00173" class="html-bibr">76</a>]).</p> "> Figure 13
<p>(<b>a</b>) Schematic representation of an interface LDPE—nanoSiO<sub>2</sub> chemical structure and (<b>b</b>) 3D electrostatic model (Reprinted, with permission, from author [<a href="#B84-polymers-08-00173" class="html-bibr">84</a>]).</p> "> Figure 14
<p>Interphase volume model of Raetzke for a silicone matrix and SiO<sub>2</sub> particles, with different interface thicknesses <span class="html-italic">i</span> (© 2016 IEEE. Reprinted, with permission, from [<a href="#B85-polymers-08-00173" class="html-bibr">85</a>]).</p> "> Figure 15
<p>Polymer Chain Alignment Model by Andritsch: nanoparticles (<b>a</b>) without and (<b>b</b>) with surface modifications. (Redraw and adapted figure from [<a href="#B86-polymers-08-00173" class="html-bibr">86</a>]).</p> "> Figure 16
<p>Schematic representation of the water shell model proposed by Zou. The percolative path passes through overlapping water shells, around nanoparticles (Redraw and adapted figure from [<a href="#B87-polymers-08-00173" class="html-bibr">87</a>]).</p> "> Figure 17
<p>Schematic representation of (<b>a</b>) bottom-up and (<b>b</b>) top-down methods.</p> "> Figure 18
<p>Schematic representation of the solution processing (Redraw and adapted figure from [<a href="#B93-polymers-08-00173" class="html-bibr">93</a>]).</p> "> Figure 19
<p>Schematic representation of the melt processing (Redraw and adapted figure from [<a href="#B93-polymers-08-00173" class="html-bibr">93</a>]).</p> "> Figure 20
<p>Schematic representation of the intercalation of monomers <span class="html-italic">in-situ</span> polymerization (Redraw and adapted figure from [<a href="#B93-polymers-08-00173" class="html-bibr">93</a>]).</p> "> Figure 21
<p>Schematic representation of the mechanical mixing of nanoparticles with the polymer.</p> "> Figure 22
<p>(<b>a</b>) Absorption currents in time after applying DC voltage (500 V) and (<b>b</b>) volume resistivity dependence with temperature (© 2016 IEEE. Reprinted, with permission, from [<a href="#B99-polymers-08-00173" class="html-bibr">99</a>]).</p> "> Figure 23
<p>Absorption current dependent on time for XLPE/SiO<sub>2</sub> micro/nanocomposites (© 2016 IEEE. Reprinted, with permission, from [<a href="#B102-polymers-08-00173" class="html-bibr">102</a>]).</p> "> Figure 24
<p>(<b>a</b>) Real part of relative permittivity and (<b>b</b>) loss tangent of unfilled epoxy resin and epoxy/10 wt % TiO<sub>2</sub> micro/nanocomposites materials at 393 K (© IOP Publishing. Reproduced with permission. All rights reserved [<a href="#B22-polymers-08-00173" class="html-bibr">22</a>]).</p> "> Figure 25
<p>(<b>a</b>) Real part of relative permittivity and (<b>b</b>) loss tangent of functionalized XLPE at 23 °C (© 2016 IEEE. Reprinted, with permission, from [<a href="#B102-polymers-08-00173" class="html-bibr">102</a>]).</p> "> Figure 26
<p>(<b>a</b>) Partial discharge erosion depths measured on neat epoxy resin (M0N0), 5 wt % nanoSiO<sub>2</sub> (M0N5), 65 wt % microSiO<sub>2</sub> (M65N0), 65 wt % microSiO<sub>2</sub> + 5 wt % nanoSiO<sub>2</sub> (M65N5), 60 wt % microSiO<sub>2</sub> + 5 wt % nanoSiO<sub>2</sub> (M60N5), 62.5 wt % microSiO<sub>2</sub> + 2.5 wt % nanoSiO<sub>2</sub> (M62.5N2.5) epoxy composites aged at 4 kV/600 Hz for 60 h; (<b>b</b>) time to failure of epoxy composites materials with 10 kV/250 Hz applied (© 2016 IEEE. Reprinted, with permission, from [<a href="#B25-polymers-08-00173" class="html-bibr">25</a>]).</p> "> Figure 27
<p>(<b>a</b>) Surface profiles of erodated areas due to PDs in the samples containing different types of micro/nanofillers and without fillers after 120 h adding at 720 Hz; (<b>b</b>) Temporal change in erosion depth of area eroded by PDs at 4 kV of 720 Hz (© 2016 IEEE. Reprinted, with permission, from [<a href="#B148-polymers-08-00173" class="html-bibr">148</a>]).</p> "> Figure 28
<p>(<b>a</b>) Evolution of PD erosion depth with aging time of unfilled XLPE, XLPE with 5 wt % unfunctionalized nanoSiO<sub>2</sub> and XLPE with 5 wt % chemical agent functionalized nanoSiO<sub>2</sub> and (<b>b</b>) erosion speed for these kinds of XLPE (© 2016 IEEE. Reprinted, with permission, from [<a href="#B24-polymers-08-00173" class="html-bibr">24</a>]).</p> "> Figure 29
<p>(<b>a</b>) PD erosion depth and (<b>b</b>) PD erosion volume for unfilled XLPE (sample H1), XLPE/5 wt % unfunctionalized nanoSiO<sub>2</sub> (sample H2) and XLPE/5 wt % functionalized nanoSiO<sub>2</sub> (sample H3) (© 2016 IEEE. Reprinted, with permission, from [<a href="#B24-polymers-08-00173" class="html-bibr">24</a>]).</p> "> Figure 30
<p>Maximum field intensity as a function of voltage time application on epoxy/TiO<sub>2</sub> micro/nanocomposites (© IOP Publishing. Reproduced with permission. All rights reserved [<a href="#B22-polymers-08-00173" class="html-bibr">22</a>]).</p> "> Figure 31
<p>Space charge distribution at 20 kV/mm in unfilled and filled XLPE (samples 1, 2 and 3) before and after treatment (samples H1, H2 and H3) at 80 °C for five days (© 2016 IEEE. Reprinted, with permission, from [<a href="#B24-polymers-08-00173" class="html-bibr">24</a>]).</p> "> Figure 32
<p>(<b>a</b>) Short term DC breakdown strength for BN/epoxy resin composites as a function of filler size (© 2016 IEEE. Reprinted, with permission, from [<a href="#B30-polymers-08-00173" class="html-bibr">30</a>]) and (<b>b</b>) Weibull scale parameter, which shows the voltage for 63.2% failure probability of samples with two components (epoxy resin and nanofillers) (© 2016 IEEE. Reprinted, with permission, from [<a href="#B157-polymers-08-00173" class="html-bibr">157</a>]).</p> "> Figure 33
<p>Weibull plot for the electrical breakdown strength of XLPE with 5 wt % micro-/untreated and vinylsilane-treated nanoSiO<sub>2</sub> at 25 °C (© 2016 IEEE. Reprinted, with permission, from [<a href="#B135-polymers-08-00173" class="html-bibr">135</a>]).</p> "> Figure 34
<p>Ratio <span class="html-italic">k</span><sub>2</sub> (<b>a</b>) in DC electrical breakdown <span class="html-italic">versus</span> micro/nanofillers concentration and (<b>b</b>) of nanocomposites in electrical breakdown depending on the AC and DC applied voltage (© 2016 IEEE. Reprinted, with permission, from [<a href="#B151-polymers-08-00173" class="html-bibr">151</a>]).</p> "> Figure 35
<p>Average time to failure of composites material supplier (crosses), ground modified ATH of 3.5 µm (squares), ground modified ATH of 3.5 µm (diamonds) and surface modified ground SiO<sub>2</sub> particles (circles) in the inclined plane test (IPT) at 6 kV filled at different contents and compared with unfilled base rubber (black circle) (© 2016 IEEE. Reprinted, with permission, from [<a href="#B154-polymers-08-00173" class="html-bibr">154</a>]).</p> "> Figure 36
<p>(<b>a</b>) Optical micrographs of tree branches and channel and (<b>b</b>) stages of electrical tree propagation until the final breakdown (© 2016 IEEE. Reprinted, with permission, from [<a href="#B164-polymers-08-00173" class="html-bibr">164</a>]).</p> "> Figure 37
<p>Theoretical prediction of the relative thermal conductivity (λ) of composites (© 2016 IEEE. Reprinted, with permission, from [<a href="#B59-polymers-08-00173" class="html-bibr">59</a>]).</p> "> Figure 38
<p>Experimental and predicted thermal conductivity data for (<b>a</b>) epoxy resin/AlN and (<b>b</b>) epoxy resin/BN composites at 18 °C (© 2016 IEEE. Reprinted, with permission, from [<a href="#B172-polymers-08-00173" class="html-bibr">172</a>]).</p> "> Figure 39
<p>The thermal conductivities of the epoxy composites filled with BN-Micro, BN-Meso and BN-Nano (© 2016 IEEE. Reprinted, with permission, from [<a href="#B173-polymers-08-00173" class="html-bibr">173</a>]).</p> "> Figure 40
<p>Thermal conductivity in function of the filler concentration characteristics for pure PI, PI microcomposites and PI nanocomposites (nanoparticles uncoated and coated) (© 2016 IEEE. Reprinted, with permission, from [<a href="#B174-polymers-08-00173" class="html-bibr">174</a>]).</p> "> Figure 41
<p>Effect of various surface treatments on the thermal conductivity of epoxy/BN composites (© 2016 IEEE. Reprinted, with permission, from [<a href="#B59-polymers-08-00173" class="html-bibr">59</a>]).</p> "> Figure 42
<p>Tensile strength of epoxy resin based micro/nanocomposites <span class="html-italic">versus</span> filler content (Reprint with the permission of Strojniski vestnik–Journal of Mechanical Engineering [<a href="#B191-polymers-08-00173" class="html-bibr">191</a>]).</p> "> Figure 43
<p>Tensile modulus of epoxy resin based micro/nanocomposites <span class="html-italic">versus</span> filler (Reprint with the permission of Strojniski vestnik–Journal of Mechanical Engineering [<a href="#B191-polymers-08-00173" class="html-bibr">191</a>]).</p> "> Figure 44
<p>Elongation at break in epoxy resin based micro/nanocomposites <span class="html-italic">versus</span> filler content (Reprint with the permission of Strojniski vestnik—Journal of Mechanical Engineering [<a href="#B191-polymers-08-00173" class="html-bibr">191</a>]).</p> ">
Abstract
:1. Introduction
2. From Micro to Nanocomposites in Electrical Engineering
3. Nanocomposite Used in High-Voltage Applications
4. Polymers and (Nano)Fillers
4.1. Polymers Used in High-Voltage Applications
4.2. Fillers Used in Composites
- One-dimensional nanofiller: plates, laminas and shells,
- Two-dimensional nanofiller: nanotubes and nanofibers,
- Three-dimensional nanofiller: spherical nanoparticles.
4.3. Fillers Surface Treatment
4.4. The Role of the Interface
4.4.1. Wilkes’ Model
4.4.2. Tsagaropoulos’ Model
4.4.3. Lewis’ Model
4.4.4. Tanaka’s Model
4.4.5. Other Models
5. Preparation Methods
5.1. Intercalation Method
5.1.1. Direct Intercalation of Polymer Chains from Solution
5.1.2. Polymer Melt Intercalation
5.1.3. Intercalation of Monomers Followed by In Situ Polymerization
5.2. Sol-Gel Method
• | Hydrolysis: | M(OR)4 + H2O → HO − M(OR)3 + ROH, | (1) |
• | Condensation: | (OR)3M − OH + OH − M(OR)3 → (OR)3M − O − M(OR)3 + H2O, | (2) |
(OR)3M − OH + RO − M(OR)3 → (OR)3M − O − M(OR)3 + ROH. | (2’) |
5.3. In Situ Polymerization
5.4. Direct Mixing of Nanoparticles with the Polymer
6. Properties of (Nano)Composites
6.1. Electrical Properties
6.1.1. Electrical Conductivity
6.1.2. Micro/Nanocomposites with Controlled Electrical Conductivity
6.1.3. Relative Permittivity and Loss Factor
6.1.4. Partial Discharges and Erosion Resistance
6.1.5. Space Charge Accumulation
6.1.6. Electrical Breakdown
6.1.7. Tracking Resistance
6.1.8. Electrical Tree Resistance
6.1.9. Water Absorption
6.2. Thermal and Mechanical Properties
6.2.1. Thermal Properties
6.2.2. Mechanical Properties
7. Future Trends
7.1. Graphene-Based Nanohybrid Materials
7.2. Self-Healable Polymer Composites
7.3. New Production Routes
7.3.1. Laser Processing of Polymer Composites
7.3.2. 3D Printing
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AlN | Aluminum Nitride |
Al2O3 | Aluminum Oxide or Alumina |
Al(OH)3 | Aluminum Trihydroxide |
ATH | Alumina Trihydrate |
BN | Boron Nitride |
BeO | Beryllium Oxide |
BaTiO3 | Barium Titanate |
CaCO3 | Calcium Carbonate |
LS | Layered Silicate |
MgO | Magnesium Oxide |
SiC | Silicon Carbide |
SiO2 | Silicon Dioxide or Silica |
TiO2 | Titanium Oxide or Titania |
ZnO | Zinc Oxide |
CNTs | Carbon Nanotubes |
SWCNTs | Single Walled Carbon Nanotubes |
MWCNTs | Multi-Walled Carbon Nanotubes |
GNPs | Graphite Nanoplatelets |
PE | Polyethylene |
XLPE | Cross-linked polyethylene |
LDPE | Low-density polyethylene |
HDPE | High-density polyethylene |
PP | Polypropylene |
i-PP | Isotactic polypropylene |
PVC | Polyvinyl chloride |
PS | Polystyrene |
PUR | Polyurethane |
PC | Polycarbonate |
PA | Polyamide |
PI | Polyimide |
PAI | Polyamide-imide (PAI) |
EVA | Ethylene-vinyl-acetate |
AC | Alternating Current |
DC | Direct Current |
HVDC | High-Voltage Direct Current |
HVAC | High-Voltage Alternating Current |
IEC | International Electrotechnical Commission |
PD | Partial Discharges |
VPI | Vacuum Pressure Impregnation |
References
- Han, J.; Garrett, R. Overview of polymer nanocomposites as dielectrics and electrical insulation materials for large high voltage rotating machines. NSTI-Nanotech 2008, 2, 727–732. [Google Scholar]
- Matthews, F.L.; Rawlings, R.D. Overview. In Composite Materials: Engineering and Science, 2nd ed.; CRC Press, Woodhead Publishing Limited: Cambridge, UK, 1999; pp. 1–28. [Google Scholar]
- Wikipedia—The Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Nanocomposite (accessed on 9 December 2015).
- Tanaka, T.; Montanari, G.C.; Mülhaupt, R. Polymer nanocomposites as dielectrics and electrical insulation—Perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 763–784. [Google Scholar] [CrossRef]
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar] [CrossRef]
- Nelson, J.K. Overview of nanodielectrics: Insulating materials of the future. In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing Expo, Nashville, TN, USA, 22–24 October 2007; pp. 229–235.
- Sheer, M.L. Advanced composites: The leading edge in high performance motor and transformer insulation. In Proceedings of the 20th Electrical Electronics Insulation Conference, Boston, MA, USA, 7–10 October 1991; pp. 181–185.
- ATTAR Advanced Technology Testing and Research. Available online: http://www.attar.com.au/materials-engineering.aspx (accessed on 5 November 2015).
- Stone, G.C.; Boulter, E.A.; Culbert, I.; Dhirani, H. Historical development of insulation materials and systems. In Electrical Insulation for Rotating Machines—Design, Evaluation, Aging, Testing, and Repair, 1st ed.; Kartalopoulos, S.V., Ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 2004; pp. 73–94. [Google Scholar]
- Pyrhönen, J.; Jokinen, T.; Hrabovcová, V. Insulation of electrical machines. In Design of Rotating Electrical Machines, 2nd ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2014; pp. 429–455. [Google Scholar]
- Notingher, P.V. Chapter 23. In Materials for Electrotechnics; Politechnica Press: Bucharest, Romania, 2005; Volume 2, pp. 157–170. [Google Scholar]
- Park, J.J. AC Electrical breakdown characteristics of an epoxy/mica composite. Trans. Electr. Electron. Mater. 2012, 13, 200–203. [Google Scholar] [CrossRef]
- Lenko, D.; Schlögl, S.; Bichler, S.; Lemesch, G.; Ramsauer, F.; Ladstätter, W.; Kern, W. Flexible epoxy-silicone rubber laminates for high voltage insulations with enhanced delamination resistance. Polym. Compos. 2015, 36, 2238–2247. [Google Scholar] [CrossRef]
- Schlögl, S.; Lenko, D. High voltage insulations with enhanced delamination resistance. Rubber Fibres Plast. Int. 2015, 10, 260–261. [Google Scholar]
- Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kagimoto, O. One-pot synthesis of nylon 6-clay hybrid. J. Polym. Sci. Pt. A 1993, 31, 1755–1758. [Google Scholar] [CrossRef]
- Lewis, T.J. Nanometric Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 812–825. [Google Scholar] [CrossRef]
- Frechette, M.F.; Trudeau, M.; Alamdari, H.D.; Boily, S. Introductory remarks on nanodielectrics. In Conference on Electrical Insulation and Dielectric Phenomena, 2001 Annual Report, Kitchener, ON, Canada, 14–17 October 2001; pp. 92–99.
- Cao, Y.; Irwin, P.C.; Younsi, K. The future of nanodielectrics in the electrical power industry. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 797–807. [Google Scholar]
- Johnston, D.R.; Markovitz, M. Corona-Resistant Insulation, Electrical Conductors Covered Therewith and Dynamoelectric Machines and Transformers Incorporating Components of Such Insulated Conductors. US Patent 4760296 A, 26 July 1988. [Google Scholar]
- Henk, P.O.; Kortsen, T.W.; Kvarts, T. Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica. High Perform. Polym. 1999, 11, 281–296. [Google Scholar] [CrossRef]
- Fothergill, J.C.; Dissado, L.A.; Nelson, J.K. Nanocomposite Materials for Dielectric Structures; EPSRC: Swindon, UK, 2002; pp. 1–6. [Google Scholar]
- Nelson, J.K.; Fothergill, J.C. Internal charge behaviour in nanocomposites. Nanotechnology 2004, 15, 586–595. [Google Scholar] [CrossRef]
- Tanaka, T.; Imai, T. Advances in nanodielectric materials over the past 50 years. IEEE Electr. Insul. Mag. 2013, 29, 10–23. [Google Scholar] [CrossRef]
- Tanaka, T.; Bulinski, A.; Castellon, J.; Frechette, M.; Gubanski, S.; Kindersberger, J.; Montanari, G.C.; Nagao, M.; Morshuis, P.; Tanaka, Y.; et al. Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test results. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1482–1517. [Google Scholar] [CrossRef]
- Krivda, A.; Tanaka, T.; Frechette, M.; Castellon, J.; Fabiani, D.; Montanari, G.C.; Gorur, R.; Morshuis, P.; Gubanski, S.; Kindersberger, J.; et al. Characterization of epoxy microcomposite and nanocomposite materials for power engineering applications. IEEE Electr. Insul. Mag. 2012, 28, 38–51. [Google Scholar] [CrossRef]
- Castellon, J.; Nguyen, H.N.; Agnel, S.; Toureille, A.; Frechette, M.; Savoie, S.; Krivda, A.; Schmidt, L.E. Electrical properties analysis of micro and nano composite epoxy resin materials. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 651–658. [Google Scholar] [CrossRef]
- Frechette, M.F.; Trudeau, M.L.; Alamdar, H.D.; Boily, S. Introductory remarks on nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 808–818. [Google Scholar] [CrossRef]
- Reed, C.W. Self-assembly of polymer nanocomposites for dielectrics and HV insulation. In Proceedings of the IEEE International Conference on Solid Dielectrics, 2007. ICSD ’07, Winchester, UK, 8–13 July 2007.
- Nelson, J.K. Background, principles and promise of nanodielectrics. In Dielectric Polymer Nanocomposites; Nelson, J.K., Ed.; Springer: New York, NY, USA, 2010; pp. 1–30. [Google Scholar]
- Andritsch, T.; Kochetov, R.; Gebrekiros, Y.T.; Morshuis, P.H.F.; Smit, J.J. Short term DC breakdown strength in epoxy based BN nano- and microcomposites. In Proceedings of the International Conference on Solid Dielectrics (ICSD), Postdam, Germany, 4–9 July 2010; pp. 1–4.
- Wang, Q.; Chen, G. Effect of nanofillers on the dielectric properties of epoxy nanocomposites. Adv. Mater. Res. 2012, 1, 93–107. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 12–23. [Google Scholar] [CrossRef]
- Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Reduction of permittivity in epoxy nanocomposites at low nano-filler loadings. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Quebec, QC, Canada, 26–29 October 2008; pp. 726–729.
- Kadhim, M.J.; Abdullah, A.K.; Al-Ajaj, I.A.; Khalil, A.S. Dielectric properties of epoxy/Al2O3 nanocomposites. Int. J. Appl. Innov. Eng. Manag. 2014, 3, 468–477. [Google Scholar]
- Castellon, J.; Agnel, S.; Toureille, A.; Frechette, M. Space charge characterization of multi-stressed microcomposites nano-filled epoxy for electrotechnical applications. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Quebec, QC, Canada, 26–29 October 2008; pp. 532–535.
- Andritsch, T. Epoxy Based Nanodielectrics for High Voltage DC-Applications-Synthesis, Dielectric properties and Space Charge Dynamics. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Magraner, F.; García-Bernabé, A.; Gil, M.; Llovera, P.; Dodd, S.J.; Dissado, L.A. Space charge measurements on different epoxy resin alumina nanocomposites. In Proceedings of the International Conference on Solid Dielectrics (ICSD), Potsdam, Germany, 4–9 July 2010; pp. 1–4.
- Stancu, C.; Notingher, P.V.; Ciuprina, F.; Notingher, P., Jr.; Agnel, S.; Castellon, J.; Toureille, A. Computation of the electric field in cable insulation in the presence of water trees and space charge. IEEE Trans. Ind. Appl. 2009, 45, 30–43. [Google Scholar] [CrossRef]
- Dissado, L.A.; Mazzanti, G.; Montanari, G.C. The role of trapped space charges in the electrical aging of insulating materials. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 496–506. [Google Scholar] [CrossRef]
- Fabiani, D.; Montanari, G.C.; Dardano, A.; Guastavino, G.; Testa, L.; Sangermano, M. Space charge dynamics in nanostructured epoxy resin. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, Quebec, QC, Canada, 26–29 October 2008; pp. 710–713.
- Gröpper, P.; Hildinger, T.; Pohlmann, F.; Weidner, J.R. Nanotechnology in High Voltage Insulation Systems for Large Electrical Machinery–First Results. Water Energy Int. 2013, 70, 65–66. [Google Scholar]
- Gröpper, P.; Meichsner, C.; Ritberg, I. Insulation for Rotating Electrical Machines. Patent No. WO2012013439 A1, 2012. [Google Scholar]
- Gröpper, P.; Gruebel, A.; Jablonski, V.; Ritberg, I. Insulation with Improved Resistance to Partial Discharge. Patent No. DE 10/2010/032949 A1, 2012. [Google Scholar]
- Lee, G.W.; Park, M.; Kim, J.; Lee, J.I.; Yoon, H.G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. Part A 2006, 37, 727–734. [Google Scholar] [CrossRef]
- Zweifel, P.; Fennessey, S.F. Thermal conductivity of reinforced composites for electrical application. In Proceedings of the IEEE International Symposium on Electrical Insulation (ISEI), San Diego, CA, USA, 6–9 June 2010; pp. 1–4.
- Zhang, C.; Han, Z.; Stevens, C.G. Effects of micro and nano fillers on electrical and thermal properties of epoxy resin. In Proceedings of the 10th International Electrical Insulation Conference (INSUCON), Birmingham, England, 24–26 May 2006.
- Kochetov, R.; Korobko, A.V.; Andritsch, T.; Morshuis, P.H.F.; Picken, S.J.; Smit, J.J. Three-phase Lewis-Nielsen model for the thermal conductivity of polymer nanocomposites. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexic, 16–19 October 2011; pp. 338–341.
- Murata, Y.; Sakamaki, M.; Abe, K.; Inoue, Y.; Mashio, S.; Kashiyama, S.; Matsunaga, O.; Igi, T.; Watanabe, M.; Asai, S.; et al. Development of high voltage DC-XLPE cable system. SEI Tech. Rev. 2013, 55–62. [Google Scholar]
- Tanaka, T.; Frechette, M.; Agoris, D.P.; Campus, A.; Castellon, J.; Densley, J.; Gorur, R.S.; Gubanski, S.M.; Henriksen, M.; Hillborg, H.; et al. Emerging nanocomposite dielectrics. Electra 2006, 226, 24–32. [Google Scholar]
- Lee, T.H.; Lee, S.B.; Nam, J.H.; Kim, Y.H.; Lee, S.K.; Lee, I.H.; Jeon, S.I.; Won, Y.J.; Kim, J.S.; Lee, J.H. Development status of DC XLPE cable in Korea. In Proceedings of CIGRE Session, Paris, France, 24–29 August 2014.
- Zaccone, E. Chapter 2, Innovative Cables. In Advanced Technologies for Future Transmission Grids; Migliavacca, G., Ed.; Springer: London, UK, 2013; pp. 39–84. [Google Scholar]
- Lau, K.Y.; Vaughan, A.S.; Chen, G. Nanodielectrics: Opportunities and challenges. IEEE Electr. Insul. Mag. 2015, 31, 45–54. [Google Scholar] [CrossRef]
- Xanthos, M. Chapter 1, Polymers and polymer composites. In Functional Fillers for Plastics, 2nd ed.; Xanthos, M., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 1–18. [Google Scholar]
- Notingher, P.; Panaitescu, D.; Paven, H.; Chipara, M. Some characteristics of conductive polymer composites containing stainless steel fibers. J. Optoelectron. Adv. Mater. 2004, 6, 1081–1084. [Google Scholar]
- Marquis, M.D.; Guillaume, E.; Chivas-Joly, C. Chapter 11, Properties of nanofillers in polymer. In Nanocomposites and Polymers with Analytical Methods; Cuppoletti, J., Ed.; InTech: Rijeka, Croatia, 2011; pp. 261–284. [Google Scholar]
- Okutan, E.; Aydın, G.O.; Hacıvelioglu, F.; Kılıç, A.; Beyaz, S.K.; Yesilot, S. Synthesis and characterization of soluble multi-walled carbon nanotube/poly-(organophosphazene) composites. Polymer 2011, 52, 1241–1248. [Google Scholar] [CrossRef]
- Malwela, T.; Ray, S.S. Unique morphology of dispersed clay particles in a polymer nanocomposite. Polymer 2011, 52, 1297–1301. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, P.; Tanaka, T. A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 2011, 27, 8–16. [Google Scholar] [CrossRef]
- Prato, M. Materials chemistry: Controlled nanotube reactions. Nature 2010, 465, 172–173. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.Y.; Chen, Q. Dispersion of inorganic nanoparticles in polymer matrices: challenges and solutions. In Organic-Inorganic Hybrid Nanomaterials; Kalia, S., Haldorai, Y., Eds.; Springer International Publishing: Berlin Heidelberg, Germany, 2015; pp. 1–38. [Google Scholar]
- Plesa, I.; Schlogl, S.; Radl, S.V.; Muhlbacher, I.; Schichler, U. The influence of surface modification on the electrical properties of silicon carbide flakes. In Proceedings of the 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 7–9 May 2015; pp. 460–463.
- Anyszka, R.; Bielinski, D.M.; Pedzich, Z.; Szumera, M. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J. Therm. Anal. Calorim. 2015, 119, 111–121. [Google Scholar] [CrossRef]
- Tayfun, U.; Kanbur, Y.; Abaci, U.; Guney, H.Y.; Bayramli, E. Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: Effect of surface modification of fullerene. Compos. Part B Eng. 2015, 80, 101–107. [Google Scholar] [CrossRef]
- Xu, T.; Yang, J. Effects of surface modification of MWCNT on the mechanical and electrical properties of fluoro elastomer/MWCNT nanocomposites. J. Nanomater. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Ma, D.; Hugener, T.A.; Siegel, R.W.; Christerson, A.; Mårtensson, E.; Önneby, C.; Schadler, L.S. Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 2005, 16, 724. [Google Scholar] [CrossRef]
- Peng, S.; He, J.; Hu, J. Influence of surface modification on electrical properties of polyethylene SiO2 nanocomposites. In Proceedings of the IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, Australia, 19–22 July 2015; pp. 372–375.
- Jölly, I.; Schlögl, S.; Wolfahrt, M.; Pinter, G.; Fleischmann, M.; Kern, W. Chemical functionalization of composite surfaces for improved structural bonded repairs. Compos. Part B Eng. 2015, 69, 296–303. [Google Scholar] [CrossRef]
- Dalian Sibond Intl Trade Co., Ltd. Available online: http://www.sibond.com/silanes/coupling_agent.htm (accessed on 2 December 2015).
- Rong, M.Z.; Zhang, M.Q.; Zheng, Y.X.; Zeng, H.M.; Walter, R.; Friedrich, K. Irradiation graft polymerization on nano-inorganic particles: An effective means to design polymer-based nanocomposites. J. Mater. Sci. Lett. 2000, 19, 1159–1161. [Google Scholar] [CrossRef]
- Rong, M.Z.; Zhang, M.Q.; Zheng, Y.X.; Zeng, H.M.; Walter, R.; Friedrich, K. Irradiation graft polymerization on nano-inorganic particles: An effective means to design polymer-based nanocomposites. J. Mater. Sci. Lett. 2000, 19, 1159–1161. [Google Scholar] [CrossRef]
- Uyama, Y.; Kato, K.; Ikada, Y. Surface modification of polymers by grafting. In grafting/characterization techniques/kinetic modeling. Adv. Polym. Sci. 1998, 137, 1–39. [Google Scholar]
- Kickelbick, G. Chapter 1, Introduction to hybrid materials. In Hybrid Materials, Synthesis, Characterization, and Applications; Kickelbick, G., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 1–48. [Google Scholar]
- O’Connor, K.A.; Curry, R.D. Three-dimensional electromagnetic modeling of composite dielectric materials. In Proceedings of the IEEE Pulsed Power Conference (PPC), Chicago, CA, USA, 19–23 June 2011; pp. 274–279.
- Ciuprina, F.; Andrei, L.; Tomescu, F.M.G.; Plesa, I.; Zaharescu, T. Electrostatic model of LDPE-SiO2 nanodielectrics. In Proceedings of the IEEE International Conference on Solid Dielectrics (ICSD), Bologna, Italy, 30 June–4 July 2013; pp. 876–879.
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Tsagaropoulos, G.; Eisenberg, A. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 1995, 28, 6067–6077. [Google Scholar] [CrossRef]
- Pitsa, D.; Danikas, M.G. Interfaces features in polymer nanocomposites: A review of proposed models. Nano Brief Rep. Rev. 2011, 6, 497–508. [Google Scholar] [CrossRef]
- Lewis, T.J. Interfaces: Nanometric dielectrics. J. Phys. D Appl. Phys. 2005, 38, 202–212. [Google Scholar] [CrossRef]
- Seiler, J.; Kindersberger, J. Insight into the interphase in polymer nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 537–547. [Google Scholar] [CrossRef]
- Danikas, M.G. On two nanocomposite models: Differences, similarities and interpretational possibilities regarding Tsagaropoulos’ model and Tanaka’s model. J. Electr. Eng. 2010, 61, 241–246. [Google Scholar] [CrossRef]
- Danikas, M.G.; Bairaktari, A.; Sarathi, R.; Basri Bin Abd Ghani, A. A review of two nanocomposite insulating materials models: Lewis’ contribution in the development of the models, their differences, their similarities and future challenges. Eng. Technol. Appl. Sci. Res. 2014, 4, 636–643. [Google Scholar]
- Ciuprina, F.; Plesa, I.; Notingher, P.V.; Tudorache, T.; Panaitescu, D. Dielectric Properties of nanodielectrics with inorganic fillers. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Quebec, QC, Canada, 26–29 October 2008; pp. 682–685.
- Plesa, I. Influence of Inorganic Fillers on the Dielectric Properties of Polymer Nanocomposites Based on Polyethylene. Ph.D. Thesis, Politehnica University of Bucharest, București, Romania, February 2012. [Google Scholar]
- Raetzke, S.; Kindersberger, J. Role of interphase on the resistance to high-voltage arcing, on tracking and erosion of silicone/SiO2 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 607–614. [Google Scholar] [CrossRef]
- Andritsch, T.; Kochetov, R.; Morshuis, P.H.F.; Smit, J.J. Proposal of the polymer chain alignment model. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexic, 16–19 October 2011; pp. 624–627.
- Zou, C.; Fothergill, J.C.; Rowe, S.W. The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 106–117. [Google Scholar] [CrossRef]
- U.S. Congress, Office of Technology Assessment. Chapter 3, Polymer matrix composites. In Advanced Materials by Design; Gibbons, J.H., Ed.; U.S. Government Printing Office: Washington, DC, USA, June 1988; pp. 73–95. [Google Scholar]
- Li, S.; Lin, M.M.; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 2010, 1, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Machado, A.V. Preparation of Polymer-Based Nanocomposites by Different Routes. In e-book Nanocomposites: Synthesis, Characterization and Applications; Wang, X., Ed.; NOVA Publishers: New York, NY, USA, 2013; pp. 1–22. [Google Scholar]
- Singh, N.B.; Rai, S.; Agarwal, S. Polymer nanocomposites and Cr(VI) removal from water. Nanosci. Technol. 2014, 1, 1–10. [Google Scholar] [CrossRef]
- Tanahashi, M. Development of fabrication methods of filler/polymer nanocomposites: With focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 2010, 3, 1593–1619. [Google Scholar] [CrossRef]
- Cui, Y.; Kumar, S.; Konac, B.R.; van Houckec, D. Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 2015, 5, 63669–63690. [Google Scholar] [CrossRef]
- Tuncer, E.; Sauers, I. Industrial applications perspective of nanodielectrics. In Dielectric Polymer Nanocomposites; Nelson, J.K., Ed.; Springer: New York, NY, USA, 2010; pp. 321–338. [Google Scholar]
- Lalankere, G. Opportunities and challenges of employing composite materials in switchgear industry. In Proceedings of the 20th International Conference on Electricity Distribution (CIRED), Prague, Czech Republic, 8–11 June 2009; pp. 1–4.
- Boulter, E.A.; Stone, G.C. Historical development of rotor and stator winding insulation materials and systems. IEEE Electr. Insul. Mag. 2004, 20, 25–39. [Google Scholar] [CrossRef]
- Janssen, H.; Seifert, J.M.; Karner, H.C. Interfacial phenomena in composite high voltage insulation. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 651–659. [Google Scholar] [CrossRef]
- Nelson, J.K.; Fothergill, J.C.; Dissado, L.A.; Peasgood, W. Towards an understanding of nanometric dielectrics. In Proceedings of Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexico, 20–24 October 2002; pp. 295–298.
- Imai, T.; Sawa, F.; Nakano, T.; Ozaki, T.; Shimizu, T.; Kozako, M.; Tanaka, T. Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 319–326. [Google Scholar] [CrossRef]
- Patel, R.R.; Gupta, N. Volume resistivity of epoxy containing nano-sized Al2O3 fillers. In Proceedings of the Fifteenth National Power Systems Conference (NPSC), Bombay, India, December 2008; pp. 361–365.
- Lutz, B.; Kindersberger, J. Influence of absorbed water on volume resistivity of epoxy resin insulators. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics (ICSD), Potsdam, Germany, 4–9 July 2010; pp. 1–4.
- Roy, M.; Nelson, J.K.; Schadler, L.S.; Zou, C.; Fothergill, J.C. The influence of physical and chemical linkage on the properties of nanocomposites. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP), Nashville, TN, USA, 16–19 October 2005; pp. 183–186.
- Smith, R.C.; Liang, C.; Landry, M.; Nelson, J.K.; Schadler, L.S. Studies to unravel some underlying mechanisms in nanodielectrics. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Vancouver, BC, Canada, 14–17 October 2007; pp. 286–289.
- Smith, R.C.; Liang, C.; Landry, M.; Nelson, J.K.; Schadler, L.S. The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 187–196. [Google Scholar] [CrossRef]
- Ciuprina, F.; Plesa, I. DC and AC conductivity of LDPE nanocomposites. In Proceedings of the 7th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 12–14 May 2011; pp. 1–6.
- Plesa, I.; Zaharescu, T. Effects of γ irradiation on resistivity and absorption currents in nanocomposites based on thermoplastic polymers. In Proceedings of the 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–35 May, 2013; pp. 1–6.
- Lau, K.Y.; Vaughan, A.S.; Chen, G.; Hosier, I.L.; Holt, A.F. Absorption current behaviour of polyethylene/silica nanocomposites. J. Phys. Conf. Ser. 2013, 472, 1–6. [Google Scholar] [CrossRef]
- Schadler, L.S.; Wang, X.; Nelson, J.K.; Hillborg, H. Non-linear field grading materials and carbon nanotube nanocomposites with controlled conductivity. In Dielectric Polymer Nanocomposites; Nelson, J.K., Ed.; Springer: New York, NY, USA, 2010; pp. 259–284. [Google Scholar]
- Boggs, S.A. 500 Ω-m-low enough resistivity for a cable ground shield semicon? IEEE Electr. Insul. Mag. 2001, 17, 26–32. [Google Scholar] [CrossRef]
- Roberts, A. Stress grading for high voltage motor and generators. IEEE Electr. Insul. Mag. 1995, 11, 26–31. [Google Scholar] [CrossRef]
- Foulger, S.H. Electrical properties of composites in the vicinity of the percolation threshold. J. Appl. Polym. Sci. 1999, 72, 1573–1582. [Google Scholar] [CrossRef]
- Jager, K.M.; Lindbom, L. The continuing evolution of semiconductor materials for power cable applications. IEEE Electr. Insul. Mag. 2005, 21, 20–34. [Google Scholar] [CrossRef]
- Jäger, K.-M.; McQueen, D.H. Fractal agglomerates and electrical conductivity in carbon black polymer composites. Polymer 2001, 42, 9575–9581. [Google Scholar] [CrossRef]
- Hindermann-Bischoff, M.; Ehrburger-Dolle, F. Electrical conductivity of carbon black–polyethylene composites: Experimental evidence of the change of cluster connectivity in the PTC effect. Carbon 2001, 39, 375–382. [Google Scholar] [CrossRef]
- Nakamura, S.; Tomimura, T.; Sawa, G. Dielectric properties of carbon black—Polyethylene composites below the percolation threshold. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Austin, TX, USA, 17–20 October 1999; pp. 293–296.
- Stancu, C.; Notingher, P.V.; Panaitescu, D.; Marinescu, V. Electrical conductivity of polyethylene- neodymium composites. In Proceedings of 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 May, 2013; pp. 1–6.
- Chung, D.D.L. Materials for electromagnetic interference shielding. J. Mater. Eng. Perform. 2000, 9, 350–354. [Google Scholar] [CrossRef]
- Mamunya, Y.P.; Davydenko, V.V.; Pissis, P.; Lebedev, E.V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 2002, 38, 1887–1897. [Google Scholar] [CrossRef]
- Min, C.; Shen, X.; Shi, Z.; Chen, L.; Xu, Z. The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: A review. Polym. Plast. Technol. Eng. 2010, 49, 1172–1181. [Google Scholar] [CrossRef]
- Pang, H.; Bao, Y.; Lei, J.; Tang, J.-H.; Ji, X.; Zhang, W.-Q.; Chen, C. Segregated conductive ultrahigh-molecular-weight polyethylene composites containing high-density polyethylene as carrier polymer of graphenenanosheets. Polym. Plast. Technol. Eng. 2012, 51, 1483–1486. [Google Scholar] [CrossRef]
- Cravanzola, S.; Haznedar, G.; Scarano, D.; Zecchina, A.; Cesano, F. Carbon-based piezoresistive polymer composites: Structure and electrical properties. Carbon 2013, 62, 270–277. [Google Scholar] [CrossRef]
- Haznedar, G.; Cravanzola, S.; Zanetti, M.; Scarano, D.; Zecchina, A.; Cesano, F. Graphite nanoplatelets and carbon nanotubes based polyethylene composites: Electrical conductivity and morphology. Mater. Chem. Phys. 2013, 143, 47–52. [Google Scholar] [CrossRef]
- Mackersie, J.W.; Given, M.J.; MacGregor, S.J.; Fouracre, R.A. The electrical properties of filled epoxy resin systems—A comparison. In Proceedings of the 2001 IEEE 7th International Conference on Solid Dielectrics (ICSD), Eindhoven, Nederland, 25–29 Jun 2001; pp. 125–128.
- Fothergill, J.C. Electrical properties. In Dielectric Polymer Nanocomposites; Nelson, J.K., Ed.; Springer: New York, NY, USA, 2010; pp. 197–228. [Google Scholar]
- Jonscher, A.K. Dielectric Relaxation in Solids, 1st ed.; Chelsea Dielectric Press: London, UK, 1983; pp. 1–400. [Google Scholar]
- Dissado, J.A.; Hill, R.M. Anomalous low-frequency dispersion. Near direct current conductivity in disordered low-dimensional materials. J. Chem. Soc. Faraday Trans. 1984, 80, 291–319. [Google Scholar] [CrossRef]
- Chapman, D.L. A contribution to the theory of electrocapillarity. Philos. Mag. Ser. 6 1913, 25, 475–481. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 2–11. [Google Scholar] [CrossRef]
- Kochetov, R.; Andritsch, T.; Morshuis, P.H.F.; Smit, J.J. Anomalous behaviour of the dielectric spectroscopy response of nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 107–117. [Google Scholar] [CrossRef]
- Fothergill, J.C.; Nelson, J.K.; Fu, M. Dielectric properties of epoxy nanocomposites containing TiO2, Al2O3 and ZnO fillers. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Boulder, CO, USA, 17–20 October 2004; pp. 406–409.
- Plesa, I.; Ciuprina, F.; Notingher, P.V. Dielectric spectroscopy of epoxy resin with and without inorganic nanofillers. J. Adv. Res. Phys. 2010, 1, 2069–7201. [Google Scholar]
- Kozako, M.; Okazaki, Y.; Hikita, M.; Tanaka, T. Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics (ICSD), Postdam, Germny, 4–9 July 2010; pp. 1–4.
- Heid, T.; Fréchette, M.; David, E. Epoxy/BN micro- and submicro-composites: Dielectric and thermal properties of enhanced materials for high voltage insulation systems. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1176–1185. [Google Scholar] [CrossRef]
- Mo, H.; Huang, X.; Liu, F.; Yang, K.; Li, S.; Jiang, P. Nanostructured electrical insulating epoxy thermosets with high thermal conductivity, high thermal stability, high glass transition temperatures and excellent dielectric properties. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 906–915. [Google Scholar] [CrossRef]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S.; Reed, C.W.; Keefe, R. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 629–643. [Google Scholar] [CrossRef]
- Ciuprina, F.; Plesa, I.; Notingher, P.V.; Zaharescu, T.; Rain, P.; Panaitescu, D. Dielectric properties of LDPE-SiO2 nanocomposites. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics (ICSD), Potsdam, Germany, 4–9 July 2010; pp. 1–4.
- Ciuprina, F.; Zaharescu, T.; Pleşa, I. Effects of γ-radiation on dielectric properties of LDPE-Al2O3 nanocomposites. Radiat. Phys. Chem. 2013, 84, 145–150. [Google Scholar] [CrossRef]
- Ciuprina, F.; Zaharescu, T.; Jipa, S.; Pleşa, I.; Noţingher, P.V.; Panaitescu, D. Effects of ionizing radiation on the dielectric properties of LDPE-Al2O3 nanocomposites. UPB Sci. Bull. Series C 2010, 72, 259–268. [Google Scholar]
- Panaitescu, D.; Ciuprina, F.; Iorga, M.; Frone, A.; Radovici, C.; Ghiurea, M.; Sever, S.; Plesa, I. Effects of SiO2 and Al2O3 nanofillers on polyethylene properties. J. Appl. Polym. Sci. 2011, 122, 1921–1935. [Google Scholar] [CrossRef]
- Hui, L.; Schadler, L.S.; Nelson, J.K. The influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 641–653. [Google Scholar] [CrossRef]
- Cao, Y.; Irwin, P.C. The electrical conduction in polyimide nanocomposites. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Albuquerque, NW, USA, 19–22 October 2003; pp. 116–119.
- Tanaka, T. Interface properties and surface erosion resiatnce. In Dielectric Polymer Nanocomposites; Nelson, J.K., Ed.; Springer: New York, NY, USA, 2010; pp. 229–258. [Google Scholar]
- Izzati, W.A.; Arief, Y.Z.; Adzis, Z.; Shafanizam, M. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: A review of sample preparation techniques, analysis methods, potential applications, and future trends. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Uchida, K.; Tanaka, T. Voltage endurance characteristics of epoxy/silica nanocomposites. Electron. Commun. Jpn. 2011, 94, 65–73. [Google Scholar] [CrossRef]
- Tanaka, T.; Matsuo, Y.; Uchida, K. Partial discharge endurance of epoxy/SiC nanocomposite. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Quebec, QC, Canada, 26–29 October 2008; pp. 13–16.
- Preetha, P.; Thomas, M.J. Partial discharge resistant characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 264–274. [Google Scholar] [CrossRef]
- Kozako, M.; Yamano, S.; Kido, R.; Ohki, Y.; Kohtoh, M.; Okabe, S.; Tanaka, T. Preparation and preliminary characteristic evaluation of epoxy/alumina nanocomposites. In Proceedings of the 2005 International Symposium on Electrical Insulating Materials (ISEIM), Kitakyushu, Japan, 5–9 June 2005; pp. 231–234.
- Kozako, M.; Kuge, S.; Imai, T.; Ozaki, T.; Shimizu, T.; Tanaka, T. Surface erosion due to partial discharges on several kinds of epoxy nanocomposites. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Nashville, TN, USA, 16–19 October 2005; pp. 162–165.
- Li, Z.; Okamoto, K.; Ohki, Y.; Tanaka, T. Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of micro-Al2O3 epoxy composite. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 653–661. [Google Scholar] [CrossRef]
- Li, Z.; Okamoto, K.; Ohki, Y.; Tanaka, T. The role of nano and micro particles on partial discharge and breakdown strength in epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 675–681. [Google Scholar] [CrossRef]
- Li, S.; Yin, G.; Chen, G.; Li, J.; Bai, S.; Zhong, L.; Zhang, Y.; Lei, Q. Short-term breakdown and long-term failure in nanodielectrics: A review. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1523–1535. [Google Scholar] [CrossRef]
- Zhang, Y.; Danikas, M.G.; Zhao, X.; Cheng, Y. Preliminary experimental work on nanocomposite polymers: small partial discharges at inception voltage, the existence of possible charging mechanisms below inception voltage and the problem of definitions. J. Electr. Eng. 2012, 63, 109–114. [Google Scholar] [CrossRef]
- Imai, T.; Sawa, F.; Nakano, T.; Ozaki, T.; Shimizu, T.; Kuge, S.; Kozako, M.; Tanaka, T. Insulation properties of nano- and micro-filler mixture composite. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Nashville, TN, USA, 16–19 October 2005; pp. 171–174.
- Ansorge, S.; Schmuck, F.; Papailiou, K. Impact of different fillers and filler treatments on the erosion suppression mechanism of silicone rubber for use as outdoor insulation material. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 979–988. [Google Scholar] [CrossRef]
- Lau, K.Y.; Vaughan, A.S.; Chen, G.; Hosier, I.L.; Holt, A.F.; Ching, K.Y. On the space charge and DC breakdown behavior of polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 340–351. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, J.; Yang, J.; Xiao, D.; Tu, D.; Yin, R.; Qian, H. Effect of space charge in nanocomposite of LDPE/TiO2. In Proceedings of the International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 1–5 June 2003; pp. 913–916.
- Andritsch, T.; Kochetov, R.; Gebrekiros, Y.T.; Lafont, U.; Morshuis, P.H.F.; Smit, J.J. Synthesis and dielectric properties of epoxy based nanocomposites. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Virginia Beach, VA, USA, 18–21 October 2009; pp. 523–526.
- Calebrese, C.; Hui, L.; Schadler, L.S.; Nelson, J.K. A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 938–945. [Google Scholar] [CrossRef]
- Lau, K.Y.; Piah, M.A.M. Polymer nanocomposites in high voltage electrical insulation perspective: A review. Malays. Polym. J. 2011, 6, 58–69. [Google Scholar]
- Piah, M.A.M.; Darus, A.; Hassan, A. Electrical tracking performance of LLDPE-natural rubber blends by employing combination of leakage current level and rate of carbon track propagation. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 1259–1265. [Google Scholar] [CrossRef]
- El-Hag, A.H.; Simon, L.C.; Jayaram, S.H.; Cherney, E.A. Erosion resistance of nano-filled silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 122–128. [Google Scholar] [CrossRef]
- Sarathi, R.; Sahu, R.K.; Rajeshkumar, P. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Mater. Sci. Eng. A 2007, 445–446, 567–578. [Google Scholar] [CrossRef]
- Raetzke, S.; Kindersberger, J. Resistance to high voltage arcing and the resistance to tracking erosion for silicone/SiO2 nanocomposites. In Proceedings of the 16th International Symposium on High Voltage Engineering, Cape Town, South Africa, 24–28 August 2009; pp. 1–6.
- Vogelsang, R.; Farr, T.; Fröhlich, K. The effect of barriers on electrical tree propagation in composite insulation materials. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 373–382. [Google Scholar] [CrossRef]
- Ding, H.-Z.; Varlow, B.R. Filler volume fraction effects on the breakdown resistance of an epoxy microcomposite dielectric. In Proceedings of the IEEE International Conference on Solid Dielectrics (ICSD), Toulouse, France, 5–9 July 2004; pp. 816–820.
- Uehara, H.; Kudo, K. Barrier effect of treeing in composite insulating materials with heat-adhesive interfaces of different polymers. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 1266–1271. [Google Scholar] [CrossRef]
- Christantoni, D.D.; Vardakis, G.E.; Danikas, M.G. Propagation of electrical tree growth in a composite solid insulation consisted of epoxy resin and mica sheets: Simulation with the aid of cellular automata. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics (ICSD), Postdam, Germany, 4–9 July 2010; pp. 1–4.
- Zhang, C.; Stevens, G.C. The dielectric response of polar and non-polar nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 606–617. [Google Scholar] [CrossRef]
- Dodd, S.J.; Dissado, L.A.; Fothergill, J.C. Influence of absorbed moisture on the dielectric properties of epoxy resins. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), West Lafayette, IN, USA, 17–20 October 2010; pp. 1–4.
- Tsekmes, I.A.; Morshuis, P.H.F.; Smit, J.J. The influence of interfaces and water uptake on the dielectric response of epoxy-cubic boron nitride composites. J. Mater. Sci. 2015, 50, 3929–3941. [Google Scholar] [CrossRef]
- Nielsen, L.E. The thermal and electrical conductivity of two-phase systems. Ind. Eng. Chem. Fundamen. 1974, 13, 17–20. [Google Scholar] [CrossRef]
- Kochetov, R.; Andritsch, T.; Lafont, U.; Morshuis, P.H.F.; Picken, S.J.; Smit, J.J. Thermal behaviour of epoxy resin filled with high thermal conductivity nanopowders. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Montreal, QC, Canada, 31 May–3 June 2009; pp. 524–528.
- Han, Z.; Wood, J.W.; Herman, H.; Zhang, C.; Stevens, G.C. Thermal properties of composites filled with different fillers. In Proceedings of the IEEE International Symposium on Electrical Insulation (ISEI), Vancouver, BC, Canada, 9–12 June 2008; pp. 497–501.
- Irwin, P.C.; Cao, Y.; Bansal, A.; Schadler, L.S. Thermal and mechanical properties of polyimide nanocomposites. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Albuquerque, NW, USA, 19–22 October 2003; pp. 120–123.
- Xu, Y.S.; Chung, D.D.L. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos. Interfaces 2000, 7, 243–256. [Google Scholar]
- Miller, G.H. Trends in insulation materials with processes for rotating machines. IEEE Electr. Insul. Mag. 1998, 14, 7–11. [Google Scholar] [CrossRef]
- Irwin, P.; Zhang, W.; Cao, Y.; Fang, X.; Tan, D.Q. Mechanical and thermal properties. In Dielectric Polymer Nanocomposites; Nelson, J.K., Ed.; Springer: New York, NY, USA, 2010; pp. 163–196. [Google Scholar]
- Yasmin, A.; Daniel, I.C. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 2004, 45, 8211–8219. [Google Scholar] [CrossRef]
- Yang, H.-S.; Kim, H.-J.; Son, J.; Park, H.-J.; Lee, B.-J.; Hwang, T.-S. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos. Struct. 2004, 63, 305–312. [Google Scholar] [CrossRef]
- Lam, C.-K.; Cheung, H.-Y.; Lau, K.-T.; Zhou, L.-M.; Ho, M.-W.; Hui, D. Cluster size effect in hardness of nanoclay/epoxy composites. Compos. Part B 2005, 36, 263–269. [Google Scholar] [CrossRef]
- Ray, D.; Bhattacharya, D.; Mohanty, A.K.; Drzal, L.T.; Misra, M. Static and dynamic mechanical properties of vinylester resin matrix composites filled with fly ash. Macromol. Mater. Eng. 2006, 291, 784–792. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.; Zhang, Z. Mechanical performance of nano-CaCO3 filled polystyrene composites. Acta Mech. Solida Sin. 2009, 22, 555–562. [Google Scholar] [CrossRef]
- Asi, O. Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 particles. J. Reinf. Plast. Compos. 2009, 28, 2861–2867. [Google Scholar] [CrossRef]
- Zaman, H.U.; Hun, P.D.; Khan, R.A. Morphology, mechanical, and crystallization behaviors of micro- and nano-ZnO filled polypropylene composites. J. Reinf. Plast. 2012, 31, 323–329. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Sapuan, S.M.; Faieza, A.A. Mechanical and thermal properties of composites from unsaturated polyester filled with oil palm ash. J. Mech. Eng. Sci. 2012, 2, 133–147. [Google Scholar] [CrossRef]
- Agubra, V.A.; Owuor, P.S.; Hosur, M.V. Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomaterials 2013, 3, 550–563. [Google Scholar] [CrossRef]
- Chauhan, S.R.; Thakur, S. Effects of particle size, particle loading and sliding distance on the friction and wear properties of cenosphere particulate filled vinylester composites. Mater. Des. 2013, 51, 398–408. [Google Scholar] [CrossRef]
- Sayer, M. Elastic properties and buckling load evaluation of ceramic particles filled. Compos. Part B 2014, 59, 12–20. [Google Scholar] [CrossRef]
- Sudheer, M.; Prabhu, R.; Raju, K.; Bhat, T. Effect of filler content on the performance of epoxy/PTW composites. Adv. Mater. Sci. Eng. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Prakash, M.A.; Kumar, G.S.; Sandeep, N.; Ravikumar, K. A review on ceria epoxy nanocomposites with a new research proposal. IOSR J. Mech. Civil Eng. 2015, 12, 1–3. [Google Scholar]
- Ozsoy, I.; Demirkol, A.; Mimaroglu, A.; Unal, H.; Demir, Z. The influence of micro- and nano-filler content on the mechanical properties of epoxy composites. Strojniški vestnik. J. Mech. Eng. 2015, 61, 601–609. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Kuila, T.; Bose, S.; Hong, C.E.; Uddin, M.E.; Khanra, P.; Kim, N.H.; Lee, J.H. Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 2011, 49, 1033–1037. [Google Scholar] [CrossRef]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef]
- Sandler, J.K.W.; Kirk, J.E.; Kinloch, I.A.; Shaffer, M.S.P.; Windle, A.H. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899. [Google Scholar] [CrossRef]
- Wang, D.-W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.G.; Tan, J.; Wu, Z.-S.; Gentle, I.; Lu, G.Q.; Cheng, H.-M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Murugan, A.V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 2009, 21, 5004–5006. [Google Scholar] [CrossRef]
- Sangermano, M.; Chiolerio, A.; Veronese, G.P.; Ortolani, L.; Rizzoli, R.; Mancarella, F.; Morandi, V. Graphene–epoxy flexible transparent capacitor obtained by graphene–polymer transfer and UV-induced bonding. Macromol. Rapid Commun. 2014, 35, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105. [Google Scholar] [CrossRef]
- Martín-Gallego, M.; Verdejo, R.; Lopez-Manchado, M.A.; Sangermano, M. Epoxy-graphene UV-cured nanocomposites. Polymer 2011, 52, 4664–4669. [Google Scholar] [CrossRef]
- Sangermano, M.; Marchi, S.; Valentini, L.; Bon, S.B.; Fabbri, P. Transparent and conductive graphene oxide/poly(ethylene glycol) diacrylate coatings obtained by photopolymerization. Macromol. Mater. Eng. 2011, 296, 401–407. [Google Scholar] [CrossRef]
- Giardi, R.; Porro, S.; Chiolerio, A.; Celasco, E.; Sangermano, M. Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites. J. Mater. Sci. 2013, 48, 1249–1255. [Google Scholar] [CrossRef]
- Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Dreyer, R.D.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Rev. Soc. 2010. [Google Scholar] [CrossRef] [PubMed]
- Dikin, A.K.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.B.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Vo, T.; Inam, F. Epoxy/graphene nanocomposites–processing and properties: A review. RSC Adv. 2015, 5, 73510–73524. [Google Scholar] [CrossRef]
- Bai, S.; Shen, X. Graphene-inorganic nanocomposites. RSC Adv. 2012, 2, 64–98. [Google Scholar] [CrossRef]
- Chatterjee, S.; Nafezarefi, F.; Tai, N.H.; Schlagenhauf, L.; Nüesch, F.A.; Chu, B.T.T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 2012, 50, 5380–5386. [Google Scholar] [CrossRef]
- Sangermano, M.; Buzzerio, G.; Rizzoli, R.; Ortolani, L.; Morandi, V.; Pirri, F.; Chiolerio, A. Enhanced performance of graphene-epoxy flexible capacitors by means of ceramic fillers. Macromol. Chem. Phys. 2015, 216, 707–713. [Google Scholar] [CrossRef]
- Martin-Gallego, M.; Lopez-Manchado, M.A.; Calza, P.; Roppolo, I.; Sangermano, M. Gold-functionalized graphene as conductive filler in UV-curable epoxy resin. J. Mater. Sci. 2015, 50, 605–610. [Google Scholar] [CrossRef]
- Guimard, N.K.; Oehlenschlaeger, K.K.; Zhou, J.; Hilf, S.; Schmidt, F.G.; Barner-Kowollik, C. Current trends in the field of self-healing materials. Macromol. Chem. Phys. 2012, 213, 131–143. [Google Scholar] [CrossRef]
- Burattini, S.; Greenland, B.W.; Chappell, D.; Colquhoun, H.M.; Hayes, W. Healable polymeric materials: A tutorial review. Chem. Soc. Rev. 2010, 39, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.Y.; Meure, S.; Solomon, D. Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 2008, 33, 479–522. [Google Scholar] [CrossRef]
- Billiet, S.; Hillewaere, X.K.D.; Teixeira, R.F.A.; Du Prez, F.E. Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Commun. 2013, 34, 290–309. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. Preparation and characterization of microencapsulated polythiol. Polymer 2008, 49, 2531–2541. [Google Scholar] [CrossRef]
- Blaiszik, B.J.; Caruso, M.M.; McIlroy, D.A.; Moore, J.S.; White, S.R.; Sottos, N.R. Microcapsules filled with reactive solutions for self-healing materials. Polymer 2009, 50, 990–997. [Google Scholar] [CrossRef]
- German, I.; Rhodes, R.; Stevens, G.C.; Thomas, J. An investigation of self-repair systems for solid extruded polymeric and fluid filled cables. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Seattle, DC, USA, 7–10 June 2015; pp. 301–304.
- Lesaint, C.; Risinggård, V.; Hølto, J.; Sæternes, H.H.; Hestad, Ø.; Hvidsten, S.; Glomm, W.R. Self-healing high voltage electrical insulation materials. In Proceedings of the Electrical Insulation Conference (EIC), Philadelphia, PA, USA, 8–11 June 2014; pp. 241–244.
- Rudi, K.; Andrew, D.H.; Managam, R.; Nawawi, Z.; Hozumi, N.; Nagao, M. The self-healing property of silicone rubber after degraded by treeing. In Proceedings of the International Conference on Condition Monitoring and Diagnosis (CMD), Bali, Indonesia, 23–27 September 2012; pp. 254–257.
- Burattini, S.; Greenland, B.W.; Merino, D.H.; Weng, W.; Seppala, J.; Colquhoun, H.M.; Hayes, W.; Mackay, M.E.; Hamley, I.W.; Rowan, S.J. A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 2010, 132, 12051–12058. [Google Scholar] [CrossRef] [PubMed]
- Krauss, S.; Metzger, T.H.; Fratzl, P.; Harrington, M.J. Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 2013, 14, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Dam, M.A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S.R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hsieh, C.; Chen, Y. Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels–Alder reaction. Polymer 2006, 47, 2581–2586. [Google Scholar] [CrossRef]
- Peterson, A.M.; Jensen, R.E.; Palmese, G.R. Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction. ACS Appl. Mater. Interfaces 2010, 2, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wudl, F.; Mal, A.K.; Shen, H.; Nutt, S.R. New thermally remendable highly cross-linked polymeric materials. Macromolecules 2003, 36, 1802–1807. [Google Scholar] [CrossRef]
- Syrett, J.A.; Mantovani, G.; Barton, W.R.S.; Price, D.; Haddleton, D.M. Self-healing polymers prepared via living radical polymerisation. Polym. Chem. 2010, 1, 102–106. [Google Scholar] [CrossRef]
- Yoshie, N.; Saito, S.; Oya, N. A thermally-stable self-mending polymer networked by Diels-Alder cycloaddition. Polymer 2011, 52, 6074–6079. [Google Scholar] [CrossRef]
- Ling, J.; Rong, M.Z.; Zhang, M.Q. Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. Polymer 2012, 53, 2691–2698. [Google Scholar] [CrossRef]
- Chung, C.; Roh, Y.; Cho, S.; Kim, J. Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem. Mater. 2004, 16, 3982–3984. [Google Scholar] [CrossRef]
- Froimowicz, P.; Frey, H.; Landfester, K. Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromol. Rapid Commun. 2011, 32, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Radl, S.; Kreimer, M.; Griesser, T.; Oesterreicher, A.; Moser, A.; Kern, W.; Schlögl, S. New strategies towards reversible and mendable epoxy based materials employing [4πs + 4πs] photocycloaddition and thermal cycloreversion of pendant anthracene groups. Polymer 2015, 80, 76–87. [Google Scholar] [CrossRef]
- Radl, S.; Kreimer, M.; Manhart, J.; Griesser, T.; Moser, A.; Pinter, G.; Kalinka, G.; Kern, W.; Schlögl, S. Photocleavable epoxy based materials. Polymer 2015, 69, 159–168. [Google Scholar] [CrossRef]
- Cesano, F.; Rattalino, I.; Demarchi, D.; Bardelli, F.; Sanginario, A.; Gianturco, A.; Veca, A.; Viazzi, C.; Castelli, P.; Scarano, D.; Zecchina, A. Structure and properties of metal-free conductive tracks on polyethylene/multiwalled carbon nanotube composites as obtained by laser stimulated percolation. Carbon 2013, 61, 63–71. [Google Scholar] [CrossRef]
- Kaiser, A.B.; Skakalova, V. Electronic conduction in polymers, carbon nanotubes and graphene. Chem. Soc. Rev. 2011, 40, 3786–3801. [Google Scholar] [CrossRef] [PubMed]
- Chun, K.-Y.; Oh, Y.; Rho, J.; Ahn, J.-H.; Kim, Y.-J.; Choi, H.R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A.L.M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P.M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Leigh, S.J.; Bradley, R.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 2012, 7, e49365. [Google Scholar] [CrossRef] [PubMed]
- Kordás, K.; Mustonen, T.; Tóth, G.; Jantunen, H.; Lajunen, M.; Soldano, C.; Talapatra, S.; Kar, S.; Vajtai, R.; Ajayan, P.M. Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2006, 2, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
Origin | Chemical structure | Examples |
---|---|---|
Natural | Animal | Silk, Wool, Hair |
Mineral | Asbestos | |
Cellulose | Wood, Seed, Leaf, Fruit, Stalk, Bast, Grass | |
Synthetic | Inorganic | Oxides: TiO2, SiO2, Al2O3, ZnO, MgO, Sb2O3 |
Hydroxides: Al(OH)3, Mg(OH)2 | ||
Metals: Al, Au, Ag, B, Sn, Cu, Steel | ||
Silicates: asbestos, talc, mica, nanoclay, kaolin | ||
Salts: CaCO3, BaSO4, CaSO4, etc. | ||
Carbides and nitrides: AlN, BN, SiC | ||
Organic | Carbon and graphite fibers and flakes, carbon nanotubes, carbon black, graphene, graphene oxide | |
Natural polymers: cellulose and wood fibers, cotton, flax, starch | ||
Synthetic polymers: aramid, polyester, polyamide, polyvinyl alcohol fibers |
Nanofiller type | Origins/Structure | Examples |
---|---|---|
Nano-clay | Phyllosilicates | Kaolinite, Smectite (Talc, Mica, Montmorillonite), Chlorite, Bentonite, Saponite, etc. |
PolySilicate | Natural (Magadiite, Ilerite, Zeolite, Silhydrite, Kanemite, Kenyaite) and Synthetic (Zeolite and FluoroHectorite) | |
Double Lamellar Hydroxite | Synthetic (Hydrotalcite, etc.) | |
Nano-oxides | Organic | Diatomite; |
Inorganic | NanoTiO2, nanoSiO2, nanoAl2O3, nano-antimony-tin oxide (ATO) | |
Carbon nanotubes (CNTs) | Single-wall | Diameter between 1 and 2 nm; |
Double-wall | Diameter between 2 and 4 nm; | |
Multi-wall | Diameter between 4 and 150 nm; | |
Other nanofillers | Metallic | Nanosilver, nanozinc, nanogold fillers, etc.; |
Magnetic | Oxide: ferrites, etc. | |
Semiconducting | Nano-SiC, nano-ZnO etc. |
High-conductivity fillers | Thermal conductivity (W/m·K) | Coefficient of thermal expansion (ppm/°C) |
---|---|---|
Fused SiO2 | 1.5–1.6 | 0.4–0.5 |
Crystalline SiO2 | 3 | 10 |
Al2O3 | 38–42 | 7 |
BeO | 300 | 5.5 |
ZnO | 60 | 2–3 |
Si4N3 | 86–120 | 2.7–3.1 |
BN | 29–300 | 1.1–4.3 |
AlN | 150–220 | 2.5–5 |
SiC | 85 | 4.1–4.7 |
BaTiO3 | 6.2 | 6 |
Diamond | 2000 | 0.11–1.23 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleşa, I.; Noţingher, P.V.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of Polymer Composites Used in High-Voltage Applications. Polymers 2016, 8, 173. https://doi.org/10.3390/polym8050173
Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M. Properties of Polymer Composites Used in High-Voltage Applications. Polymers. 2016; 8(5):173. https://doi.org/10.3390/polym8050173
Chicago/Turabian StylePleşa, Ilona, Petru V. Noţingher, Sandra Schlögl, Christof Sumereder, and Michael Muhr. 2016. "Properties of Polymer Composites Used in High-Voltage Applications" Polymers 8, no. 5: 173. https://doi.org/10.3390/polym8050173
APA StylePleşa, I., Noţingher, P. V., Schlögl, S., Sumereder, C., & Muhr, M. (2016). Properties of Polymer Composites Used in High-Voltage Applications. Polymers, 8(5), 173. https://doi.org/10.3390/polym8050173