Optimal Strategies for E-Commerce Platform Supply Chain: Carbon Emission Reduction and Financing
<p>E-C platform supply chain CER and financing model.</p> "> Figure 2
<p>Supply chain structures.</p> "> Figure 3
<p>Event sequence of Scenario ST.</p> "> Figure 4
<p>Event sequence of Scenario SG.</p> "> Figure 5
<p>Event sequence of Scenario EG.</p> "> Figure 6
<p>Event sequence of Scenario BG.</p> "> Figure 7
<p>Impact of <inline-formula><mml:math id="mm514"><mml:semantics><mml:mi>λ</mml:mi></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm96"><mml:semantics><mml:mi>η</mml:mi></mml:semantics></mml:math></inline-formula> on <inline-formula><mml:math id="mm97"><mml:semantics><mml:mrow><mml:msup><mml:mi>w</mml:mi><mml:mrow><mml:mi>J</mml:mi><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 8
<p>Impact of <inline-formula><mml:math id="mm515"><mml:semantics><mml:mi>k</mml:mi></mml:semantics></mml:math></inline-formula> on <inline-formula><mml:math id="mm122"><mml:semantics><mml:mrow><mml:msup><mml:mi>w</mml:mi><mml:mrow><mml:mi>J</mml:mi><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 9
<p>Impact of <inline-formula><mml:math id="mm516"><mml:semantics><mml:mi>λ</mml:mi></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm148"><mml:semantics><mml:mi>η</mml:mi></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm149"><mml:semantics><mml:mi>k</mml:mi></mml:semantics></mml:math></inline-formula> on <inline-formula><mml:math id="mm150"><mml:semantics><mml:mrow><mml:msup><mml:mi>q</mml:mi><mml:mrow><mml:mi>J</mml:mi><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 10
<p>Impact of <inline-formula><mml:math id="mm517"><mml:semantics><mml:mi>λ</mml:mi></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm167"><mml:semantics><mml:mi>η</mml:mi></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm168"><mml:semantics><mml:mi>k</mml:mi></mml:semantics></mml:math></inline-formula> on <inline-formula><mml:math id="mm169"><mml:semantics><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mi>J</mml:mi><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 11
<p>Impact of <inline-formula><mml:math id="mm518"><mml:semantics><mml:mi>λ</mml:mi></mml:semantics></mml:math></inline-formula> on <inline-formula><mml:math id="mm187"><mml:semantics><mml:mrow><mml:msubsup><mml:mo>∏</mml:mo><mml:mi>s</mml:mi><mml:mrow><mml:mi>J</mml:mi><mml:mo>∗</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 12
<p>The manufacturers’ preference under different parameters.</p> "> Figure 12 Cont.
<p>The manufacturers’ preference under different parameters.</p> "> Figure A1
<p>Illustration of <inline-formula><mml:math id="mm379"><mml:semantics><mml:mrow><mml:msup><mml:mi>q</mml:mi><mml:mrow><mml:mi>J</mml:mi><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> cut interval.</p> ">
Abstract
:1. Introduction
- (1)
- What is the optimal CER strategy under conditions of sufficient capital or various financing options?
- (2)
- Which financing option has the best CER effect and is more beneficial to supply chain members?
- (3)
- Does a greater consumer preference for low-carbon products increase the profits of supply chain members?
- (4)
- How do parameters such as the commission rate and the interest rate affect the profitability of supply chain?
2. Literature Review
2.1. Low-Carbon Supply Chains
2.2. E-C Platform Supply Chains
2.3. Supply Chain Finance
3. Model Description and Assumptions
3.1. Model Description
- (i)
- Scenario ST: The manufacturer has sufficient capital but does not invest in CER technology innovation.
- (ii)
- Scenario SG: The manufacturer has sufficient capital and decides to invest in CER technology innovation.
- (iii)
- Scenario EG: The manufacturer, facing financial constraints, seeks financing from a well-funded E-C platform to secure sufficient capital for CER technology innovation. Since E-C platforms are internal members of the supply chain, the lending process is relatively fast.
- (iv)
- Scenario BG: The manufacturer, facing financial constraints, seeks financing from a bank to invest in CER technology innovation. Compared to financing from E-C platforms, bank loans have a slower processing speed, but banks often offer discounted interest rates to manufacturers involved in CER initiatives.
3.2. Assumptions
4. Model Development
4.1. Scenario ST: Traditional Production with Sufficient Capital
- (1)
- Wholesale price and production quantity
- (2)
- Profitability of supply chain members
4.2. Scenario SG: CER Implementation with Sufficient Capital
- (1)
- Wholesale price and production quantity:
- (2)
- Unit amount of CER
- (3)
- Profitability of supply chain members
4.3. Scenario EG: CER Implementation with E-C Platform Financing
- (1)
- Wholesale price and production quantity
- (2)
- Unit amount of CER
- (3)
- Profitability of supply chain members
4.4. Scenario BG: CER Implementation with Bank Financing
- (1)
- Wholesale price and production quantity
- (2)
- Unit amount of CER
- (3)
- Profitability of supply chain members
5. Results Analysis
- (1)
- (i) , , , ; (ii) , , ; (iii) , , ; (iv) , ; (v) .
- (2)
- (i) ; (ii) ; (iii) .
- (1)
- (i) if , ; (ii) if and ,; (iii) if and , .
- (2)
- (i) if , ; (ii) if and , ; (iii) if and , .
- (3)
- (i) if , ; (ii) if and , ; (iii) if and , .
- (1)
- (i) , , , ; (ii) , , ; (iii) , , ; (iv) , ; (v) ;
- (2)
- (i) if , ; (ii) if , ; (iii) if , ; (iv) if , ;
- (3)
- ;
- (4)
- .
- (1)
- (i) , , ; (ii) , , ; (iii) , , ; (iv) , ; (v) ;
- (2)
- (i) ; (ii) ; (iii) .
- (1)
- , , , .
- (2)
- , , .
- (3)
- , , .
- (4)
- , .
- (5)
- .
- (1)
- ;
- (2)
- ;
- (3)
- .
- (1)
- , , , .
- (2)
- , , .
- (3)
- , , .
- (1)
- ;
- (2)
- (i) if,; (ii) if,;
- (3)
- (i) if , ; (ii) if , .
6. Conclusions and Further Research
6.1. Conclusions
- (1)
- Supply chain CER: First, the unit amount of CER is higher in the sufficient capital scenario than in the financing scenario. Second, when the manufacturers’ capital is constrained, the unit amount of CER decreases as interest rate rise. The unit amount of CER is greater in Scenario BG than in Scenario EG. Finally, the impact of consumers’ low-carbon preference on the unit amount of CER depends on the CER technology innovation cost. When the CER technology innovation cost is greater than a certain threshold, the unit amount of CER always increases with the increase of consumers’ low-carbon preference.
- (2)
- Supply chain profit: On the one hand, whether manufacturers invest in CER technology innovation, supplier profits and manufacturer profits decrease as the commission rate increases. In three CER scenarios (Scenario SG, EG, and BG), the increase in consumer low-carbon preference proposes to increase the profitability of suppliers and manufacturers. On the other hand, the manufacturer’s profit in Scenario SG is greater than in Scenario ST. In addition, although there are financing costs for the manufacturer in Scenario EG and Scenario BG, the suppliers’ profit is still greater than in Scenario ST.
- (3)
- Financing strategy: When the manufacturer is constrained by the capital for CER, the manufacturer should choose to carry out financing rather than give up CER for the production of traditional products. If the service cost of bank financing is less than a certain threshold, bank financing is chosen, and vice versa, E-C platform financing is chosen.
6.2. Recommendations
6.3. Limitations and Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- (1)
- (i)
- , , , ;
- (ii)
- , , .
- (iii)
- , , .
- (iv)
- ,.
- (v)
- .
- (2)
- (i)
- , ; Thus, we can obtain .
- (ii)
- , . Thus, we can obtain .
- (iii)
- , . Thus, we can obtain . □
- (1)
- . Subject to and , increases monotonically with . Solving , we have . Similarly, subject to and , is a quadratic function of . That is, the function has two different real roots. Solving , we obtain and . Since , we just need to discuss . Thus, we ensure that (i) if , then ; (ii) if and , then ; (iii) if and , then .
- (2)
- . Subject to and , increases monotonically with . Solving , we have . Similarly, subject to and , is a quadratic function of . That is, the function has two different real roots. Solving , we obtain and . Since , we just need to discuss . Thus, we ensure that: (i) if , then ; (ii) if and , then ; (iii) if and , then .
- (3)
- . Subject to and , increases monotonically with . Solving , we have . Similarly, subject to and , is a quadratic function of . That is, the function has two different real roots. Solving , we obtain and . Since , we just need to discuss . Thus, we ensure that: (i) if , then ; (ii) if and , then ; (iii) if and , then . □
- (1)
- (i)
- , , ,.
- (ii)
- , , .
- (iii)
- , , .
- (iv)
- , .
- (v)
- .
- (2)
- . Subject to and , decreases monotonically with . Solving , we have . That is, if ; otherwise, .
- (3)
- , . Thus, we can obtain .
- (4)
- , . Thus, we can obtain . □
- (1)
- (i)
- , , .
- (ii)
- , , .
- (iii)
- , , .
- (iv)
- , .
- (v)
- .
- (2)
- (i)
- , , .
- (ii)
- , , Thus, we can obtain .
- (iii)
- , , Thus, we can obtain . □
- (1)
- , , , .
- (2)
- , , .
- (3)
- , , .
- (4)
- , .
- (5)
- . □
- (1)
- . Subject to and , is a quadratic function of . That is, the function has two different real roots. Solving we obtain and . Since , we conclude that holds.
- (2)
- . Subject to and , is a quadratic function of . That is, the function has two different real roots. Solving we obtain and . Since , we conclude that holds.
- (3)
- . Subject to and , is a quadratic function of . That is, the function has two different real roots. Solving we obtain and . Since , we conclude that holds. □
- (1)
- , , , .
- (2)
- , , , .
- (3)
- , , . □
- (1)
- Comparing the with , we have , where Subject to and , is a quadratic function of . That is, the function has two different real roots. Solving we obtain and , where . Since , we conclude that holds. Here, is proved.
- (2)
- decreases monotonically with . Solving , we have That is, if ; otherwise, .
- (3)
- increases monotonically with . Solving , we have , where and . That is, if ; otherwise, . □
References
- Fu, K.; Li, Y.Z.; Mao, H.Q.; Miao, Z.W. Firms’ production and green technology strategies: The role of emission asymmetry and carbon taxes. Eur. J. Oper. Res. 2023, 305, 1100–1112. [Google Scholar] [CrossRef]
- Chai, J.; Zhang, X.J.; Zhang, X.K.; Wang, Y.B. Effects of scenario-based carbon pricing policies on China’s dual climate change mitigation goals: Does policy design matter? J. Manag. Sci. Eng. 2023, 8, 167–175. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q.; Ji, J.N. Pricing and carbon emission reduction decisions in supply chains with vertical and horizontal cooperation. Int. J. Prod. Econ. 2017, 191, 286–297. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, Z.Q.; Jin, M.Z.; Mao, J.F. Decisions and Coordination of Retailer-led Low-carbon Supply Chain under Altruistic Preference. Eur. J. Oper. Res. 2021, 293, 910–925. [Google Scholar] [CrossRef]
- Li, G.; Wu, H.M.; Sethi, S.P.; Zhang, X. Contracting green product supply chains considering marketing efforts in the circular economy era. Int. J. Prod. Econ. 2021, 234, 108041. [Google Scholar] [CrossRef]
- Du, S.F.; Zhu, J.A.; Jiao, H.F.; Ye, W.Y. Game-theoretical analysis for supply chain with consumer preference to low carbon. Int. J. Prod. Res. 2015, 53, 3753–3768. [Google Scholar] [CrossRef]
- Sun, L.C.; Cao, X.X.; Alharthi, M.; Zhang, J.J. Carbon emission transfer strategies in supply chain with lag time of emission reduction technologies and low-carbon preference of consumers. J. Clean. Prod. 2020, 264, 121664. [Google Scholar] [CrossRef]
- Zhu, W.G.; He, Y.J. Green product design in supply chains under competition. Eur. J. Oper. Res. 2016, 258, 165–180. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Hou, W.H. The impacts of e-tailer’s private label on the sales mode selection: From the perspectives of economic and environmental sustainability. Eur. J. Oper. Res. 2022, 296, 601–614. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Xu, H.Y.; Chen, K.B.; Zhao, Y.X.; Liu, Z. Channel mode selection for an e-platform supply chain in the presence of a secondary marketplace. Eur. J. Oper. Res. 2023, 305, 1215–1235. [Google Scholar] [CrossRef]
- Hao, C.X.; Yang, L. Resale or agency sale? Equilibrium analysis on the role of live streaming selling. Eur. J. Oper. Res. 2023, 307, 1117–1134. [Google Scholar] [CrossRef]
- Xu, S.; Fang, L. Partial credit guarantee and trade credit in an emission-dependent supply chain with capital constraint. Transp. Res. Part E Logist. Transp. Rev. 2020, 135, 101859. [Google Scholar] [CrossRef]
- Lee, H.-L.; Tang, C.-S. Socially and environmentally responsible value chain innovations: New operations management research opportunities. Manag. Sci. 2018, 64, 983–996. [Google Scholar] [CrossRef]
- Guo, S.; Choi, T.M.; Shen, B. Green product development under competition: A study of the fashion apparel industry. Eur. J. Oper. Res. 2020, 280, 523–538. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Zhou, H.; Leus, R. Recovery from demand disruption: Two-stage financing strategy for a capital-constrained supply chain under uncertainty. Eur. J. Oper. Res. 2022, 303, 699–718. [Google Scholar] [CrossRef]
- Cao, E.B.; Du, L.X.; Ruan, J.H. Financing Preferences and Performance for an Emission-Dependent Supply Chain: Supplier vs. Bank. Int. J. Prod. Econ. 2019, 208, 383–399. [Google Scholar] [CrossRef]
- Ghosh, D.; Shah, J. A comparative analysis of greening policies across supply chain structures. Int. J. Prod. Econ. 2012, 135, 568–583. [Google Scholar] [CrossRef]
- Heydari, J.; Govindan, K.; Aslani, A. Pricing and greening decisions in a three-tier dual channel supply chain. Int. J. Prod. Econ. 2019, 217, 185–196. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Y.J.; Huang, L.J. Collecting mode selection in a remanufacturing supply chain under cap-and-trade regulation. Eur. J. Oper. Res. 2020, 287, 480–496. [Google Scholar] [CrossRef]
- Xu, X.Y.; Xu, X.P.; He, P. Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. J. Clean. Prod. 2016, 112, 4093–4106. [Google Scholar] [CrossRef]
- Hong, Z.F.; Chu, C.B.; Yu, Y.G. Dual-mode production planning for manufacturing with emission constraints. Eur. J. Oper. Res. 2016, 251, 96–106. [Google Scholar] [CrossRef]
- Liu, Z.G.; Anderson, T.D.; Cruz, J.M. Consumer environmental awareness and competition in two-stage supply chains. Eur. J. Oper. Res. 2012, 218, 602–613. [Google Scholar] [CrossRef]
- Ji, J.-N.; Zhang, Z.-Y.; Yang, L. Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers’ preference. J. Clean. Prod. 2017, 141, 852–867. [Google Scholar] [CrossRef]
- Zhang, L.H.; Wang, J.G.; You, J.X. Consumer environmental awareness and channel coordination with two substitutable products. Eur. J. Oper. Res. 2015, 241, 63–73. [Google Scholar] [CrossRef]
- Zhou, P.; Wen, W. Carbon-constrained firm decisions: From business strategies to operations modeling. Eur. J. Oper. Res. 2020, 281, 1–15. [Google Scholar] [CrossRef]
- Ha, A.Y.; Tong, S.-L.; Wang, Y.-J. Channel structures of online retail platforms. Manuf. Serv. Oper. Manag. 2021, 24, 1547–1561. [Google Scholar] [CrossRef]
- Hsiao, L.; Chen, Y.J.; Xiong, H. Commission, product quality and return policy in agency selling. Nav. Res. Logist. 2023, 70, 231–245. [Google Scholar] [CrossRef]
- Abhishek, V.; Jerath, K.; Zhang, Z.J. Agency Selling or Reselling? Channel Structures in Electronic Retailing. Manag. Sci. 2015, 62, 2259–2280. [Google Scholar] [CrossRef]
- Tan, Y.L.; Carrillo, J.E. Strategic analysis of the agency model for digital goods. Prod. Oper. Manag. 2017, 26, 724–741. [Google Scholar] [CrossRef]
- Yi, Z.L.; Wang, Y.L.; Liu, Y.; Chen, Y.J. The impact of consumer fairness seeking on distribution channel selection: Direct selling vs. agent selling. Prod. Oper. Manag. 2018, 27, 1148–1167. [Google Scholar] [CrossRef]
- Tian, L.; Vakharia, A.J.; Tan, Y.L.; Xu, Y.F. Marketplace, reseller, or hybrid: Strategic analysis of an emerging e-commerce model. Prod. Oper. Manag. 2018, 27, 1595–1610. [Google Scholar] [CrossRef]
- Wei, J.; Lu, J.H.; Zhao, J. Interactions of competing manufacturers’ leader-follower relationship and sales format on online platforms. Eur. J. Oper. Res. 2022, 280, 508–522. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Cao, Q.N.; He, X.L. Contract and product quality in platform selling. Eur. J. Oper. Res. 2019, 272, 928–944. [Google Scholar] [CrossRef]
- Zhang, S.C.; Zhang, J.X. Agency selling or reselling: E-tailer information sharing with supplier offline entry. Eur. J. Oper. Res. 2020, 280, 134–151. [Google Scholar] [CrossRef]
- Yan, N.N.; Jin, X.Y.; Zhong, H.C.; Xu, X. Loss-averse retailers’ financial offerings to capital-constrained suppliers: Loan vs. investment. Int. J. Prod. Econ. 2020, 227, 107665. [Google Scholar] [CrossRef]
- Cai, G.G.; Chen, X.; Xiao, Z. The roles of bank and trade credits: Theoretical analysis and empirical evidence. Prod. Oper. Manag. 2014, 23, 583–598. [Google Scholar] [CrossRef]
- Li, B.; An, S.M.; Song, D.P. Selection of financing strategies with a risk-averse supplier in a capital-constrained supply chain. Transp. Res. Part E Logist. Transp. Rev. 2018, 118, 163–183. [Google Scholar] [CrossRef]
- Jena, S.K.; Padhi, S.S.; Cheng, T.C.E. Optimal selection of supply chain financing programmes for a financially distressed manufacturer. Eur. J. Oper. Res. 2023, 306, 457–477. [Google Scholar] [CrossRef]
- Chang, S.H.; Li, A.Q.; Wang, X.; Wang, X.Y. Joint optimization of e-commerce supply chain financing strategy and channel contract. Eur. J. Oper. Res. 2022, 303, 908–927. [Google Scholar] [CrossRef]
- Qin, J.J.; Han, Y.Q.; Wei, G.M.; Xia, L.J. The value of advance payment financing to carbon emission reduction and production in a supply chain with game theory analysis. Int. J. Prod. Res. 2020, 58, 200–219. [Google Scholar] [CrossRef]
- An, S.; Li, B.; Song, D.P.; Chen, X. Green credit financing versus trade credit financing in a supply chain with carbon emission limits. Eur. J. Oper. Res. 2021, 292, 125–142. [Google Scholar] [CrossRef]
- Shi, J.Z.; Liu, D.; Du, Q.; Cheng, T.C.E. The role of the procurement commitment contract in a low-carbon supply chain with a capital-constrained supplier. Int. J. Prod. Econ. 2022, 255, 108681. [Google Scholar] [CrossRef]
- Lai, Z.X.; Lou, G.X.; Ma, H.C.; Chung, S.-H.; Wen, X.; Fan, T.J. Optimal green supply chain financing strategy: Internal collaborative financing and external investments. Int. J. Prod. Econ. 2022, 253, 108598. [Google Scholar] [CrossRef]
- Qin, J.J.; Fu, H.P.; Wang, Z.P.; Xia, L.J. Financing and carbon emission reduction strategies of capital-constrained manufacturers in E-commerce supply chains. Int. J. Prod. Econ. 2021, 241, 108271. [Google Scholar] [CrossRef]
- Yao, D.-Q.; Yue, X.H.; Liu, J. Vertical cost information sharing in a supply chain with value-adding retailers. Omega 2008, 36, 838–851. [Google Scholar] [CrossRef]
- Chen, X.-F. A model of trade credit in a capital-constrained distribution channel. Int. J. Prod. Econ. 2015, 159, 347–357. [Google Scholar] [CrossRef]
- Kouvelis, P.; Zhao, W.H. Financing the Newsvendor: Supplier vs. Bank, and the Structure of Optimal Trade Credit Contracts. Oper. Res. 2012, 60, 566–580. [Google Scholar] [CrossRef]
- Ji, G.-J.; Fu, T.Y.; Li, S.H. Optimal selling format considering price discount strategy in live-streaming commerce. Eur. J. Oper. Res. 2023, 309, 529–544. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Lv, L.X.; Shen, L.; Tang, R.Y. Manufacturer’s decision-making model under carbon emission permits repurchase strategy and capital constraints. Int. J. Prod. Res. 2021, 62, 8073–8091. [Google Scholar] [CrossRef]
- Amazon. Available online: https://sell.amazon.com/pricing (accessed on 20 October 2024).
- Taobao. Available online: https://rulechannel.taobao.com/?type=detail&ruleId=10000015&cId=81#/rule/detail?ruleId=10000015&cId=81 (accessed on 20 October 2024).
- JD. Available online: https://rule.jd.com/rule/ruleDetail.action?ruleId=638209647311982592&type=0 (accessed on 20 October 2024).
- Cao, E.-B.; Yu, M. The bright side of carbon emission permits on supply chain financing and performance. Omega 2019, 88, 24–39. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Yoshino, N. The way to induce private participation in green finance and investment. Financ. Res. Lett. 2019, 31, 98–103. [Google Scholar] [CrossRef]
- Yoshino, N.; Taghizadeh-Hesary, F. Optimal credit guarantee ratio for small and medium-sized enterprises’ financing: Evidence from Asia. Econ. Anal. Policy 2019, 62, 342–356. [Google Scholar] [CrossRef]
- The People’s Bank of China. Available online: http://www.pbc.gov.cn/zhengcehuobisi/125207/125213/125440/3876551/5242639/index.html (accessed on 20 February 2024).
- He, P.; He, Y.; Xu, H. Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy. Int. J. Prod. Econ. 2019, 213, 108–123. [Google Scholar] [CrossRef]
- ZXpacking. Available online: https://zhongxinpacking.cn/ (accessed on 20 October 2024).
- DouyinEC. Available online: https://www.douyinec.com/ (accessed on 20 October 2024).
- P&G. Available online: https://www.pg.com.cn/environmental-sustainability/ (accessed on 20 October 2024).
- Gold Hongye Paper. Available online: https://www.ghy.com.cn/ (accessed on 20 October 2024).
- China Guangfa Bank. Available online: https://card.cgbchina.com.cn/Info/26967460 (accessed on 20 October 2024).
Representative Paper | Channel Selection | Low-Carbon Supply Chains | E-C Platform Supply Chains | Supply Chain Finance | |||
---|---|---|---|---|---|---|---|
Low-Carbon Innovation | Consumers’ Low-Carbon Preference | E-C Platform | Commission Rate | E-C Platform Finance | Bank Finance | ||
Yang et al. [3] | √ | √ | |||||
Liu et al. [22] | √ | √ | |||||
Hsiao et al. [27] | √ | √ | |||||
Chang et al. [39] | √ | √ | √ | √ | |||
An et al. [41] | √ | √ | √ | ||||
Shi et al. [42] | √ | √ | √ | √ | |||
Lai et al. [43] | √ | √ | √ | √ | |||
Qin et al. [44] | √ | √ | √ | √ | √ | √ | |
This study | √ | √ | √ | √ | √ | √ | √ |
Parameters | Definitions |
---|---|
Total market potential | |
Random variable that represents uncertain market demand | |
Manufacturer’s initial capital | |
Wholesale price in Strategy , where | |
Retail price in Strategy | |
Retail price in Strategy , where | |
The commission rate, where | |
The coefficient of consumers’ low-carbon preference | |
Interest rate | |
The discount of interest rate, where | |
Unit amount of CER in Scenario , where | |
Manufacturer’s variable production cost | |
The coefficient of CER technology innovation cost | |
The service cost of bank financing | |
The CER technology innovation cost | |
Production quantity in Scenario , where | |
Market demand in Scenario , where | |
The profit of in Scenario , where , (supplier), (manufacturer), (E-C platform), (bank), |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shang, J. Optimal Strategies for E-Commerce Platform Supply Chain: Carbon Emission Reduction and Financing. Systems 2024, 12, 469. https://doi.org/10.3390/systems12110469
Zhang Y, Shang J. Optimal Strategies for E-Commerce Platform Supply Chain: Carbon Emission Reduction and Financing. Systems. 2024; 12(11):469. https://doi.org/10.3390/systems12110469
Chicago/Turabian StyleZhang, Yuting, and Juan Shang. 2024. "Optimal Strategies for E-Commerce Platform Supply Chain: Carbon Emission Reduction and Financing" Systems 12, no. 11: 469. https://doi.org/10.3390/systems12110469
APA StyleZhang, Y., & Shang, J. (2024). Optimal Strategies for E-Commerce Platform Supply Chain: Carbon Emission Reduction and Financing. Systems, 12(11), 469. https://doi.org/10.3390/systems12110469