IoT’s Tiny Steps towards 5G: Telco’s Perspective
<p>Methodological approach to research.</p> "> Figure 2
<p>Keywords for searching relevant databases.</p> "> Figure 3
<p>Reference distribution by (<b>a</b>) year of publication; (<b>b</b>) type of publication.</p> "> Figure 4
<p>IoT performance requirements and enabling technologies.</p> ">
Abstract
:1. Introduction
2. Research Approach and Design
3. IoT in 5G Service Classification
3.1. Existing Classifications of IoT Applications
3.2. Activity-Based Classification of IoT Applications
3.3. Summary of IoT in 5G Service Classification
4. IoT in 5G Performance Requirements
4.1. Data Rate
4.2. Mobility
4.3. Latency
4.4. Connection Density
4.5. Reliability
4.6. Position Accuracy
4.7. Coverage
4.8. Energy Efficiency
4.9. Spectrum Efficiency
4.10. Summary of IoT in 5G Performance Requirements
5. IoT in 5G Enabling Technologies
5.1. Wide and Flexible Bandwidth Technology
5.2. Advanced Modulation and Coding
5.3. Duplexing
5.4. Multiple Access and Waveforms
5.5. Advanced Interface Management
5.6. Access Architecture Related Radio Technology
5.7. Energy Related Technologies
5.8. Other Technologies
5.9. Summary of IoT in Enabling Technologies
- Wide and flexible bandwidth technology: mmWave band communication and large-scale antennas, heterogeneous multi-RAT integration, cognitive radio, and spectrum sharing;
- Advanced modulation and coding: advanced modulation schemes, advanced channel coding;
- Duplexing: in-band FD, dynamic TDD;
- Multiple access and waveform: multiple access, new waveforms;
- Advanced interface management: SND, SWSC;
- Access architecture related radio technologies: advanced small cell, MN, enhanced wireless backhaul, D2D;
- Energy related technologies: energy harvesting, UAV;
- Other technologies: mMIMO, VLC, SIC, V2X.
6. Discussion
7. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Antonopoulos, A.; Perillo, C.; Verikoukis, C. Internet Service Providers vs. Over-the-Top Companies: Friends or Foes?—Short talk. SIGMETRICS Perform. Eval. Rev. 2016, 44, 37. [Google Scholar] [CrossRef]
- Antonopoulos, A.; Kartsakli, E.; Perillo, C.; Verikoukis, C. Shedding Light on the Internet: Stakeholders and Network Neutrality. IEEE Commun. Mag. 2017, 55, 216–223. [Google Scholar] [CrossRef]
- IoT-Ignite. Role of Telcos in Internet of Things. Available online: https://devzone.iot-ignite.com/wp-content/uploads/2017/01/Role-of-Telcos-in-IoT.pdf (accessed on 5 September 2017).
- Kaur, S.; Singh, I. A Survey Report on Internet of Things Applications. Int. J. Comput. Sci. Trends Technol. 2016, 4, 330–335. [Google Scholar]
- 5G Forum. 5G Vision, Requirements, and Enabling Technologies. Available online: http://kani.or.kr/5g/whitepaper/5G%20Vision,%20Requirements,%20and%20Enabling%20Technologies.pdf (accessed on 10 July 2017).
- Saha, R.K.; Saengudomlert, P.; Aswakul, C. Evolution towards 5G Mobile Networks—A survey on Enabling Technologies. Eng. J. 2016, 20, 87–112. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Nie, S.; Lin, S.C.; Chandrasekaran, M. 5G roadmap: 10 Key Enabling Technologies. Comput. Netw. 2014, 106, 17–48. [Google Scholar] [CrossRef]
- NGMN Alliance. 5G White Paper-Executive Version. Available online: https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf (accessed on 10 July 2017).
- Popovski, P.; Mange, G.; Gozalves-Serrano, D.; Rosowski, T.; Zimmermann, G.; Agyapong, P.; Fallgren, M.; Hoglund, A.; Queseth, O.; Tullberg, H.; et al. Deliverable D6.6 Final Report on the METIS 5G System Concept and Technology Roadmap. Available online: https://www.metis2020.com/wp-content/uploads/deliverables/METIS_D6.6_Summary.pdf (accessed on 10 July 2017).
- Aly, H.; Elmogy, M.; Barakat, S. Big Data on Internet of Things: Applications, Architecture, Technologies, Techniques, and Future Directions. Int. J. Comput. Sci. Eng. 2015, 4, 300–313. [Google Scholar]
- Vermesan, O.; Friess, P. Internet of Things—From Research and Innovation to Market Deployment; Riverbed: Aalborg, Denmark, 2014. [Google Scholar]
- Amaral, L.A.; de Matos, E.; Tiburski, R.T.; Hessel, F.; Lunardi, W.T.; Marczak, S. Middleware Technology for IoT Systems: Challenges and Perspectives Toward 5G. In Internet of Things (IoT) in 5G Mobile Technologies; Mavromoustakis, C., Mastorakis, G., Batalla, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 333–367. [Google Scholar]
- OECD. Machine-to-Machine Communications: Connecting Billions of Devices. Available online: http://www.oecd-ilibrary.org/docserver/download/5k9gsh2gp043-en.pdf?expires=1499694889&id=id&accname=guest&checksum=F403637E723693581F03EA9D6F3A3C3B (accessed on 10 July 2017).
- Zheng, K.; Hu, F.; Wang, W.; Xiang, W. Radio Resource Allocation in LTE Advanced Cellular Networks with M2M Communications. IEEE Commun. Mag. 2012, 50. [Google Scholar] [CrossRef]
- Zhang, Q.; Fitzek, F.H.P. Mission Critical IoT Communication in 5G. In Future Access Enablers for Ubiquitous and Intelligent Infrastructures; Springer International Publishing: Cham, Switzerland, 2015; Volume 159, pp. 35–41. [Google Scholar]
- Oughton, E.J.; Frias, Z. Exploring the Cost, Coverage and Rollout Implications of 5G in Britain. Available online: http://www.itrc.org.uk/wp-content/uploads/Exploring-costs-of-5G.pdf (accessed on 10 July 2017).
- Chen, Y.; Wang, W. Machine-to-Machine Communication in LTE-A. In Proceedings of the 2010 IEEE Vehicular Technology Conference (VTC 2010-Fall), Ottawa, ON, Canada, 6–9 September 2010. [Google Scholar]
- Booysen, M.J.; Gilmore, S.J.; Zeadally, S.; van Rooyen, G.J. Machine-to-Machine (M2M) Communications in Vehicular Networks. KSII Trans. Internet Inf. Syst. 2012, 6, 529–546. [Google Scholar] [CrossRef]
- Niyato, D.; Xiao, L.; Wang, P. Machine-To-Machine Communications for Home Energy Management System in Smart Grid. IEEE Commun. Mag. 2011, 49, 53–59. [Google Scholar] [CrossRef]
- De Matos, W.D.; Gondim, P.R.L. M-Health Solutions Using 5G Networks and M2M Communications. IT Prof. 2016, 18, 24–29. [Google Scholar] [CrossRef]
- Investopedia. Business Model. Available online: http://www.investopedia.com/terms/b/businessmodel.asp (accessed on 3 September 2017).
- Gassmann, O.; Frankenberger, K.; Csik, M. Revolutionizing the Business Model. In Management of the Fuzzy Front End of Innovation; Springer: New York, NY, USA, 2014. [Google Scholar]
- Vermesan, O.; Bahr, R.; Gluhak, A.; Boesenberg, F.; Hoeer, A.; Osella, M. D02.01 IoT Business Models Framework. Available online: http://www.internet-of-things-research.eu/pdf/D02_01_WP02_H2020_UNIFY-IoT_Final.pdf (accessed on 3 September 2017).
- Dijkmana, R.M.; Sprenkelsa, B.; Peetersa, T.; Janssenb, A. Business Models for the Internet of Things. Int. J. Inf. Manag. 2015, 35, 672–678. [Google Scholar] [CrossRef]
- Farooq, M.O.; Sreenan, C.J.; Brown, K.N.C. Research Challenges in 5G Networks: A HetNets Perspective. In Proceedings of the 19th International ICIN Conference Innovations in Clouds, Internet and Networks, Paris, France, 1–3 March 2016. [Google Scholar]
- Hu, F. 5G Overview: Key Technologies. In Opportunities in 5G Networks, 1st ed.; Hu, F., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–557. [Google Scholar]
- Ford, R.; Zhang, M.; Mezzavilla, M.; Duttam, S.; Rangap, S.; Zorzi, M. Achieving Ultra-Low Latency in 5G Millimeter Wave Cellular Networks. IEEE Commun. Mag. 2017, 55, 196–203. [Google Scholar] [CrossRef]
- Prasad, R. IMT for 2020 and Beyond. In 5G Outlook—Innovations and Applications; Riverbed Publishers: Gistrup, Denmark, 2016; pp. 1–260. [Google Scholar]
- Ma, Z.; Zhang, Z.; Ding, Z.; Fan, P.; Li, H. Key Techniques for 5G Wireless Communications: Network Architecture, Physical Layer, and MAC Layer Perspectives. Sci. China Inf. Sci. 2015, 50, 1–20. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Daniels, R.C.; Heath, R.W.; Murdock, J.N. Introduction. In Millimeter Wave Wireless Communications; Pearson Education: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Ge, X.; Chen, J.; Ying, S.; Chen, M. Energy and Coverage Efficiency Trade-off in 5G Small Cells Network. arXiv 2016, arXiv:1612.04459. [Google Scholar]
- Hossain, S. 5G Wireless Communication Systems. Am. J. Eng. Res. 2013, 2, 344–353. [Google Scholar]
- Artiga, X.; Nunez-Martinez, J.; Perez-Neira, A.; Lendrino Vela, G.J.; Fare Garcia, J.M.; Ziaragkas, G. Terrestrial-satellite Integration in Dynamic 5G Backhaul Networks. In Proceedings of the 2016 8th Advanced Satellite Multimedia Systems Conference and the 14th Signa (ASMS/SPSC), Palma de Mallorca, Spain, 5–7 September 2016. [Google Scholar]
- Kamel, M.; Hamouda, W.; Youssef, A. Ultra-Dense Networks: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 2522–2545. [Google Scholar] [CrossRef]
- Kartsakli, E.; Lalos, A.S.; Antonopoulos, A.; Tennina, S.; Di Renzo, M.; Alonso, L.; Verikoukis, C. A Survey on M2M Systems for mHealth: A Wireless Communications Perspective. Sensors 2014, 10, 18009–18052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, A. DT, Chinese Operators take NB-IoT to Market. Available online: http://www.lightreading.com/iot/nb-iot/dt-chinese-operators-take-nb-iot-to-market/d/d-id/734022 (accessed on 6 September 2017).
- Vermesan, O.; Eisenhauer, M.; Sunmaeker, H.; Guillemin, P.; Serrano, M.; Tragos, E.Z.; Valino, J.; van der Wees, A.; Gluhak, A.; Bahr, R. Internet of Things Cogitive Transformation Technology Research Trends and Applications. In Cognitive Hyperconnected Digital Transformation; Vermesan, O., Bacquet, J., Eds.; River Publishers: Delft, The Netherlands, 2017; pp. 17–95. [Google Scholar]
- Gawas, A.U. An Overview on Evolution of Mobile Wireless Communication Networks: 1G–6G. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 3130–3133. [Google Scholar] [CrossRef]
- Qi, Y.; Hunukumbure, M.; Nekovee, M.; Sgardoni, V. Quantifying Data Rare and Bandwith Requirements for Immersive 5G Experience. In Proceedings of the 2016 IEEE International Conference on Communications Workshops, Kuala Lumpur, Malaysia, 23–27 May 2016. [Google Scholar]
- Sim, G.H.; Asadi, A.; Loch, A.; Widmer, J. Opp-Relay: Managing Directionaly and Mobility Issues of Millimeter-Wave via D2D Communication. In Proceedings of the I9th International Conference on COMSNETS 2017, Bangalore, India, 4–8 January 2017. [Google Scholar]
- Mer, S.B. Smart Vehicle-to-Vehicle Communication with 5G Technology. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 3241–3244. [Google Scholar]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A Survey of Millimeter Wave Communications (Mmwave) for 5G: Opportunities and Challenges. Wirel. Netw. 2016, 21, 2657–2676. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Process. Mag. 2012, 30, 1053–5888. [Google Scholar] [CrossRef]
- Hong, X.; Wang, J.; Wang, C.X.; Shi, J. Cognitive Radio in 5G: A Perspective on Energy-Spectral Efficiency Trade-Off. IEEE Commun. Mag. 2014, 52, 46–53. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, G.; Du, X. Cognitive Femtocell Networks: An Opportunistic Spectrum Access for Future Indoor Wireless Coverage. IEEE Wirel. Commun. 2013, 20, 44–51. [Google Scholar] [CrossRef]
- Lee, C.H.; Shih, C.Y. Coverage Analysis of Cognitive Femtocell Networks. IEEE Wirel. Commun. Lett. 2014, 3, 177–180. [Google Scholar] [CrossRef]
- Wang, W.; Yu, H.; Huang, A. Cognitive Radio Enhanced Interference Coordination for Femtocell Networks. IEEE Commun. Mag. 2013, 51, 37–43. [Google Scholar] [CrossRef]
- Menon, R.; Buehrer, R.M.; Reed, J.H. On the Impact of Dynamic Spectrum Sharing Techniques on Legacy Radio Systems. IEEE Trans. Wirel. Commun. 2008, 7, 4198–4207. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, R.; Nekovee, M.; Liu, Y.; Xie, S.; Gjessing, S. Cognitive Machine-to-Machine Communications: Visions and Potentials for the Smart Grid. IEEE Netw. 2012, 26, 6–13. [Google Scholar] [CrossRef]
- Aijaz, A.; Aghvami, A.H. Cognitive Machine-To-Machine Communications for Internet-of-Things: A Protocol Stack Perspective. IEEE Internet Things J. 2015, 2, 103–112. [Google Scholar] [CrossRef]
- Li, R.; Lu, B.; McDonald-Maier, K.D. Cognitive Assisted Living Ambient System: A Survey. Digit. Commun. Netw. 2015, 1, 229–252. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lazano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Samsung Electronics. 5G Vision, Version 2. Available online: http://www.samsung.com/global/business-images/insights/2015/Samsung-5G-Vision-0.pdf (accessed on 10 July 2017).
- Iscan, O.; Lentner, D.; Xu, W. A Comparison of Channel Coding Schemes for 5G Short Message Transmission. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016. [Google Scholar]
- Sabharwal, A.; Schniter, P.; Guo, D.; Bliss, D.W.; Rangarajan, S.; Wichman, R. In-Band Full-Duplex Wireless: Challenges and Opportunities. IEEE J. Sel. Areas Commun. 2014, 32, 1637–1652. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, Y.; Choi, J.; Sun, Q.; Elkashlan, M.; Chin-Lin, I.; Vincent Poor, H. Application of Non-Orthogonal Multiple Access in LTE and 5G Networks. IEEE Commun. Mag. 2006, 55, 185–191. [Google Scholar] [CrossRef]
- Lei, W. Non-Orthogonal Multiple Access Schemes for Future Cellular Systems. Ph.D. Thesis, University of Surrey, Surrey, UK, 17 May 2017. [Google Scholar]
- Farhang-Boroujeny, B. OFDM Versus Filter Bank Multicarrier. Signal Process. Mag. 2011, 28, 92–112. [Google Scholar] [CrossRef]
- Bellanger, M. FS-FBMC: An Alternative Scheme for Filter Bank Multicarrier Transmission. In Proceedings of the 2012 5th International Symposium on Communications Control and Signal Processing, Rome, Italy, 2–4 May 2012. [Google Scholar]
- Cai, X.; Qin, Z.; Cui, F.; Li, G.Y.; McCann, J.A. Modulation and Multiple Access for 5G Network. Available online: https://arxiv.org/pdf/1702.07673.pdf (accessed on 10 July 2017).
- Wang, L.; Sasoglu, E.; Kim, Y.H. Filtered OFDM: Sliding-Window Superposition Coding for Interference Networks. In Proceedings of the International Symposium Information Theory, Honolulu, HI, USA, 29 June–4 July 2014. [Google Scholar]
- Wang, L. Channel Coding Technique for Network Communication. Ph.D. Thesis, University of California, San Diego, CA, USA, December 2015. [Google Scholar]
- Cover, T.M. Broadcast Channels. IEEE Trans. Inf. Theory 1972, 18, 2–14. [Google Scholar] [CrossRef]
- Liao, H.H.J. Multiple Access Channels. Ph.D. Thesis, University of Hawaii, Honolulu, HI, USA, September 1972. [Google Scholar]
- Kramer, G.; Gastpar, M.; Gupta, P. Cooperative Strategies and Capacity Theorems for Relay Networks. IEEE Trans. Inf. Theory 2005, 51, 3037–3063. [Google Scholar] [CrossRef]
- Bhushan, N.; Li, J.; Malladi, D.; Gilmore, R.; Brenner, D.; Damnjanovic, A.; Sukhavasi, R.; Patel, C.; Geirhofer, S. Network Densification: The Dominant Theme for Wireless Evolution into 5G. IEEE Commun. Mag. 2014, 52, 82–89. [Google Scholar] [CrossRef]
- Chin, W.H.; Fan, Z.; Haines, R. Emerging Technologies and Research Challenges for 5G Wireless Networks. IEEE Wirel. Commun. 2014, 21, 106–112. [Google Scholar] [CrossRef]
- Biral, A.; Centenaro, M.; Zanellan, A. The Challenges of M2M Massive Access in Wireless Cellular Networks. Digit. Commun. Netw. 2015, 1, 1–19. [Google Scholar] [CrossRef]
- Barreto, A.N.; Faria, B.; Almeida, E.; Rodriguez, I.; Lauridsen, M.; Amorim, R.; Vieira, R. 5G-Wireless Communications for 2020. J. Commun. Inf. Syst. 2016, 31, 146–163. [Google Scholar] [CrossRef]
- Wang, N.; Hossain, E.; Bhargava, V.K. Backhauling 5G Small Cells: A Radio Resource Management Perspective. IEEE Wirel. Commun. 2015, 22, 41–49. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.; Xie, F.; Gao, Y.; Chu, H.; Li, Y.; Liang, F.; Yuan, Y. Mobile Relay in LTE-Advanced Systems. IEEE Commun. Mag. 2013, 51, 144–151. [Google Scholar] [CrossRef]
- Svensson, T. Moving Cells/Networks. Available online: http://snow.itn.liu.se/asbtr/SNOWTommySvensson.pdf (accessed on 11 July 2017).
- Zheng, K.; Leung, V.C.M.; Yang, L.L.; Chatzimisios, P. Guest Editorial Special Issue on 5G Wireless Systems with Massive MIMO. IEEE Syst. J. 2017, 11. [Google Scholar] [CrossRef]
- Ge, X.; Cheng, H.; Guizani, M.; Han, T. 5G Wireless Backhaul Networks: Challenges and Research Advances. IEEE Netw. 2014, 28, 6–11. [Google Scholar] [CrossRef]
- Liu, J.; Kato, N.; Ma, J.; Kadowaki, N. Device-to-Device Communication in LTE-Advanced Networks: A Survey. IEEE Commun. Surv. Tutor. 2014, 17, 1923–1940. [Google Scholar] [CrossRef]
- Pérez-Romero, J.; Sallent, O.; Agusti, R. Enhancing Cellular Coverage through Opportunistic Networks with Learning Mechanisms. In Proceedings of the IEEE Global Telecommunication Conference, Atlanta, GA, USA, 9–13 December 2013. [Google Scholar]
- Asadi, A.; Wang, Q.; Mancuso, V. A Survey on Device-to-Device Communication in Cellular Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1801–1819. [Google Scholar] [CrossRef]
- Chen, T.; Kunnari, E.; Tapani, R. Device-to-Device Communication for LTE-Advanced Network System. Available online: https://tel.archives-ouvertes.fr/tel-00983507/document (accessed on 10 July 2017).
- Hicham, M.; Abghour, N.; Ouzzif, M. Device-to-Device (D2D) Communication under LTE-Advanced Networks. Int. J. Wirel. Mob. Netw. 2016, 8, 11–22. [Google Scholar] [CrossRef]
- Noura, M.; Nordin, R. A Survey on Interface for Device-to-Device (D2D) Communication and its Challenges in 5G Networks. J. Netw. Comput. Appl. 2016. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications. Unpublished work. 2017. [Google Scholar]
- Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. A Massive MIMO for Next Generation Wireless Systems. IEEE Commun. Mag. 2016, 52, 186–195. [Google Scholar] [CrossRef]
- Jovanovic, A.; Li, J.; Richardson, T. Visible light Communication: Opportunities, Challenges and the Path to Market. IEEE Commun. Mag. 2013, 51, 130–135. [Google Scholar] [CrossRef]
- Popovicki, G.; Lauridsen, M.; Soret, B.; Pedersen, K.I.; Mogensen, P. Automation for on-Road Vehicles: Use Cases and Requirements for Radio Design. In Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC Fall), Boston, MA, USA, 6–9 September 2015. [Google Scholar]
- Abboud, K.; Omar, H.A.; Zhuang, W. Interworking of DSRC and Cellular Network Technologies for V2X Communications: A Survey. IEEE Trans. Veh. Technol. 2016, 65, 9457–9470. [Google Scholar] [CrossRef]
- Zheng, K.; Zhao, L.; Mei, J.; Dohler, M.; Xiang, W.; Peng, Y. 10 Gb/s HetSNets with Millimeter-Wave Communications: Access and Networking-Challenges and Protocols. IEEE Commun. Mag. 2015, 53, 222–231. [Google Scholar] [CrossRef]
- Jaber, M.; Imran, M.A.; Tafazolli, R.; Tukmanov, A. 5G Backhaul Challendes and Emerging Research Direction: A Survey. IEEE Access 2014, 4, 1743–1766. [Google Scholar] [CrossRef]
- Abdul Salam, S.; Mahmud, S.A.; Khan, G.M.; Raweshidy, H.S. M2M Communication in Smart Grids: Implementation Scenarios and Performance Analysis. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, France, 1 April 2012. [Google Scholar]
- 3GPP. Technical Specification Group Services and System Aspects (Release 8). Available online: http://www.arib.or.jp/IMT-2000/V720Mar09/5_Appendix/Rel8/23/23521-800.pdf (accessed on 10 July 2017).
- Ratasuk, R.; Tan, J.; Ghosh, A. Coverage and capacity analysis for machine type communications in LTE. In Proceedings of the IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012. [Google Scholar]
- Wu, G.; Talwar, S.; Johnsson, K.; Himayat, N.; Johnson, K.D. M2M: From Mobile to Embedded Internet. IEEE Commun. Mag. 2011, 49, 36–43. [Google Scholar] [CrossRef]
- Chen, M.; Wan, J.; Li, F. Machine-To-Machine Communications: Architectures, Standards and Applications. KSII Trans. Internet Inf. Syst. 2012, 6, 480–497. [Google Scholar] [CrossRef]
- Marjanovic, M.; Skorin-Kapov, L.; Pripužić, K.; Antonić, A.; Podnar Žarko, I. Energy-Aware and Quality-Driven Sensor Management For Green Mobile Crowd Sensing. J. Netw. Comput. Appl. Arch. 2015, 59, 96–108. [Google Scholar] [CrossRef]
- 5GPPP. View on 5G Architecture. Available online: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-5G-Architecture-WP-For-public-consultation.pdf (accessed on 10 July 2017).
- 5GPP. 5G Empowering Vertical Industries. Available online: https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf (accessed on 10 July 2017).
- 4G Americas. Cellular Technologies Enabling the Internet of Things. Available online: http://www.5gamericas.org/files/6014/4683/4670/4G_Americas_Cellular_Technologies_Enabling_the_IoT_White_Paper_-_November_2015.pdf (accessed on 10 July 2017).
- Carlesso, M.; Antonopoilos, A.; Granelli, F.; Verikoukis, C. Uplink Scheduling form Smart Metering and Real-Time Traffic Coexistence in LTE Networks. In Proceedings of the International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 820–825. [Google Scholar]
- Islam, R.; Avazov, N.; Dobre, O.A.; Kwak, K.S. Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Commun. Surv. Tutor. 2016, 19, 721–742. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Yu, R.; Xie, R. Integrated Energy and Spectrum Harvesting for 5G Wireless Communications. IEEE Netw. 2015, 29, 75–81. [Google Scholar] [CrossRef]
- Kong, L.; Khan, M.K.; Wu, F.; Chen, G.; Zeng, P. Millimeter-Wave Wireless Communications for IoT-Cloud Supported Autonomous Vehicles: Overview, Design, and Challenges. IEEE Commun. Mag. 2017, 55, 62–68. [Google Scholar] [CrossRef]
- Costa-Perez, X.; Garcia-Saavedra, A.; Li, X.; de la Oliva, A.; Iovanna, P.; Deiß, T.; di Giglio, A.; Mourad, A. 5G-Crosshaul: An SDN/NFV Integrated Fronthaul/Backhaul Transport Network Architecture. IEEE Wirel. Commun. 2017, 24, 38–45. [Google Scholar] [CrossRef]
- Trivisonno, R.; Guerzoni, R.; Vaishnavi, I.; Soldani, D. Towards Zero Latency Software Defined 5G Networks. In Proceedings of the IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015. [Google Scholar]
- Esaki, H.; Nakamura, R. Overlaying and Slicing for Iot Era Based on Internet’s End-To-End Discipline. In Proceedings of the IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Osaka, Japan, 12–14 June 2017. [Google Scholar]
- 5GPP. 5G and Media & Entertainment. Available online: https://5g-ppp.eu/wp-content/uploads/2016/02/5G-PPP-White-Paper-on-Media-Entertainment-Vertical-Sector.pdf (accessed on 10 July 2017).
- GSA. The Road to 5G: Frivers, Applications, Requirements and Technical Development. Available online: http://www.huawei.com/minisite/5g/img/GSA_the_Road_to_5G.pdf (accessed on 10 July 2017).
- Erman, B.; Yiu, S. Modeling 5G Wireless Network Service Reliability Prediction with Bayesian Network. In Proceedings of the 2016 IEEE International Workshop Technical Committee on Communications Quality and Reliability, Stevenson, WA, USA, 10–12 May 2016. [Google Scholar]
- NOKIA. 5G Use Cases and Requirements White Paper. Available online: https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf (accessed on 10 July 2017).
- Motlagh, N.H.; Bagaa, M.; Taleb, T.; Song, J. Connection Steering Mechanism between Mobile Networks for Reliable UAV’s Iot Platform. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 July 2017. [Google Scholar]
- Kaltenberger, F.; Knopp, R.; Vitiello, C.; Danneberg, M.; Festag, A. Experimental Anaysis of 5G Candidate Waveform and Their Coexistence with 4G Systems. In Proceedings of the Joint NEWCOM/COST Workshop on Wireless Communications JNCW, Barcelona, Spain, 14–15 October 2016. [Google Scholar]
- Serra, J.; Pubill, D.; Antonopoulos, A.; Verikoukis, C. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Nikolich, P.; Lin, C.; Korhonen, J.; Marks, R.; Tye, B.; Li, G.; Ni, J.; Zhang, S. Standards for 5G and Beyond: Their Use Cases and Applications. IEEE 5G Tech Focus 2017, 1. Available online: https://5g.ieee.org/tech-focus/june-2017/standards-for-5g-and-beyond (accessed on 9 September 2017).
- Kusume, K.; Fallgren, M.; Queseth, O.; Braun, V.; Gozalvez-Serrano, D.; Korthals, I.; Zimmermann, G.; Schubert, M.; Hossain, M.I.; Widaa, A.A.; et al. Updated Scenarios, Requirements and KPIs for 5G Mobile and Wireless System with Recommendations for Future Investigations. METIS_D1.5_v1. METIS. Available online: https://www.metis2020.com/wp-content/uploads/deliverables/METIS_D1.5_v1.pdf (accessed on 10 July 2017).
- 5GPP. 5G Vision and Requirements. Available online: https://5g-ppp.eu/imt-2020-5g-promotion-group-and-5g-ppp-announce-memorandum-of-understanding-for-5g/ (accessed on 10 July 2017).
- Yang, C.; Li, J. Interference Mitigation and Energy Management in 5G Heterogeneous Cellular Networks; ICI Global: Harshey, PA, USA, 2017; pp. 1–362. [Google Scholar]
- Ericsson. 5G Energy Performance. Available online: http://www.5gamericas.org/files/3114/3898/7332/Ericsson_wp-5g-energy-performance.pdf (accessed on 10 July 2017).
- Shen, K.; Yu, W. Distributed Pricing-Based User Association for Downlink Hterogeneous Cellular Networks. IEEE J. Sel. Areas Commun. 2014, 32, 1100–1113. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Le, L.B. Distributed Base Station Association and Power Control for Heterogeneous Cellular Networks. IEEE Trans. Veh. Technol. 2014, 63, 282–296. [Google Scholar] [CrossRef]
- Singh, S.; Andrews, J.G. Joint Resource Portitioning and Offloading in Heterogeneous Cellular Networks. IEEE Trans. Wirel. Commun. 2014, 13, 888–901. [Google Scholar] [CrossRef]
- Elsawy, H.; Hossain, E.; Kim, D.I. HetNets with Cognitive Small Cells: User Offloading and Distributed Channel Access Technique. IEEE Commun. Mag. 2013, 51, 28–36. [Google Scholar] [CrossRef]
- Ji, Z.; Li, K. Cognitive Radios for Dynamic Spectrum Access-Dynamic Spectrum Sharing: A Game Theoretical Overview. IEEE Commun. Mag. 2007, 45, 88–94. [Google Scholar] [CrossRef]
- Aijazand, A.; Aghvami, A.H. PRMA-Based Cognitive Machine-to-Machine Communications in Smart Grid Networks. IEEE Trans. Veh. Technol. 2015, 64, 3608–3623. [Google Scholar] [CrossRef]
- Okasaka, S.; Weiler, R.J.; Keusgen, W.; Pudeyev, A.; Maltsev, A.; Karls, I.; Sakaguchi, K. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular. Sensors 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Tesanovic, M. FQAM-FBMC Design and Its Application to Machine Type Communication. In Proceedings of the IEEE 27th Annual International Symposium on PIMRC, Valencia, Spain, 4–8 September 2016. [Google Scholar]
- Domouchtsidis, S.G.; Ntouni, G.D.; Kapinas, V.M.; Karagiannidis, G.K. OFDM-IM vs. FQAM: A Comparative Analysis. In Proceedings of the International Conference on Telecommunications, Thessaloniki, Greece, 16–18 May 2016. [Google Scholar]
- Hong, S.; Sagong, M.; Lim, C.V.; Cheun, K.; Cho, S. FQAM: A Modulation Scheme for Beyond 4G Cellular Wireless Communication Systems. In Proceedings of the IEEE GC Wkshps, Atlanta, GA, USA, 9–13 December 2013. [Google Scholar]
- Perlman, S.; Forenza, A. pCell Wireless Reinvented. Arthemis Networks. Available online: http://www.rearden.com/DIDO/DIDO_White_Paper_110727.pdf (accessed on 10 July 2017).
- Mesleh, R.Y.; Hass, H.; Sinanovic, S.; Ahn, C.W.; Yun, S. Spatial Modulation. IEEE Trans. Veh. Technol. 2008, 57, 2228–2241. [Google Scholar] [CrossRef]
- Maunder, R.G. The 5G Channel Code Contenders. Available online: https://www.accelercomm.com/sites/accelercomm.com/files/WhitePaper09Aug2016.pdf (accessed on 10 July 2017).
- Scholl, S.; Weithoffer, S.; When, N. Advanced Iterative Channel Coding Schemes: When Shannon meets Moore. In Proceedings of the 9th International Symposium on Turbo Codes & Iterative Information, Brest, France, 5–9 September 2016. [Google Scholar]
- Korpi, D.; Tamminen, J.; Tarunen, M.; Huusari, T.; Choi, Y.-S.; Anttila, L.; Talwar, S.; Valkama, M. Full-Duplex Mobile Device: Pushing the Limit’s. IEEE Commun. Mag. 2016, 54, 80–87. [Google Scholar] [CrossRef]
- Hong, S.S.; Brand, J.; Choi, J.I.; Jain, M.; Mehl, J. Applications of Self-Interference Cancellation in 5G and Beyond. IEEE Commun. Mag. 2014, 52, 114–121. [Google Scholar] [CrossRef]
- Duarte, M.; Dick, C.; Sabharwal, A. Experiment-Driven Characterization of Full-Duplex Wireless Systems. IEEE Trans. Wirel. Commun. 2012, 11, 4296–4307. [Google Scholar] [CrossRef]
- Bharadia, D.; McMilin, E.; Katti, S. Full Duplex Radios. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, Hong Kong, China, 12–16 August 2013. [Google Scholar]
- Čelik, H.; Sung, K.W. On the Feasibility of Blind Dynamic TDD in Ultra-Dense Wireless Networks. In Proceedings of the 2015 IEEE 81st VehicularTechnology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015. [Google Scholar]
- Osti, P.; Aalto, S.; Lassila, P. Flow-Level Modeling and Optimization of Intercell Coordination with Dynamic TDD. In Proceedings of the 10th ACM symposium on QoS and security for wireless and mobile networks Q2SWinet ’14, Montreal, QC, Canada, 21–26 September 2014. [Google Scholar]
- Kerttula, J.; Marttinen, A.; Ruttik, K.; Jäntti, R.; Alam, N. Dynamic TDD on LTE Small Cells. EURASIP J. Wirel. Commun. Netw. 2016, 194. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kulkarni, M.N.; Visotsky, E.; Vook, F.W.; Ghosh, A.; Andrews, J.G.; Heath, R.W. Rate Analysis and Feasibility of Dynamic TDD in 5G Cellular Systems. In Proceedings of the 2016 IEEE International Conference on Communications, Cuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar]
- Sun, H.; Wildemeersch, M.; Sheng, M.; Quek, T.K. D2D Enchanced Heterogeneus Cellular Networks with Dynamic TDD. IEEE Trans. Wirel. Commun. 2015, 14, 4204–4218. [Google Scholar] [CrossRef]
- Sun, H.; Wildemeersch, M.; Sheng, M.; Quek, T.K.; Li, J. Traffic Adaptation and Energy Efficiency for Small Cell Networks with Dynamic TDD. IEEE J. Sel. Areas Commun. 2016, 34, 3234–3251. [Google Scholar] [CrossRef]
- Čelik, H.; Song, K.W. Joint Transmission with Dummy Symbols for Dynamic TDD in Ultra-Dense Deployment. Available online: https://aps.arxiv.org/abs/1702.06045 (accessed on 10 July 2017).
- Li, J.; Farahvash, S.; Kavehrad, M.; Valenzuel, R. Dynamic TDD and Fixed Cellular Networks. IEEE Commun. Lett. 2002, 4, 218–220. [Google Scholar] [CrossRef]
- Shen, Z.; Khoryae, A.; Eriksson, E.; Pan, X. Dynamic Uplink-Downlink Configuration and Interference Management in TD-LTE. IEEE Commun. Mag. 2012, 50, 51–59. [Google Scholar] [CrossRef]
- Chunlin, Y.; Zhifeng, Y.; Weimin, L.; Yifei, Y. Non-Orthogonal Multiple Access Schemes for 5G. ZTE Commun. 2016, 14, 11–16. [Google Scholar] [CrossRef]
- 3GPP. Discussion on Multiple Access for Radio Interface. Available online: http://www.3gpp.org/DynaReport/TDocExMtg--R1-84b--31661.htm (accessed on 10 July 2017).
- Yuan, Z.; Yu, G.; Li, W.; Yuan, Y.; Wang, X.; Xu, J. Multi-user Shared Access for Internet of Things. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016. [Google Scholar]
- 3GPP. Receiver Implementation for MUSA. 3GPP. Available online: http://www.3gpp.org/DynaReport/TDocExMtg--R1-85--31662.htm (accessed on 10 July 2017).
- 3GPP. Contetion-Based Non-Orthogonal Multiple Access for UL mMTC. Available online: http://www.3gpp.org/DynaReport/TDocExMtg--R1-85--31662.htm (accessed on 10 July 2017).
- 3GPP. Resource Spread Multiple Access. Available online: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/ (accessed on 10 July 2017).
- Taherzadeh, M.; Nikopour, H.; Bayesteh, A.; Baligh, H. SCMA Codebook Design. In Proceedings of the IEEE International Symposium on Personal, Indoor And Mobile Radio Communications, London, UK, 14–17 September 2014. [Google Scholar]
- Nikopour, H.; Baligh, H. Sparse Code Multiple Acccess. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference, Vancouver, BC, Canada, 14–17 September 2014. [Google Scholar]
- Future Mobile Communication Forum. 5G Whitepaper v2.0, Part d-Alternative Multiple Access v1. Available online: http://www.future-forum.org/dl/151106/whitepaper.rar (accessed on 10 July 2017).
- 3GPP. Candidate Solution for New Multiple Access. 3GPP. Available online: http://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contributionId=697587 (accessed on 10 July 2017).
- Dai, X.; Chen, S.; Sun, S.; Kang, S.; Wang, Y.; Shen, Z.; Xu, Z. Successive Interference Cancelation Amenable Multiple Access (SAMA) for Future Wireless Communications. In Proceedings of the IEEE International Conference on Communication Systems, Macau, China, 19–21 November 2014. [Google Scholar]
- Dai, X. Successive Interference Cancellation Amenable Space-Time Codes with Good Multiplexing-Diversity Tradeoff. Wirel. Pers. Commun. 2010, 55, 645–654. [Google Scholar] [CrossRef]
- Li, P.; Liu, L.; Wu, K.; Leung, W.K. On Interleave-Division Multiple-Access. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar]
- Li, P.; Liu, L.; Wu, K.; Leung, W.K. Interleave Division Multiple-Access. IEEE Trans. Wirel. Commun. 2006, 5, 938–947. [Google Scholar] [CrossRef]
- Rabee, F.A.; Dayaslioglu, K.; Gitlin, R. The Optimum Received Power Levels of Uplink Non-Orthogonal Multiple Access (NOMA) Signals. In Proceedings of the 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 24–25 April 2017. [Google Scholar]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. In Proceedings of the 77th IEEE Vehicular Technology Conference, Dresden, Germany, 2–5 June 2013. [Google Scholar]
- Choi, J. On Multiple Access Using H-ARQ with SIC Techniques for Wireless Ad Hoc Networks. Wirel. Pers. Commun. 2013, 69, 187–212. [Google Scholar] [CrossRef]
- Choi, J. Non-orthogonal Multiple Access in Downlink Coordinated Two-point Systems. IEEE Commun. Lett. 2014, 18, 313–316. [Google Scholar] [CrossRef]
- Sedtheetorn, P.; Chulajata, T. Accurate Spectral Efficiency Analysis for Non Orthogonal Multiple Access. Trans. Adv. Commun. Technol. 2016, 5, 844–850. [Google Scholar]
- Wild, T.; Schaich, F.; Chen, Y. 5G Air Interface Design Based on Universal Filtered (UF-) OFDM. In Proceedings of the 19th International Conference in DSP, Hong Kong, China, 20–23 August 2014. [Google Scholar]
- Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V. On the Performance of Non-orthogonal Multiple Access in 5G Systems with Randomly Deployed Users. IEEE Signal Process. Lett. 2014, 21, 1501–1505. [Google Scholar] [CrossRef]
- Zhao, Z.; Schellmann, M.; Wang, Q.; Gong, X.; Boehnke, R.; Xu, W. Pulse shaped OFDM for Asynchronous Uplink Access. In Proceedings of the Asilomar Conference Signals, Systems and Computers, Pacific Grove, CA, USA, 8–11 November 2015. [Google Scholar]
- Cover, T.M.; El Gamel, A. Capacity Theorems for The Relay Channel. IEEE Trans. Inf. Theory 1979, 25, 572–584. [Google Scholar] [CrossRef]
- Cover, T.M.; Leung, C.S.K. An Achievable Rate Region for the Multiple-access Channel with Feedback. IEEE Trans. Inf. Theory 1981, 27, 292–298. [Google Scholar] [CrossRef]
- Ahlswede, R. Multiway Communication Channels. In Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenian SSR, 2–8 September 1971. [Google Scholar]
- Xie, L.L.; Kumar, P.R. An Achievable Rate for the Multiple-level Relay Channel. IEEE Trans. Inf. Theory 2005, 51, 1348–1358. [Google Scholar] [CrossRef]
- Kim, K.T.; Ahn, S.-K.; Kim, Y.-H.; Park, H.; Wang, L.; Chen, C.-Y.; Park, J. Adaptive Sliding-Window Coded Modulation in Cellular Networks. In Proceedings of the IEEE GLOBECOM, San Diego, CA, USA, 6–10 December 2015. [Google Scholar]
- Thurfjell, M.; Ericsson, M.; de Bruin, P. Network Densification Impact on System Capacity. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference, Glasgow, Scotland, 11–14 May 2015. [Google Scholar]
- Darwish, A.; Ibrahim, A.S. Capacity Improvements via Indoor Small Cells. In Proceedings of the 2014 International Wireless Communications and Mobile Computing Conference (IWCMC), Nicosia, Cyprus, 4–8 August 2014. [Google Scholar]
- Hoadley, J.; Maveddat, P. Enabling Small Cell Deployment with Hetnet. IEEE Wirel. Commun. 2012, 19, 4–5. [Google Scholar] [CrossRef]
- Hughes, M.; Jovanovic, V.M. Small Cells-Effective Capacity Relief Option for Heterogeneous Networks. In Proceedings of the 2012 IEEE Vehicular Technology Conference, Quebec City, QC, Canada, 3–6 September 2012. [Google Scholar]
- Sui, Y.; Guvenc, I.; Svensson, T. Interference Management for Moving Networks in Ultra-Dense Urban Scenarios. EURASIP J. Wirel. Commun. Netw. 2015, 111. [Google Scholar] [CrossRef]
- Sui, Y.; Vihrälä, J.; Papadogiannis, A.; Sternad, M.; Svensson, T. Moving Cells: A Promising Solution to Boost Performance for Vehicular Users. IEEE Commun. Mag. 2013, 51, 62–68. [Google Scholar] [CrossRef]
- Sambo, Y.A.; Shakir, M.Z.; Héliot, F.; Imran, M.A.; Mumtaz, S.; Qaraqe, K.A. Device-to-Device Communication in Heterogeneous Networks. In Smart Device to Smart Device Communication; Mumtaz, S., Rodriguez, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 219–235. [Google Scholar]
- Liu, X.; Andrews, J.G.; Ghosh, A. Spectrum Sharing for Device- to-Device Communication in Cellular Networks. IEEE Trans. Wirel. Commun. 2014, 13, 6272–6740. [Google Scholar] [CrossRef]
- Zafar, B.; Gherekhloo, S.; Haardt, M. Analysis of Multihop Relaying Networks: Communication Between Range-Limited and Cooperative Nodes. IEEE Veh. Technol. Mag. 2012, 7, 40–47. [Google Scholar] [CrossRef]
- Kamalinejad, P.; Mahapatra, C.; Sheng, Z.; Mirabbasi, S.; Leung, V.C.M.; Guan, Y.L. Wireless Energy Harvesting for the Internet of Things. IEEE Commun. Mag. 2015, 53, 102–108. [Google Scholar] [CrossRef]
- Mekikis, P.-V.; Antonopoulos, A.; Kartsakli, E.; Lalos, A.S.; Alonso, L.; Verikoukis, C. Information Exchange in Randomly Deploys Dense WSNs with Wireless Energy Harvesting Capabilities. IEEE Trans. Wirel. Commun. 2016, 15, 3008–3018. [Google Scholar] [CrossRef]
- Mekikis, P.-V.; Antonopoulos, A.; Alonso, L.; Verikoukis, C. Stochastic Modeling of Wireless Charged Wearables for Reliable Health Monitoring In Hospital Environments. In Proceedings of the International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar]
- Li, Y.; Cai, L. UAV-Assisted Dynamic Coverage in a Heterogeneous Cellular System. IEEE Netw. 2017, 31, 56–61. [Google Scholar] [CrossRef]
- Messous, M.-A.; Senouci, S.-M.; Sedjelmaci, H. Network Connectivity and Area Coverage for UAV Fleet Mobility Model with Energy Constraint. In Proceedings of the Wireless Communications and Networking Conference (WCNC), Doha, Qatar, 3–6 April 2016. [Google Scholar]
- Mekikis, P.-V.; Kartsakli, E.; Alonso, L.; Verikoukis, C. Flexible Aerial Relay Nodes for Communication Recovery and D2D Relaying. In Proceedings of the IEEE 5th Global Conference on Consumer Electronics, Kyoto, Japan, 11–14 October 2016. [Google Scholar]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless Communications with Unmanned Aerial Vehicles: Opportunities and Challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Yang, X.; Lu, W.-J.; Wang, N.; Nieman, K.; Jin, S.; Zhu, H.; Mu, X.; Wong, I.; Huang, Y.; You, X. Design and Implementation of a TDD-Based 128-Antenna Massive MIMO Prototyping System. Available online: http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1608.07362 (accessed on 11 July 2017).
- Chen, B.; Zhu, C.; Shu, L.; Su, M.; Wei, J.; Leung, V.C.M.; Rodriques, J.J.P.C. Uplink Transmission for Lightweight Single-antenna UEs in the Presence of a Massive MIMO eavesdropper. IEEE Access 2016, 99, 2169–3536. [Google Scholar] [CrossRef]
- Wu, S.; Wang, H.; Youn, C.H. Visible Light Communications for 5G Wireless Networking Systems: From Fixed to Mobile. IEEE Access 2014, 28, 41–45. [Google Scholar] [CrossRef]
- Feng, L.; Hu, R.Q.; Wang, J.; Xu, P.; Qian, Y. Applying VLC in 5G Networks: Architectures and Key Technologies. IEEE Access 2016, 30, 77–83. [Google Scholar] [CrossRef]
- Grobe, L.; Paraskevopoulos, A.; Hilt, J.; Schulz, D.; Lassak, F.; Hartlieb, F.; Kottke, C.; Jungnickel, V.; Langer, K.-D. High-Speed Visible Light Communication Systems. IEEE Commun. Mag. 2013, 51, 60–66. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Wang, J.; Hanzo, L. Cell-Centric and User-Centric Multi-User Scheduling in Visible Light Communication Aided Networks. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015. [Google Scholar]
- Katriniok, A.; Kleibaum, P.; Res, C.; Eckstein, L. Automation of Road Vehicles Using V2X: An Application to Intersection Automation. Available online: http://papers.sae.org/2017-01-0078/ (accessed on 10 July 2017).
- Ghods, A.; Severi, S.; Abreu, G. Localization in V2X Communication Networks. In Proceedings of the IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, 19–22 June 2016. [Google Scholar]
- Goebel, N.; Bialon, R.; Mauve, M.; Graffi, K. Coupled Simulation of Mobile Cellular Networks, Road Traffic and V2X Applications Using Traces. In Proceedings of the International Conference on Communications, Kuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar]
- Xiao, Z.; Liu, H.; Havyarimana, V.; Li, T.; Wang, D. Analytical Study on Multi-Tier 5G Heterogeneous Small Cell Networks: Coverage Performance and Energy Efficiency. Sensors 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.I.; Jain, M.; Srinivasan, K.; Levis, P.; Katti, S. Achieving Single Channel, Full Duplex Wireless Communication. In Proceedings of the sixteenth annual international conference on Mobile computing and networking, Chicago, IL, USA, 20–24 September 2010. [Google Scholar]
- Song, Q.; Nuaymi, L.; Lagrange, X. Survey of Radio Resource Management Issues and Proposals for Energy-Efficient Cellular Network That Will Cover Billions of Machines. Wirel. Commun. Netw. 2016, 140. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.; Miao, G. Context-Aware Machine-To-Machine Communications. In Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM WKSHPS), Toronto, ON, Canada, 27 April–2 May 2014. [Google Scholar]
- Agyapong, P.K.; Iwamura, M.; Staehle, D.; Kiess, W.; Benjebbour, A. Design Considerations for a 5G Network Architecture. IEEE Commun. Mag. 2014, 52, 65–75. [Google Scholar] [CrossRef]
- Vermesan, O.; Friass, P.; Guillemin, P.; Giaffreda, R.; Grindvoll, H.; Eisenhauer, M.; Serrano, M.; Moessner, K.; Spirito, M.; Blystad, L.-C.; et al. Building the Hypercconnected Society—IoT Research and Innovation Value Chains, Ecosystems and Markets; Vermesan, O., Friass, P., Eds.; River Publishers: Aalborg, Denmark, 2015; Volume 43. [Google Scholar]
- Panwar, N.; Sharma, S.; Singh, A.K. A Survey on 5G: The Next Generation of Mobile Communication. Elsevier Phys. Commun. 2016, 18, 64–84. [Google Scholar] [CrossRef]
- Thuemmler, C.; Gavrasm, A.; Jumelle, A.K.L.; Paulin, A.; Sadique, A.; Schneider, A.; Fedell, C.; Abraham, D.; Trossen, D. 5G and e-Health. Available online: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-eHealth-Vertical-Sector.pdf (accessed on 10 July 2017).
- Rose, K.; Eldridge, S.; Chaplin, L. The Internet of Things: An Overview. Available online: https://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151014_0.pdf (accessed on 10 July 2017).
- Huawei. 5G Opening up New Business Opportunities. Available online: http://www-file.huawei.com/-/media/CORPORATE/PDF/x-lab/10-5g-opening-up-new-business-opportunities-en.pdf?la=en (accessed on 10 July 2017).
- Lin, H.; Shao, J.; Zhang, C.; Fang, Y. CAM: Cloud-Assisted Privacy Preserving Mobile Health Monitoring. IEEE Trans. Inf. Forensics Secur. 2013, 8, 985–997. [Google Scholar] [CrossRef]
- NGMN Alliance. NGMN 5G White Paper. Available online: https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf (accessed on 10 July 2017).
- Le, N.T.; Hossain, M.A.; Islam, A.; Kim, D.-Y.; Choi, Y.-J.; Jang, Y.M. Survey of Promising Technologies for 5G Networks. Hindawi 2016, 2016. [Google Scholar] [CrossRef]
- Militano, L.; Araniti, G.; Condoluci, M.; Farris, I.; Iera, A. Device-to-Device Communications for 5G Internet of Things. EAI Endorsed Trans. Internet Things 2015, 1. [Google Scholar] [CrossRef]
- Shariatmadari, H.; Ratasuk, R.; Iraji, S.; Laya, A.; Taleb, T.; Ghosh, A. Machine-type Communications: Current Status and Future Perspective toward 5G Systems. IEEE Commun. Mag. 2015, 53, 10–17. [Google Scholar] [CrossRef]
- 5GPPP. 5G and the Factories of the Future. Available online: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf (accessed on 10 July 2017).
- Elayoubi, S.E.; Fallgren, M.; Spapis, P.; Zimmermann, G.; Martín-Sacristán, D.; Yang, C.; Jeux, S.; Agyapong, P.; Campoy, L.; Qi, Y.; et al. 5G Service Requirements and Operational Use Cases: Analysis and METIS II Vision. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016. [Google Scholar]
- Blanco, B.; Fajardo, H.O.; Giannis, I.; Kafetzakis, E.; Pneg, S.; Perez-Romero, J.; Trajkovska, I.; Khodashenas, P.S.; Goratti, L.; Paolino, M.; et al. Technology Pillars in the Architecture of Future 5G Mobile Networks: NFV, MEC and SDN. Comput. Stand. Interfaces 2017, 54, 216–228. [Google Scholar] [CrossRef]
- ITU-R. Recommendation ITU-R M.2083-0. IMT Vision: Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf (accessed on 10 July 2017).
- Le, L.B.; Lau, V.; Jorswieck, E.; Dao, N.-D.; Haghighat, A.; Kim, D.I.; Le-Ngoc, T. Enabling 5G Mobile Wireless Technologies. EURASIP J. Wirel. Commun. Netw. 2015, 218. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, D. 5G: Vision and Requirements for Mobile Communication System towards Year 2020. Chin. J. Eng. 2016, 2016, 5974586. [Google Scholar] [CrossRef]
- Bogale, T.E.; Le, L.B. Massive MIMO and mmWave for 5G Wireless HetNet: Potential Benefit’s and Challenges. IEEE Veh. Technol. Mag. 2016, 11, 64–75. [Google Scholar] [CrossRef]
- Banelli, P.; Buzzi, S.; Colavolpe, G.; Modenini, A.; Rusek, F.; Ugolini, A. Modulation Formats and Waveforms for 5G Networks: Who Will Be the Heir of OFDM?: An overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Process. Mag. 2014, 31, 80–93. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladidm, L. Internet of Things in the 5G Era: Enablers, Architecture and Business Models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Pries, R.; Morper, H.-J.; Galambosi, N.; Jarschel, M. Network as a Service—A Demo on 5G Network Slicing. In Proceedings of the 28th International Teletraffic Congress (ITC 28), Würzburg, Germany, 12–16 September 2016. [Google Scholar]
- Caraguay, A.L.V.; Peral, A.B.; Lopez, L.I.B. SDN: Evolution and Opportunities in the Development IoT Applications. Int. J. Distrib. Sens. Netw. 2014, 10. [Google Scholar] [CrossRef]
- Bizanis, N.; Kuipers, F.A. SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access 2016, 4, 5591–5606. [Google Scholar] [CrossRef]
- Stancu, A.; Vulpe, A.; Fratu, O.; Halunga, S. Default Values Mediator Used for a Wireless Transport SDN Proof of Concept. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, Germany, 31 October–2 November 2016. [Google Scholar]
- Warren, D.; Dewar, C. Understanding 5G: Perspectives on Future Technological Advancements in Mobile. Available online: https://www.gsmaintelligence.com/research/?file=141208-5g.pdf&download (accessed on 10 July 2017).
- Rappaport, T.S.; Heath, R.V.; Daniels, R.C.; Murdock, J.N. Millimeter Wave Wireless Communications, 1st ed.; Pearson: Harshey, PA, USA, 2017; pp. 1–657. [Google Scholar]
- Thakare, S. Research Challenges of Millimeter Wave Technology in 5G Cellular System. In Proceedings of the 4th International Conference on Recent Trends in Engineering & Technology (ICRTET), Nashik, India, 2–4 July 2015. [Google Scholar]
- Ye, J.; He, J.; Ge, X.; Chen, M. Energy Efficiency Analysis of 5G Ultra-dense Networks Based on Random Way Point Mobility Models. In Proceedings of the 2016 19th International Symposium on Wireless Personal Multimedia Communications, Shenzhen, China, 14–16 November 2016. [Google Scholar]
- Witrisal, K.; Meissner, P.; Leitinger, E.; Shen, Y.; Gustafson, C.; Tufvesson, F.; Haneda, K.; Dardari, D.; Molisch, A.F.; Conti, A.; et al. High-Accurany Localization for Assisted Living: 5G Systems Will Turn Multipath Channels from Foe to Friend. IEEE Signal Process. Mag. 2016, 33, 59–70. [Google Scholar] [CrossRef]
- 5GPP. 5G Automotive Vision. Available online: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf (accessed on 10 July 2017).
- Siaud, I.; Umner-Moll, A.M. Green-Oriented Multi-Techno Link Adaptation Metrics for 5G Heterogeneous Networks. EURASIP J. Wirel. Commun. Netw. 2016, 92. [Google Scholar] [CrossRef]
- Le, L.B.; Niyato, D.; Hossain, E.; Kim, D.I.; Hoang, D.T. QoS-Aware and Energy-Efficient Resource Management in OFDMA Femtocells. IEEE Trans. Wirel. Commun. 2013, 12, 180–194. [Google Scholar] [CrossRef]
- Ye, Q.; Rong, B.; Chen, Y.; Al-Shalash, M.; Caramanis, C.; Andrews, J.G. User Association for Load Balancing in Heterogeneous Cellular Networks. IEEE Trans. Wirel. Commun. 2013, 12, 2706–2716. [Google Scholar] [CrossRef]
- Mavromoustakis, C.X.; Bourdena, A.; Mastorakis, G.; Pallis, E.; Kormentzas, G. Coverage An Energy-Aware Scheme for Efficient Spectrum Utilization in A 5G Mobile Cognitive Radio Network Architecture. Telecommun. Syst. 2015, 59, 63–75. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Y.; Al Imari, M.; Nekovee, M. FQAM: Frequency and Quadrature Amplitude Modulation for 5G Networks. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016. [Google Scholar]
- Al-Imari, M.; Mouhouche, B.; Al.Imari, M.; Nekovee, M.F. Non-Orthogonal FQAM for Multiple Access in the Uplink of 5G Wireless Networks. In Proceedings of the 2016 International Symposium on Wireless Communication Systems (ISWCS), Poznań, Poland, 20–23 September 2016. [Google Scholar]
- Hong, S.; Sagong, M.; Lim, C.; Cho, S.; Cheun, K.; Yang, K. Frequency and Quadrature Amplitude Modulation for Downlink Cellular OFDMA Networks. IEEE J. Sel. Areas Commun. 2014, 32, 1256–1267. [Google Scholar] [CrossRef]
- Nekovee, M.; Yue, W.; Tesanovic, M.; Wu, S.; Qi, Y.; Al-Imari, M. Overview of 5G Modulation and Waveforms Candidates. J. Commun. Inf. Netw. 2016, 1, 44–60. [Google Scholar] [CrossRef]
- Hochwald, B.M.; Sweldens, W. Differential Unitary Space-Time Modulation. IEEE Trans. Commun. 2000, 48, 2041–2052. [Google Scholar] [CrossRef]
- Ostman, J.; Yang, W.; DUrisim, G.; Koch, T. Diversity Versus Multiplexing at Finite Blocklength. In Proceedings of the 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona, Spain, 26–29 August 2014. [Google Scholar]
- Devaillie, B.; van Liempd, B.; Hershberg, B.; Craninckx, J.; Rikkinen, K.; van den Broek, D.J.; Klumperink, E.A.M.; Nauta, B. In-Band Full-Duplex Transceiver Technology for 5G Mobile Networks. In Proceedings of the ESSCIRC Conference, Graz, Austria, 4–8 December 2016. [Google Scholar]
- Kim, C.; Kim, K.; Yun, Y.H.; Ho, Z.; Lee, B.; Seol, J.-Y. QAM-FBMC: A New Multi-carrier System for Post-OFDM Wireless Communications. In Proceedings of the IEEE Global Communication Conference GLOBECOM, San Diego, CA, USA, 6–10 December 2015. [Google Scholar]
- Fettweis, G.; Krondorf, M.; Bittner, S. GFDM-generalized Frequency Division Multiplexing. In Proceedings of the IEEE 69th VTC, Barcelona, Spain, 26–29 April 2009. [Google Scholar]
- Abdoli, G.; Jia, M.; Ma, J. Filtered OFDM: A New Waveform for Future Wireless Systems. In Proceedings of the IEEE 16th International Workshop SPAWC, Stockholm, Sweden, 28 June–1 July 2015. [Google Scholar]
- Li, J.; Kearney, K.; Bala, E.; Yang, R. Filtered OFDM: A Resource Block Based Filtered OFDM Scheme and Performanse Comparison. In Proceedings of the 2013 20th International Conference on Telecommunications, Casablanca, Morocco, 6–8 May 2013. [Google Scholar]
- Kumar, U.; Ibars, C.; Bhorkar, A.; Jung, H. Filtered OFDM: A Waveform for 5G: Guard Interval DFT-S-OFDM. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015. [Google Scholar]
- Chung, C.D. Spectrally Precoded OFDM. IEEE Trans. Commun. 2006, 54, 2173–2185. [Google Scholar] [CrossRef]
- Monk, A.; Hadani, R.; Tsatsanis, M.; Rakib, S. OTFS—Orthogonal Time Frequency Space. Available online: https://arxiv.org/ftp/arxiv/papers/1608/1608.02993.pdf (accessed on 10 July 2017).
- Bandemer, B.; Gamal, A.E.; Kim, Y.H. Optimal Achievable Rates for Interference Networks with Random Codes. IEEE Trans. Inf. Theory 20125, 61, 6536–6549. [Google Scholar] [CrossRef]
- Carleial, A.B. Multiple-access Channels with Different Generalized Feedback Signals. IEEE Trans. Inf. Theory 1982, 28, 841–850. [Google Scholar] [CrossRef]
- Prasad, A.; Uusitalo, M.A.; Li, Z.; Lunder, P. Reflection Environment Maps for Enhanced Reliability in 5G Self-Organizing Networks. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016. [Google Scholar]
- Sui, Y.; Papadogiannis, A.; Sternad, M. The Potential of Moving Relays-A Performance Analysis. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012. [Google Scholar]
- Jiang, L.; Tian, H.; Xing, K.; Zhang, K.; Maharjan, S.; Cjessing, S.; Zhang, Y. Social-aware Energy Harvesting Device-to-Device Communications in 5G Networks. IEEE Wirel. Commun. 2016, 23, 20–27. [Google Scholar] [CrossRef]
- Huang, X.; Yu, R.; Kang, J.; Gao, Y.; Maharjan, S.; Gjessing, S.; Zhang, Y. Software Defined Energy Harvesting Networking for 5G Green Communications. IEEE Wirel. Commun. 2017, 24, 38–45. [Google Scholar] [CrossRef]
- Merwaday, A.; Guvenc, I. UAV Assisted Heterogeneous Networks for Public Safety Communications. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleand, LA, USA, 9–12 March 2015. [Google Scholar]
- Osseiran, A. The 5G Radio-Access Technologies. In 5G Mobile and Wireless Communications Technology, 1st ed.; Osseiran, A., Monserrat, J.F., Marsch, P., Dohler, M., Nakamura, T., Eds.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Sahin, A.; Yang, R.; Bala, E.; Beluri, M.C.; Olesen, R.L. Flexible DFT-S-OFD: Solutions and Challenges. IEEE Commun. Mag. 2016, 54, 106–112. [Google Scholar] [CrossRef]
- Shi, S.; Yang, W.; Zhang, J.; Chang, Z. Review of Key Technologies of 5G Wireless Communication System. MATEC Web Conf. 2015, 22. [Google Scholar] [CrossRef]
- Wang, C.-X.; Haider, F.; Gao, X.; You, X.-H.; Yang, Y.; Yuan, D.; Aggoune, H.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular Architecture and Key Technologies for 5G Wireless Communication Networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef]
Criteria for Classification | IoT Classes | References |
---|---|---|
Domains | (1) Transportation and logistics (2) Healthcare (3) Environment (4) Personal and social (5) Futuristic applications (6) Food/water monitoring (7) Living (8) Manufacturing (9) Energy (10) Building (11) Industry (12) City (13) Security and safety (14) Communication (15) e-society (16) Vehicular (17) Sport and leisure | [4,10,11,12] |
Mobility and amount of dispersion | (1) Fixed and concentrated (2) Fixed and dispersed (3) Mobile and concentrated (4) Mobile and dispersed | [13] |
Delay tolerance | (1) Elastic (2) Hard real time (3) Delay-adaptive (4) Rate-adaptive | [14] |
Data reporting mode | (1) Time-driven (2) Query-driven (3) Event-driven (4) Continuous-based (5) Hybrid-driven | [198] |
Reliability, availability, and end-to-end latency | (1) Monitoring-based and mission critical (2) Monitoring-based and non-mission critical (3) Control-oriented and mission critical (4) Control-oriented and non-mission critical | [15] |
Characteristics and requirements | mMTC and uMTC | [12] |
Activity | Domain Examples | 5G Service Classification | Application Examples |
---|---|---|---|
Ticketing | Smart Transportation and Logistics | mMTC | POS Terminal [4] |
Monitoring | Smart Healthcare | uMTC | Health condition [97] |
Smart Buildings | uMTC | Structures (buildings, tunnels, etc.) [12,25,213] | |
Smart Buildings/Smart City | mMTC | Parking spaces | |
Smart Buildings/Smart Environment | mMTC | Home video [12] | |
Smart food/water monitoring | mMTC | Food growth condition [10] | |
Tracking | Smart Healthcare/Sport and Leisure | mMTC | Medical assets, wearables [200,213] |
Smart Transportation and Logistics | mMTC | Transport fleet [200,213] | |
Smart Industry/Social Networking | mMTC | Shipping of products | |
Smart Healthcare | mMTC | People in science museum | |
Managing/controlling | Smart Healthcare | uMTC | Remote surgery [213] |
Smart food/water monitoring | uMTC | Food processing facilities [96] | |
Smart Transportation and Logistics | uMTC | Traffic, driving [12,213] | |
Smart Energy | mMTC | Energy distribution [12,98] |
5G Service Classification | Activity | User Experienced Data Rate [Gbps] Outdoor: 0.1 [5] Indoor: 1 [5] | Mobility [km/h] Required: 500 [5] | Latency [ms] Control Plane: 50 [5] User Plane: 1 [5] | Connection Density [Connections/km2] Required: 106 [5] | Reliability [%] Required: 99.999 [207] | Positioning Accuracy Required: A Few cm [5] | Coverage/ Availability [%] Required: 99.999 [207] | Energy Efficiency [bits/J] |
---|---|---|---|---|---|---|---|---|---|
mMTC | Ticketing | L to M | L | L | H | M | H | H | H |
Tracking | M | H | L | H | M | H | H | M to H | |
Monitoring | M to H | L | L | H | L to M | L | H | M | |
Managing/controlling | L | L | L | H | M | L | M to H | M | |
uMTC | Monitoring | L | L to M | H | H | H | M to H | H | M |
Managing/controlling | L | M to H | H | L | H | H | M to H | M |
Enabling Technologies | IoT in 5G Service Requirements | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Data Rate | Mobility | Latency | Connection Density | Reliability | Positioning | Coverage | Energy Efficiency | Spectrum Efficiency | ||
Wide and flexible bandwidth technology | mmWave Band Communication and large-scale antenna | [7,202,225,226,227] | [202] | [233] | [5] | [202] | [7,29,214] | |||
Heterogeneous Multi-RAT Integration | [5,217,228,229,230,231,232] | [5] | ||||||||
Cognitive Radio and Spectrum Sharing | [5] | |||||||||
Advanced modulation and coding | Advanced Modulation | [52,234,235,236] | [237,238] | [239] | [237,239] | [237] | ||||
Advanced Channel Coding | [235] | [235] | [216] | |||||||
Duplexing | In-band FD | [124] | [5] | [7,29,214] | ||||||
Dynamic TDD | [240] | [240] | [9] | |||||||
Multiple access and waveform | Multiple access | [216] | [218] | [7,9,29,216,256,257] | ||||||
New waveform | [5] | [7,9,29,216,256,257] | ||||||||
Advanced interface management | SND and SWSC | [5] | ||||||||
Access architecture related radio technologies | Advanced small cell | [7,202] | [5] | [5,251] | [7,202,217] | [202,257] | ||||
MN | [202] | [202] | [5] | [202] | ||||||
Enhanced wireless backhaul | [5] | |||||||||
D2D | [202,248] | [7,241,244] | [245,246,247] | [7,202,215] | [7,9,29,202,252] | |||||
Energy related technologies | Energy harvesting | [100,253] | ||||||||
UAV | [254] | [254] | [183,184,185] | |||||||
Other important technologies | mMIMO | [7,202,249] | [13,202] | [249] | [200] | [217] | [7,9,214,216,257] | |||
VLC | [202,250] | [202] | [202,258] | |||||||
SIC | [202] | [202,236] | ||||||||
V2X | [255] | [255] |
5G Enabling Technologies | Research Gaps and Directions | References | |
---|---|---|---|
Wide and flexible bandwidth technology | mmWave band communication and large-scale antenna | (1) 3D channel modeling; (2) dynamic power control; (3) user scheduling and congestion control; (4) hardware limitation and adaptive beam-steering technique; (5) design of mobility management and admission control for mmWave-based dense HetNet; (6) design of frequency management schemes for mmWave; (7) Tactile Internet; (8) effective and efficient mmWave implementation in HetNets (access and networking). | [7,87,217] |
Heterogeneous multi-RAT integration | (1) cell-association; (2) traffic-offloading algorithms; (3) interference management schemes in case of inter user and inter cell interference; (4) cross-tier handover, access admission, and mobility management schemes of a multi-tier HetNets. | [196,217] | |
Cognitive radio and spectrum sharing | (1) Spectrum sensing (design of cooperative frameworks, choose cooperative secondary users and transmit cooperative information); (2) develop framework and algorithms for group handoff of secondary users and security; (3) simulation of different attacks and scenarios to enhance security; (4) in-depth performance analysis between GFDM and UFMC in CR settings. | [29,110] | |
Duplexing | In-band full duplexing | (1) Redesign of network and management; (2) antenna and circuit design and development of the theoretical foundation; (3) analyze the throughput of a network of randomly deployment terminals sing stochastic geometry; (4) characterize the capacity advantage due to IFDB in various network scenarios; (5) guidelines to practical design: coding, modulation, power allocation, beamforming, channel estimation, equalization, digital interference cancellation and decoding, (6) design of a MAC layer. | [55,197] |
Multiple access and waveform | New waveform | (1) Performance of SIC cancelation or filtering on f-OFDMA; (2) balance of time and frequency dispersion and design an efficient filter prototype for UFMC. | |
Access architecture related radio technologies | Advanced small cell | (1) Expect of wireless backhauling on user experience; (2) exploitation of location data and fingerprints in optimizing small cell discovery in terms of time and energy- efficiency; (3) interference management when integrating D2D and small cells. | [34,80] |
Enhanced wireless backhaul | (1) TDD multi-flow coordination schemes to avoid bottlenecks in the downlink backhaul; (2) Backhaul aware association in ultra-dense deployment; (3) reliability and security of the backhaul. | [34,88,198] | |
Moving network | (1) Resource allocation and interference in the mobile relay when trains are moving from opposite directions; (2) handover decision of users (more than one train arrive or depart, stop or pass); (3) group mobility for users on board very high-speed vehicles; (4) design od cooperative communication schemes; (5) deployment of moving networks in various vehicle environments, not just on fixes route railways. | [5] | |
D2D communication | (1) Interference management (mode selection, resource allocation and power control); (2) integration of novel reputation-based mechanism for identify and avoid malicious users from multiple users in multi-hop D2D communications; (3) testing of D2D interference management schemes in 5G scenarios (mmWave, cell densification). | [29,208,209] | |
Energy related technologies | Energy harvesting | (1) Improving energy harvesting schemes; (2) simulation of proposed models; (3) integration with other 5G technologies. | [100,182,253] |
UAV | (1) Optimal deployment, mobility and energy-efficient use of UAVs; (2) integration with other 5G technologies. | [81] | |
Other technologies | mMIMO | (1) Performance of practical mMIMO. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cero, E.; Baraković Husić, J.; Baraković, S. IoT’s Tiny Steps towards 5G: Telco’s Perspective. Symmetry 2017, 9, 213. https://doi.org/10.3390/sym9100213
Cero E, Baraković Husić J, Baraković S. IoT’s Tiny Steps towards 5G: Telco’s Perspective. Symmetry. 2017; 9(10):213. https://doi.org/10.3390/sym9100213
Chicago/Turabian StyleCero, Enida, Jasmina Baraković Husić, and Sabina Baraković. 2017. "IoT’s Tiny Steps towards 5G: Telco’s Perspective" Symmetry 9, no. 10: 213. https://doi.org/10.3390/sym9100213
APA StyleCero, E., Baraković Husić, J., & Baraković, S. (2017). IoT’s Tiny Steps towards 5G: Telco’s Perspective. Symmetry, 9(10), 213. https://doi.org/10.3390/sym9100213